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Abstract

Solving the inverse problem is the key
step in evaluating the capacity of a
physical model to describe real phenom-
ena. In medical image computing, it

aligns with the classical theme of image-
based model personalization. Tradi-
tionally, a solution to the problem is
obtained by performing either sampling
or variational inference based methods.
Both approaches aim to identify a set
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of free physical model parameters that
results in a simulation best matching an
empirical observation. When applied to
brain tumor modeling, one of the in-
stances of image-based model person-
alization in medical image computing,
the overarching drawback of the meth-
ods is the time complexity of finding
such a set. In a clinical setting with
limited time between imaging and di-
agnosis or even intervention, this time
complexity may prove critical. As the
history of quantitative science is the his-
tory of compression (Schmidhuber and
Fridman, 2018), we align in this pa-
per with the historical tendency and
propose a method compressing complex
traditional strategies for solving an in-
verse problem into a simple database
query task. We evaluated different ways
of performing the database query task
assessing the trade-off between accu-
racy and execution time. On the exem-
plary task of brain tumor growth model-
ing, we prove that the proposed method
achieves one order speed-up compared
to existing approaches for solving the
inverse problem. The resulting compute
time offers critical means for relying on
more complex and, hence, realistic mod-
els, for integrating image preprocessing
and inverse modeling even deeper, or
for implementing the current model into
a clinical workflow. The code is avail-
able at https://github.com/IvanEz/for-
loop-tumor.

Keywords: glioma, model personal-
ization, tumor modeling, MRI, inverse
problem, for-loop

1. Introduction

Magnetic resonance imaging (MRI) is the
gold standard technique to diagnose brain
tumors, such as glioblastoma (GBM). While
being able to reliably highlight areas of suf-
ficiently high tumor cell concentration in
GBMs, it can lack the capacity to visual-
ize areas of lower tumor cell density at the

tumor border and most importantly areas
of diffuse tumor infiltration, a key biologi-
cal property of GBM. Current radiotherapy
plans try to account for the unknown infil-
tration by targeting a uniformly extended
volume around the tumor outlines visible in
MRI. While decreasing the probability of tu-
mor recurrence, such treatment planning has
an obvious drawback of unnecessarily dam-
aging healthy tissue, which in turn has a
negative impact on the patient’s life qual-
ity. Personalizing the target of radiotherapy
by complementing the MRI scans with indi-
vidual tumor simulation, that models a com-
plete spatial distribution of tumor cell con-
centration, could preserve healthy tissue and
reduce the risk for secondary malignancies
and side effects (Le et al., 2017, 2015; Lip-
kova et al., 2019; Hormuth et al., 2021).

Conventional approaches for simulation-
based personalization attempt to model the
tumor growth for each individual patient us-
ing differential equation solvers. The person-
alization is achieved by solving the inverse
problem - identifying the tumor model’s pa-
rameters best matching the tumor signal
from MRI. However, utilizing the numeri-
cal solvers for solving an inverse problem
still results in extreme runtimes which ob-
struct transfer into clinical practice. To ad-
dress this issue, highly efficient model- and
data-driven approaches were developed over
the recent years (Subramanian et al., 2020b;
Scheufele et al., 2019; Hormuth et al., 2018,
2021; Lipkova et al., 2019; Petersen et al.,
2019, 2021). The time for solving an inverse
problem using numerical model-based solvers
hit one hour of compute (Subramanian et al.,
2020b; Scheufele et al., 2019; Hormuth et al.,
2021). For data-driven approaches the com-
puting time can be reduced to minutes (Pe-
tersen et al., 2019, 2021; Ezhov et al., 2019,
2021a), but they all rely on some type of a
neural network to predict tumor progression.
Neural networks are known to be non-robust
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Figure 1: Schematic illustration of the proposed pipeline. First, we register a patient MRI scan to
the brain atlas. Next, we use the obtained forward transformation matrix to morph the
patient segmentation to the atlas space. Then, we perform a query to a database of 50k
pre-simulated tumors in the atlas space. Essentially, in this step, we find the closest to the
query sample binary volume in the database. Finally, we transform a tumor simulation,
corresponding to the best matching binary volume, back to the patient space.

when extrapolated to out-of-training distri-
butions - the key obstacle in integrating such
algorithms into safety-critical applications.

