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Abstract
We study multiclass classification in the agnostic adversarial online learning setting. As our main
result, we prove that any multiclass concept class is agnostically learnable if and only if its Lit-
tlestone dimension is finite. This solves an open problem studied by Daniely, Sabato, Ben-David,
and Shalev-Shwartz (2011,2015) who handled the case when the number of classes (or labels) is
bounded. We also prove a separation between online learnability and online uniform convergence
by exhibiting an easy-to-learn class whose sequential Rademacher complexity is unbounded.

Our learning algorithm uses the multiplicative weights algorithm, with a set of experts defined
by executions of the Standard Optimal Algorithm on subsequences of size Littlestone dimension.
We argue that the best expert has regret at most Littlestone dimension relative to the best concept
in the class. This differs from the well-known covering technique of Ben-David, Pál, and Shalev-
Shwartz (2009) for binary classification, where the best expert has regret zero.
Keywords: Online Learning, Multiclass Classification, Agnostic Learning, Regret Bound, Little-
stone Dimension, Learnability

1. Introduction

Many important machine learning tasks involve a large prediction space; for instance, in language
models the prediction space corresponds to the language size (number of words). Other examples
include recommendation systems, image object recognition, protein folding prediction, and more.

Consequently, multiclass prediction problems have been studied extensively in the literature.
Natarajan and Tadepalli (1988) and Natarajan (1989) initiated the study of multiclass prediction
in the basic PAC setting. They characterized the concept classes that satisfy uniform convergence
via a natural combinatorial parameter called the graph dimension. They further characterized PAC
learnability in the case when the number of labels is bounded via another combinatorial param-
eter called the Natarajan dimension. Whether the Natarajan dimension characterizes learnability
in general (i.e., even when the number of labels can be infinite) has remained open, until recently
Brukhim, Carmon, Dinur, Moran, and Yehudayoff (2022) exhibited an unlearnable concept class
with Natarajan dimension 1. Brukhim et al. (2022) showed that multiclass PAC learnability is in
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fact captured by a different combinatorial parameter which they called the Daniely Shalev-Shwartz
(DS) dimension, after Daniely and Shalev-Shwartz (2014) who defined it.

Remarkably, the nature of multiclass PAC learnability with a bounded label space is very dif-
ferent than the one when the number of labels is infinite. For instance, in the former PAC learn-
ability and uniform convergence are equivalent1. In contrast, already in the 80’s, Natarajan (1988)
demonstrated an easy-to-learn concept class over an infinite label space which does not satisfy uni-
form convergence. More recently, Daniely, Sabato, Ben-David, and Shalev-Shwartz (2011, 2015);
Daniely and Shalev-Shwartz (2014) studied variants of the ERM principle in multiclass learning,
and even demonstrated a PAC learnable class which cannot be learned properly (i.e., by learners
whose hypothesis is always an element of the concept class).

How about agnostic versus realizable PAC learning? Here, it turns out that the two are equiva-
lent; that is, any class that is learnable in the realizable case is also learnable in the agnostic case.
This was shown by David, Moran, and Yehudayoff (2016) using sample compression arguments.

Perhaps surprisingly, the corresponding questions in the setting of online multiclass classifi-
cation are still open. Daniely, Sabato, Ben-David, and Shalev-Shwartz (2011, 2015) initiated the
study of online multiclass classification and show that, like in the binary case, the Littlestone dimen-
sion characterizes learnability in the realizable setting. They also studied the agnostic setting, and
showed that when the number of labels is finite, then agnostic learnability is equivalent to realizable
case learnability. They left open whether this equivalence extends to unbounded label space (or
equivalently whether the dependence on the number of labels in the optimal regret can be removed).
In this work we resolve this question by showing that agnostic- and realizable-case learnability
remain equivalent, even when the number of labels is infinite.