In this paper, we propose an image
retrieval-based approach that performs a
query of patient-specific scans to a database
of synthetic tumors, returning the closest
resemblance of the patient’s tumor. As a
baseline, this image retrieval process is im-
plemented via a primitive iterative pair-wise
comparison. Further, we investigate how a
retrieval in low dimensional embeddings of
the simulations - that we obtain by using
downsampling as well as autoencoders, vari-
ational autoencoders, unsupervised hashing,
and radiomics feature representation - can
improve runtimes. As a result, our work
shows that our query approach can yield ac-
curate and, depending on the chosen opti-
mization, also deterministic results in the or-
der of seconds (correspondingly, minutes for
the inverse problem).

2. Method

2.1. Tumor growth model.

Our forward model is based on the most
used within the medical imaging commu-
nity mathematical formalism - the reaction-
diffusion partial differential equation. The
equation describes the evolution of tumor cell

density through proliferation and diffusion of
the cells:

∂u

∂t
= ∇(D∇u) + ρu(1− u), in Ω (1)

n · ∇u = 0, in ΓΩ. (2)

Here, the first term on the right-hand site
of the equation denotes the diffusion process,
where D is the diffusion tensor. The second
term models the logistic proliferation of cells,
and ρ denotes the rate of cell proliferation.
We impose the Neumann boundary condition
on the boundary of the simulation domain
ΓΩ, while Ω denotes the simulation domain
itself, i.e. volume of the brain, and n is the
unit vector orthogonal to ΓΩ. As an initial
condition for the cell density u we use a seed
point at a spatial location r∗r∗r∗: u(rrr, 0) = u0
if rrr = r∗r∗r∗, u(rrr, 0) = 0 if rrr ̸= r∗r∗r∗. The solver
outputs a simulated tumor density u of size
1283.

We assume that visible outlines in an MRI
image correspond to isolines in u, and to
link the tumor simulations with an imag-
ing signal, we threshold the simulations at
uT1Gd, uFLAIR. This allows us to reproduce
the binary segmentation obtained from an
MRI scan (T1Gd, FLAIR) delineation (Le
et al., 2015; Ezhov et al., 2019).
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2.2. Inverse model.

The proposed inverse model pipeline consists
of the following steps, Fig. 1:

1. A patient MRI scan is registered to the
atlas brain anatomy (Rohlfing et al., 2010),
yielding a transformation matrix M .

2. M is used to morph the corresponding
segmentation Y into the atlas space resulting
in Ya.

3. A query is made to a database of syn-
thetic tumors which were simulated before-
hand in the brain atlas. This query finds
the closest match1 to Ya, and returns the
corresponding tumor simulation in the atlas
space.

4. As a last step, utilizing the inverse of
M , the atlas simulation is morphed back to
the patient’s brain anatomy to obtain the
patient-specific simulation.

2.3. Query to a database of synthetic
tumors.

The input MRI scans consist of two segmen-
tations while the synthetic tumors are a spa-
tial distribution containing continuous val-
ues in the range from 0 to 1. Therefore,
we have to extract the desired segmentations
from the raw synthetic tumor data. For this
purpose, we threshold the synthetic tumors
at uFLAIR = 0.2 to receive the FLAIR and
at uT1Gd = 0.6 for the T1Gd segmentations
(Le et al., 2017; Martens et al., 2021).

After preprocessing the dataset to make it
comparable, we need to select a fitting met-
ric. The Dice coefficient is a common mea-
sure for medical imaging segmentations, we
therefore utilized it as the main metric.

Even though we believe that a for-loop is
all you need, in order to please reviewers
spoiled with deep learning sugar, we evalu-
ated different learnable strategies to perform
a query to a database of simulated tumors.

1. The closest match can be determined in different
ways which we are comparing in this study

For some of these query strategies, in order to
evaluate similarities between the compressed
vectors, we use the L2 = ∥·∥2 metric, as Dice
is barely meaningful e.g. for comparing la-
tent representations. Furthermore, since we
have to compare two segmentations for each
tumor, it is possible that the separate queries
result in different best matches. Hence, the
two query results have to be combined to de-
termine a joint best match. For simplicity,
we decided to simply add the two individual
similarity values and choose the highest com-
bined value for Dice (DiceT1Gd+DiceFLAIR)
or the lowest for L2 (L2T1Gd + L2FLAIR) as
the best match.