How about uniform convergence versus learnability? In the past 15 years an online analogue of
uniform convergence has emerged from the introduction of the sequential Rademacher complexity
(Rakhlin, Sridharan, and Tewari, 2010, 2015a), and of the adversarial laws of large numbers frame-
work (Alon, Ben-Eliezer, Dagan, Moran, Naor, and Yogev, 2021a). This raises the question whether
online uniform convergence and online learnability are equivalent. When the number of labels is
finite, known results imply that indeed the two are equivalent. How about classes with an infinite
number of labels? In this work we resolve this question by introducing a combinatorial parameter
which we call the sequential graph dimension that characterizes online uniform convergence in the
multiclass setting. Furthermore we identify an online learnable class with an unbounded sequential
graph dimension, thus separating online uniform convergence from online learnability.

In both the PAC and online settings, our interest in studying unbounded label spaces has multiple
motivations. One main interest is in establishing sharp enough guarantees to reflect the intuitive fact
that the optimal performance should not inherently depend on the number of possible labels: that
is, that the latter has no explicit significance to the optimal sample complexity (in PAC learning) or
regret (in online learning), even when finite. As many modern learning problems have enormous
label spaces (e.g., face recognition), this is quite relevant, and has recently been studied in the
machine learning literature under the name “extreme classification”, where the number of possible
labels is vast (possibly exceeding even the data set size). More abstractly, often in mathematics it
is the case that infinities clarify concepts and phenomena (e.g., the notion of continuity, based on
limits). Similarly, focusing on infinite label spaces is a natural way to abstract away an irrelevant
detail, which helps to clarify what is the “correct” way to approach the problem.

1. This equivalence yields the fundamental empirical risk minimization principle in PAC learning.
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1.1. Setting and Summary of Main Results

We begin with the basic setup. Let X and Y be arbitrary non-empty sets, called the instance space
and label space, respectively. Let H ⊆ YX be an arbitrary set of functions, called the concept class.
Our results will hold for any (X ,Y,H), and hence are fully general.

Denote by Π(Y) the set of probability measures on Y .2 A learning algorithm is a mapping
A : (X × Y)∗ × X → Π(Y). Intuitively, A(X1, Y1, . . . , Xt−1, Yt−1, Xt) outputs a prediction ŷt of
the label Yt of the test point Xt, after observing the history (X1, Y1), . . . , (Xt−1, Yt−1) and the test
point Xt. The output space Π(Y) generalizes this to allow for randomized algorithms: that is, the
predicted label ŷt may be randomized. This is known to be necessary for agnostic online learning
Cesa-Bianchi and Lugosi (2006). For simplicity, when A and X1, Y1, . . . , Xt−1, Yt−1, Xt are clear
from the context, we denote by pt ∈ Π(Y) the output A(X1, Y1, . . . , Xt−1, Yt−1, Xt), and for any
y ∈ Y we denote by pt(y) the probability of the singleton set {y} under the probability measure pt.

For any T ∈ N, called the time horizon, the regret of a learning algorithm A is defined as

regret(A, T ) = sup
(X1,Y1),...,(XT ,YT )

(
T∑
t=1

(1− pt(Yt))

)
−

(
min
h∈H

T∑
t=1

1[h(Xt) ̸= Yt]

)
.

As is well-known, this may be interpreted as the worst-case value of the difference between the
expected number of mistakes the algorithm A makes in its predictions ŷt (i.e., how many times t
have ŷt ̸= Yt) and the number of mistakes made by the best function in the class H (where “best”
means the function making fewest mistakes on the sequence).

This is often also interpreted as a sequential game between the learner and an adversary. On
each round t, the adversary first chooses a value for Xt, the learner observes this value and chooses
a probability measure pt; the adversary observes this pt and chooses a class label Yt, and the learner
suffers a loss 1 − pt(Yt), representing the probability that its randomized prediction ŷt is incor-
rect. The overall objective of the learner is to achieve low regret on this sequence of plays, that is,(∑T

t=1 (1− pt(Yt))
)
−
(
min
h∈H

∑T
t=1 1[h(Xt) ̸= Yt]

)
, whereas the adversary’s objective is to max-

imize this quantity. regret(A, T ) represents the value of this objective when the adversary plays
optimally against the algorithm A.

A concept class H is said to be agnostically online learnable if

inf
A

regret(A, T ) = o(T ).

The key quantity of interest in online learning (be it binary or multiclass) is the Littlestone
dimension, L(H) (see Section 2 for the definition), whose finiteness is known to be necessary and
sufficient for online learnability in the realizable case (i.e., when the subtracted term in regret(A, T )
is zero). Daniely, Sabato, Ben-David, and Shalev-Shwartz (2011, 2015) effectively asked the fol-
lowing question regarding whether this fact extends to the agnostic setting:

Is any concept class H agnostically online learnable if and only if L(H) < ∞?

Daniely, Sabato, Ben-David, and Shalev-Shwartz (2011, 2015) proved the necessity direction
(which, as they note, follows readily from arguments of Littlestone, 1988), that is, that any class

2. The associated σ-algebra is of little consequence here, except that singleton sets {y} should be measurable.
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with L(H) = ∞ is not online learnable (indeed, even in the realizable case). Daniely, Sabato, Ben-
David, and Shalev-Shwartz (2015) further establish a lower bound when L(H) < ∞: for any A and
any T ≥ L(H),

regret(A, T ) = Ω
(√

L(H)T
)
. (1)

However, for the sufficiency direction, their upper bound has a dependence on the number of classes,
and hence only establishes sufficiency for a bounded number of classes. This is analogous to the
well-known gap in PAC learnability, which was only recently resolved by Brukhim, Carmon, Dinur,
Moran, and Yehudayoff (2022). As our main result, we prove the following theorem.

Theorem 1 (Main Result) Any concept class H is agnostically online learnable iff L(H) < ∞.
Moreover, for any T ∈ N, there is an online learning algorithm A satisfying

regret(A, T ) = Õ
(√

L(H)T
)
.

In light of the lower bound (1), this further establishes that the optimal achievable regret for
T ≥ L(H) satisfies

min
A

regret(A, T ) = Θ̃
(√

L(H)T
)
.

While the result of Daniely, Sabato, Ben-David, and Shalev-Shwartz (2015), which has a de-
pendence on the number of classes, is based on an extension of the algorithm of Ben-David, Pál,
and Shalev-Shwartz (2009) for binary classification, our result modifies this approach. We take
inspiration from the PAC setting, where the only known proof that the agnostic sample complexity
is characterized by the DS dimension proceeds by a reduction to the realizable case, wherein the
algorithm first identifies a maximal subset of the data, and then applies a compression scheme for
the realizable case to this subset (David, Moran, and Yehudayoff, 2016). In our case, this maxi-
mal realizable subset appears only in the analysis, but serves an important role. Specifically, our
algorithm applies the well-known multiplicative weights experts algorithm, with a family of experts
defined by predictions of all possible executions of the SOA (see Section 2.1) that are constrained
to only update their predictor in at most L(H) pre-specified time steps. The important property is
that one of these experts corresponds precisely to executing the SOA on a maximal realizable sub-
sequence of the data sequence, and hence makes at most L(H) mistakes on this subsequence (see
Section 2.1). This expert therefore has regret only L(H) compared to the best function in H, and a
regret bound for the overall algorithm then follows from classical analysis of prediction with expert
advice. We present the detailed proof in Section 3.

The Õ in Theorem 1 hides a factor
√
log(T/L(H)). An analogous factor has recently been

removed from the best known regret bound for binary classification (Alon, Ben-Eliezer, Dagan,
Moran, Naor, and Yogev, 2021a), yielding a regret bound that is optimal up to numerical constants.
It remains open whether an analogous refinement is possible in the multiclass setting. Specifically,
we pose the following open problem.