2.3.1. Baseline for-loop search

The most basic way to implement the query
is by naively looping over the dataset and
performing a pair-wise comparison between
input and database tumors. We imple-
mented this basic brute-force loop to create
a ground truth that serves as a reference for
later improvements and experiments. Since
the individual comparisons are not depen-
dent on each other, we implemented the
query by parallelizing the loop to shorten its
runtime.
Although parallelization can help to re-

duce the time complexity of the database
query, the speed of this operation is still lim-
ited by significant memory usage. This re-
striction also prohibits the use of efficient
query frameworks. For instance, the FAISS
library is designed for vector sizes in the
range of roughly 20 - 2000 (Johnson et al.,
2019). However, a plain flattening of our 3D
volume of 1283 voxels exceeds this suggested
limit by a factor of more than 1000. There-
fore, we decided to experiment with compres-
sion of the data.
As a first step, we try naive downsam-

pling of the volume to lower resolutions. In
our case, we tried downsampling to 643 and
323 voxels. We downsample the original
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volume by applying a spline interpolation
of order 0 to the original volume (Virtanen
et al., 2020). We then compare downsampled
database with a downsampled query volume
and choose the one that has the highest Dice
in the downsampled volume.

2.3.2. Autoencoders

To obtain even more compact data represen-
tation, we experimented with convolutional
autoencoders (AE) and variational autoen-
coders (VAE). We examined if these tech-
niques are capable of creating a problem-
specific encoding that might be able to suf-
ficiently preserve similarity relationships be-
tween tumors, while drastically reducing the
runtime. The core idea for our use case is to
train the AE to extract meaningful proper-
ties of the tumors and then apply the encoder
function to the dataset {Y }, yielding an en-
coded dataset {Yenc}. For each query, we
utilize {Yenc} and encode the input tumor us-
ing the same encoder, resulting in a data size
drop from 1283 to the dimension of the la-
tent space (1024). Since the segmentations of
T1Gd and FLAIR scans differ in their prop-
erties, two separate AEs are needed, lead-
ing to two encoded datasets {Y T1Gd

enc } and
{Y FLAIR

enc }.
To further improve the performance of our

AEs, we experimented with VAEs. Basic
AEs have the potential disadvantage of lim-
ited control over the latent space. VAEs
enforce a distribution over the latent space
by penalizing deviations from a previously
selected distribution during training, which
can produce more continuous and organized
latent spaces while still providing adequate
reconstructions (Kingma and Welling, 2013).
Usually, this property is used to generate pre-
viously unseen output by randomly sampling
from the latent space. However, we investi-
gated if this characteristic is also beneficial
for similarity preservation.

In the end, we compare the latent repre-
sentation of the database with a latent rep-
resentation of the query volume and choose
the one that has the lowest L2.

2.3.3. Unsupervised hashing

An alternative compression strategy is to use
a hashing - compression to a bit string repre-
sentation (Zhang and Zhang, 2016; Guéziec
et al., 1997; Cai et al., 2019; Conjeti et al.,
2016). We resorted to the most recent deep
unsupervised hashing technique (Li and van
Gemert, 2021) for our experiments. The
methodological idea is a replica of the AE
with a difference in how the latent space
is formed. In (Li and van Gemert, 2021),
the continuous output of the AE’s encoder is
quantized via a so-called ”Bi-half” hash layer
into a binary representation. This represen-
tation serves then as an input to the AE’s de-
coder. All other network elements are identi-
cal to the conventional AE setup. Similar to
the AE and VAE, we choose the best match
that has the lowest L2 when compared to the
binary representation of the query sample.

2.3.4. Radiomics shape feature
representation

The ultimate compression strategy is to use
single value characteristics of a 3D shape
and morphology. We experimented with
shape features from the pyradiomics library
(Van Griethuysen et al., 2017), namely voxel
volume, elongation, major axis length, etc.
Additionally, we computed the tumor’s cen-
ter of mass to account for its location. For
the query, we used the following strategy.
We selected 1000 samples from our database
which have the closest center of mass to our
query sample in the atlas reference space.
Out of these 1000 samples, we selected the
one that is closest to the query sample under
the L2 measure evaluated for the shape fea-
tures:

∑
i

∥∥f i
q, f

i
d

∥∥
2
. Here, the summation is
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over the radiomics features, f i
q is the feature

representation computed for the query sam-
ple, and f i

d is the feature computed for the
database sample.