Open Problem 1 Is it true that, for any concept class H, the optimal regret is Θ
(√

L(H)T
)

?

In addition to the above results for learnability, we also study the related question of adversarial
uniform laws of large numbers; see Section 4 for definitions. It was shown in the PAC setting
that multiclass learnability is not equivalent to a uniform law of large numbers (Natarajan, 1988;
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Daniely, Sabato, Ben-David, and Shalev-Shwartz, 2011, 2015), in contrast to binary classification
where it has long been established that these are equivalent (Vapnik and Chervonenkis, 1974). Again
in the binary classification setting, Alon, Ben-Eliezer, Dagan, Moran, Naor, and Yogev (2021a) have
established an equivalence between a type of adversarial uniform law of large numbers (AULLN),
online learnability, and convergence of the sequential Rademacher complexity (the latter two were
already known to be equivalent, Rakhlin, Sridharan, and Tewari, 2015a). In the present work, we
find that the analogy between PAC and online learning settings holds true once again. That is, in the
multiclass setting with unbounded label space, while the AULLN is again equivalent to convergence
of the sequential Rademacher complexity, in this case these properties are not equivalent to online
learnability. Indeed, we show (Theorem 7) that AULLN and convergence of sequential Rademacher
complexity are characterized by finiteness of a different combinatorial parameter dSG(H) called
the sequential graph dimension (Definition 6), and we exhibit an example in which L(H) = 1 but
dSG(H) = ∞. All of this remains perfectly analogous to known results for multiclass PAC learning.
Carrying the parallel further, in the case of bounded label spaces, we relate these two parameters by
dSG(H) = O(L(H) log(|Y|)) (Theorem 8). Based on the above, we also state new bounds on the
achievable regret (Theorem 9): namely, regret(A, T ) = O

(√
dSG(H)T

)
, which in the finite |Y|

case, further implies regret(A, T ) = O
(√

L(H)T log(|Y|)
)

.

2. Definitions

We begin with some basic useful notation. For any sequence z1, z2, . . ., for any t ∈ N ∪ {0},
we denote by z≤t = (z1, . . . , zt) and z<t = (z1, . . . , zt−1), interpreting z≤0 = z<1 = (), the
empty sequence. For simplicity, for a sequence (x1, y1), . . . , (xn, yn), we denote by (x<t, y<t) =
((x1, y1), . . . , (xt−1, yt−1)) and (x≤t, y≤t) = ((x1, y1), . . . , (xt, yt)). For any h ∈ H, n ∈ N, and
x = (x1, . . . , xn) ∈ X n, denote by h(x) = (h(x1), . . . , h(xn)). For any V ⊆ H, n ∈ N, and any
sequence (x,y) = ((x1, y1), . . . , (xn, yn)) ∈ (X × Y)n, denote by V(x,y) = {h ∈ V : h(x) = y},
called a version space of V . We say a sequence (x,y) ∈ (X ×Y)n is realizable by H if H(x,y) ̸= ∅:
that is, ∃h ∈ H with h(x) = y. For any value α ∈ R, denote by log(α) = ln(max{α, e}).

The following is the primary definition of dimension central to this work: namely, the Littlestone
dimension L(H) of a concept class H. The definition is due to Daniely, Sabato, Ben-David, and
Shalev-Shwartz (2011, 2015), representing the natural generalization of the classic definition of
Littlestone (1988) (for binary classification) to multiclass.

We first state a clear intuitive definition in terms of binary trees. Specifically, a Littlestone tree
T is a rooted binary tree, where each internal node is labeled by an instance x ∈ X , and each edge
between that node and a child is labeled by (x, y) for a class label y ∈ Y , with the restriction that if
the node has two children, then the corresponding class labels y, y′ must be distinct: i.e., if the edges
are labeled (x, y), (x, y′), respectively, then y ̸= y′. A finite-depth Littlestone tree T is shattered by
H if, for every leaf node of any depth d, the sequence (x,y) of labels of the edges along the path
from the root to this leaf is realizable by H. The Littlestone dimension, L(H), is then the maximum
depth of a perfect Littlestone tree shattered by H, where the term perfect means that every node has
2 children and every leaf has equal depth. If there are arbitrarily large depths d for which there exist
perfect Littlestone trees shattered by H, then L(H) = ∞.

We state this definition formally (giving notation to the labels of nodes and edges) as follows.
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Definition 2 The Littlestone dimension of H, denoted L(H), is defined as the largest n ∈ N ∪ {0}
for which ∃{(xb, y(b,0), y(b,1)) : b ∈ {0, 1}t, t ∈ {0, . . . , n−1}} ⊆ X×Y2 (interpreting {0, 1}0 =
{()}) with the property that ∀b1, . . . , bn ∈ {0, 1}, ∃h ∈ H with

h(xb<1
, xb<2

, . . . , xb<n
) = (yb≤1

, yb≤2
, . . . , yb≤n

).

If no such largest n exists, define L(H) = ∞. Also define L(∅) = −1.
When L(H) < ∞, one can show that L(H) can equivalently be defined inductively as

max
x

max
y0 ̸=y1

min
i∈{0,1}

L(H(x,yi)) + 1.

To see the correspondence between Definition 2 and the definition in terms of shattered Little-
stone trees, we take the nodes at depth t ≥ 0 (counting the root as depth 0) to be labeled xb≤t

, with
the edge connecting to its left child labeled (xb≤t

, y(b≤t,0)
) and the edge connecting to its right child

labeled (xb≤t
, y(b≤t,1)

).

2.1. Background

It was shown by Daniely, Sabato, Ben-David, and Shalev-Shwartz (2011, 2015) that H is online
learnable in the realizable case if and only if L(H) < ∞. That is, there is an algorithm guaran-
teeing a bounded number of mistakes on all (X1, Y1), . . . , (XT , YT ) realizable by H. Specifically,
they employ a natural multiclass generalization of Littlestone’s Standard Optimal Algorithm (SOA),
defined as follows. For any (X1, Y1), . . . , (Xt−1, Yt−1), Xt, define

SOA(X<t, Y<t, Xt) = argmax
y∈Y

L(H((X<t,Y<t),(Xt,y))),

where ties are broken arbitrarily. In other words, it (deterministically) predicts a label ŷt which
maximizes the Littlestone dimension of the version space constrained by that label. Following the
classic argument of Littlestone (1988) for binary classification, Daniely, Sabato, Ben-David, and
Shalev-Shwartz (2011, 2015) showed that SOA makes at most L(H) mistakes on any sequence
(X1, Y1), . . . , (XT , YT ) realizable by H: that is,

T∑
t=1

1[SOA(X<t, Y<t, Xt) ̸= Yt] ≤ L(H).

The reason is clear from the inductive version of the definition of L(H). When L(H) < ∞, for
any V ⊆ H and x ∈ X , at most one label y can have L(V(x,y)) = L(V ), and hence (since L is
integer-valued) every other y′ must have L(V(x,y′)) ≤ L(V ) − 1. Thus, for V = H(X<t,Y<t), by
predicting the label ŷt with maximum L(H((X<t,Y<t),(Xt,ŷt))), we are guaranteed that if ŷt ̸= Yt,
then Yt cannot have L(H(X≤t,Y≤t)) = L(H(X<t,Y<t)). That is, every mistake guarantees that
the version space H(X≤t,Y≤t) has a smaller Littlestone dimension (by at least 1) than H(X<t,Y<t).
Since (X1, Y1), . . . , (XT , YT ) is realizable by H, we always have H(X≤t,Y≤t) ̸= ∅, and hence
L(H(X≤t,Y≤t)) ≥ 0, so that we can have ŷt ̸= Yt at most L(H) times.