2.4. Implementation.

The base architecture for our AE is a con-
volutional neural network. In the encoder,
we scale down the volume layer-by-layer us-
ing strided 3D convolutions (stride=2, ker-
nel size=3) followed by a convolution without
stride, while increasing the number of chan-
nels. After downscaling the volume, we flat-
ten the features and apply a linear layer to
obtain a latent representation of size 1024.
Afterward, the decoder mirrors this process
with strided 3D transposed convolutions. We
executed multiple test runs searching for the
best architecture that suggested that down-
scaling to a resolution of 163 before flatten-
ing the volume and 1024 as the size of the
latent representation yield the most reason-
able results. We use this resolution through-
out all consecutive experiments. For com-
parability, our VAE network replicates the
AE network (except the linear layer before
the latent space that is replaced by 2 sepa-
rate linear layers that output the mean and
the logarithm of the variance). AE, VAE,
and the hashing method were trained on a
dataset of 1500 tumors along with a valida-
tion set of size 150.

We used the Advanced Normalization
Tools (ANTs) (Avants et al., 2009) for
the registration. with basic settings. For
the looping-based queries, we performed the
compute on AMD EPYC 7452 CPU and par-
allelized the search over 32 processes. For
AE, VAE, and BF-HASH, the training and
evaluation were performed on an NVIDIA
QUADRO P8000 GPU.

3. Experiments

3.0.1. Data

The basis for our work is a dataset of 50,000
synthetic tumor volumes of 1283 resolution.
In order to generate synthetic tumors, com-
mon brain anatomy is required that is able
to represent a broad range of realistic hu-
man brains. For this purpose, the atlas brain
anatomy introduced in (Rohlfing et al., 2010)
was utilized. This represents a statistical av-
erage for the relevant distributions of cere-
brospinal fluid (CSF), white matter (WM),
and gray matter (GM), combined into a sin-
gle atlas space. In this atlas space, a tumor
can then be simulated using the reaction-
diffusion model by setting values for the ini-
tial location x, y, z, the proliferation rate ρ,
the diffusion rate in WM Dw as well as
the simulation end time Tend, which corre-
sponds to the tumor’s age. The synthetic
dataset was generated by randomly sam-
pling patient-specific parameters from the
subsequent ranges and feeding the resulting
parameter sets θ = {x, y, z,Dw, ρ, Tend} to
the reaction-diffusion model. Analogous to
(Ezhov et al., 2021b), we discarded unrealis-
tic in size tumors based on the range of real
tumor sizes (BraTS dataset (Menze et al.,
2014)).
In all experiments, we evaluate the in-

verse model pipeline on 62 real MRI scans
of patients diagnosed with gliomas for which
T1Gd and FLAIR MRI scanning were per-
formed. For these patients, the correspond-
ing tumor annotations were obtained by ex-
pert radiologists’ labeling. In addition, for
the evaluation on synthetic data, we used 1k
tumors simulated in the atlas space but not
present in the query database.

3.0.2. Quantitative comparison
between query methods

Table 1 compares the presented database
query approaches on the real dataset: 1)
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direct query DS 64 DS 32 VAE AE BF-HASH RF

Top-1 100% 88.7% 66.1% 41.9% 33.8% 32.2% 4.92%
Top-5 100% 100% 96.7% 61.2% 64.5% 67.7% 4.92%
Top-15 100% 100% 100% 80.6% 77.4% 82.2% 9.83%

Runtime 340s 130s 116s 34s 22s 22s 2.8s

Table 1: Comparison between different best match query strategies: looping over the
dataset with resolution 1283 (direct query), looping over downsampled to 643

dataset (DS 64), looping over downsampled to 323 dataset (DS 32), using em-
beddings obtained by the VAE and AE, using the radiomics features (RF), and
using hashing (BF-HASH). Top N accuracy represents a measure of whether the
predicted best match falls in the top N closest predictions. For the query using
direct, DS64, and DS32 methods the Dice score is used, while for the remaining
methods we use the L2 measure. We expectedly observe that an improvement in
runtime comes at a cost of query accuracy.

Real Synthetic
Top-1 Top-5 Top-15 Top-1 Top-5 Top-15

direct query 100% 100% 100% 100% 100% 100%

DS64 88.7% 100% 100% 93.5% 100% 100%

DS32 66.1% 96.7% 100% 78.9% 99.6% 100%

Table 2: Comparison between different loop-based query strategies on real (62 cases) and
synthetic (1000 cases): looping over the dataset with resolution 1283 (direct query),
looping over downsampled to 643 dataset (DS 64), looping over downsampled
to 323 dataset (DS 32). Top-N accuracy represents a measure of whether the
predicted best match falls in the top N closest predictions. The average DICE
(sum of DICEs for T1Gd and FLAIR) for best matching samples is 1.07 for real,
and 1.69 for synthetic samples.

Figure 2: Qualitative examples of the tumor simulations obtained by our proposed pipeline. The
brain images correspond to five different patients.
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Figure 3: Distribution of DICE overlap between the database and query (real (a) and syn-
thetic (b)) samples. DICE is computed for T1Gd (upper row), FLAIR (middle
row), and combined T1Gd+FLAIR (down row). Such analysis is a fast way to
shed light on tumor model plausibility.
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Figure 4: DICE between real tumor segmenta-
tion (62 patients) and best matching
synthetic tumor in the atlas space for
the mass-effect model. The dataset is
exact replica of the one from (Ezhov
et al., 2021b). DICE is computed for
T1Gd (upper row), FLAIR (middle
row), and combined T1Gd+FLAIR
(down row).

simple looping over the dataset with origi-
nal resolution 1283 (direct query), 2) looping
over downsampled to 643 dataset (DS 64),
3) looping over downsampled to 323 dataset
(DS 32), 4) using embeddings obtained by
the VAE and AE, 5) using the radiomics fea-
tures (RF), and 6) and unsupervised hash-
ing (BF-HASH). The top-N accuracy is com-
puted with respect to the best match sam-
ples found by the baseline. As expected,
we observe that an improvement in runtime
comes at a cost of losing accuracy of similar-
ity preservation.

Tab.2 showcases how the difference be-
tween real and synthetic data distributions
affects query accuracy. Given an evident
gap between real tumor progression and the
tumor growth trajectory modeled by the
reaction-diffusion model, we expectedly ob-
serve a ca. 10 percent drop in the accuracy.
Fig. 3 demonstrates the same difference in

real and synthetic data distributions for ev-
ery example used in the study.

In future works probing more complicated
tumor descriptions, such analysis can serve
as a measure of the plausibility of a tumor
growth model. To probe this reasoning fur-
ther, in Fig. 4, we show the very same anal-
ysis for a more complicated tumor model de-
scribing, in addition to cell migration and
diffusion, the mass interaction of the grow-
ing tumor with neighboring brain tissue, i.e.
mass effect (Hogea et al., 2007; Ezhov et al.,
2021b; Subramanian et al., 2020a). The aver-
age DICE score for 62 real tumors is notably
lower for this tumor model which suggests
that the more complex model does not nec-
essarily lead to a closer match with reality.

4. Discussion

Here we want to discuss the pros and cons
of the proposed method. First, the method
is deterministic - it relies on the direct com-
putation of the best match among tens of
thousands of precomputed simulations under
the measure of interest. Thus in contrast to
data-driven methods, it is robust against var-
ious shifts in data distribution.

The method is generalizable to other tu-
mor models (one would simply need to res-
imulate new tumor model simulations in the
atlas space) and other metrics (arbitrary dif-
ferentiable and non-differentiable measures
can be employed for comparison between real
and tumor samples during the query).

Even though we provided a comparison
with different query strategies analyzing the
trade-off between accuracy and time, by us-
ing the direct query strategy one obtains a
”global optimum” for the query at an ac-
ceptable runtime, so we suggest using it in
practice. The overall runtimes for solving
the inverse problem, including registration,
query, and back transform vary from two (for
the inaccurate RF query) to eight minutes
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(for the optimal direct query). This is an
order of magnitude faster than any existing
brain tumor inverse problem solving methods
(starting from ca. 1 hour for the same resolu-
tion by (Subramanian et al., 2020b; Scheufele
et al., 2019)). One may question whether
such a speed-up comes at the cost of a sig-
nificant error, which in turn comes from the
registration to and finding the best match-
ing in the atlas space. While we would agree
with such a statement, it is worth mention-
ing that the dominant majority of existing
literature resorts to such atlas registration
in order to approximate the patient-specific
anatomy.

5. Conclusion

We present a method for inferring a tu-
mor simulation from information available on
medical scans relying on a simple database
query strategy. A reader might say that
the proposed method is a joke due to its
offensively simple nature. While we would
again agree with such a statement, we do
believe that the method provides a generaliz-
able, fast, and robust solution to the inverse
problem. The runtimes for solving the in-
verse problem are in the order of a few min-
utes which is faster than any existing inverse
modeling method. Even though the used
database is composed of simulations from the
reaction-diffusion model that might not be
sufficient to provide a close match to real tu-
mor growth in general, it is evident that the
proposed method is generalizable to more so-
phisticated models (one just needs to resim-
ulate tumor database in the atlas space with
more complicated tumor model). As opposed
to data-driven approaches, the method does
not fail at extrapolation as it is based on
a plain compute of the overlap measure be-
tween two binary volumes.
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