Again following Littlestone (1988), the work of Daniely, Sabato, Ben-David, and Shalev-Shwartz
(2011, 2015) also shows a lower bound, establishing that for any deterministic online learning al-
gorithm, there exists a realizable sequence where it makes at least L(H) mistakes, so that SOA
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is optimal in this regard among all deterministic online learning algorithms. Moreover, even for
any randomized learning algorithm, there always exists a sequence realizable by H for which the
expected number of mistakes is at least L(H)/2. Thus, there exists an algorithm guaranteeing a
bounded number of mistakes on all realizable sequences if and only if L(H) < ∞: that is, H is
online learnable in the realizable case iff L(H) < ∞.

In the case of agnostic online learning for multiclass classification, Daniely, Sabato, Ben-David,
and Shalev-Shwartz (2015) establish a lower bound (for T ≥ L(H)), regret(A, T ) = Ω(

√
L(H)T ),

holding for any algorithm A. Moreover, in the case of |Y| < ∞, they propose a learning algorithm A
guaranteeing regret(A, T ) = O

(√
L(H)T log(T |Y|)

)
. Thus, in the case of bounded label spaces,

the Littlestone dimension characterizes agnostic learnability. They left open the question of whether
this remains true for unbounded label spaces. Note that the dependence on |Y| in the above regret
bound makes the bound vacuous for infinite Y spaces. We resolve this question (positively) in the
present work (Theorem 1), and refine the above finite label bound as well (Theorem 8).

3. Agnostic Online Learnability of Littlestone Classes

This section presents the main result and algorithm in detail. As one of the main components of the
algorithm, we make use of the following classic result for learning from expert advice (e.g., Vovk,
1990, 1992; Littlestone and Warmuth, 1994); see Theorem 2.2 of Cesa-Bianchi and Lugosi (2006).

Lemma 3 (Cesa-Bianchi and Lugosi, 2006, Theorem 2.2) For any N,T ∈ N and an array of
values ei,t ∈ {0, 1}, with i ∈ {1, . . . , N}, t ∈ {1, . . . , T}, letting η =

√
(8/T ) ln(N), for any

y1, . . . , yT ∈ {0, 1}, letting wi,1 = 1 and wi,t = e−η
∑

s<t 1[ei,s ̸=ys] for each t ∈ {2, . . . , T} and
i ∈ {1, . . . , N}, letting pt =

∑N
i=1wi,tei,t/

∑N
i′=1wi′,t, it holds that

T∑
t=1

|pt − yt| − min
1≤i≤N

T∑
t=1

1[ei,t ̸= yt] ≤
√
(T/2) ln(N).

We are now ready to describe our agnostic online learning algorithm, denoted by AAG, specified
based on a given time horizon T ∈ N. As above, let (X1, Y1), . . . , (XT , YT ) denote the data
sequence. For any J ⊆ {1, . . . , T}, denote by XJ = {Xt : t ∈ J} and YJ = {Yt : t ∈ J}, and for
any t ∈ N, denote by J<t = J ∩ {1, . . . , t − 1}. We consider a set of experts defined as follows.
Let J = {J ⊆ {1, . . . , T} : |J | ≤ L(H)}. For each J ∈ J , for each t ∈ N, define

gJt = SOA(XJ<t
, YJ<t

, Xt).

That is, gJt is the prediction the SOA would make on Xt, given that its previous sequence of ex-
amples were (XJ<t

, YJ<t
): namely, argmaxy L(H((XJ<t

,YJ<t
),(Xt,y))). Based on the set of ex-

perts {gJ : J ∈ J }, we apply the multiplicative weights algorithm. Explicitly, letting η =√
(8/T ) ln(|J |), and defining wJ,1 = 1 and wJ,t = e−η

∑
s<t 1[gJs ̸=Ys] for t ∈ {2, . . . , T} and

J ∈ J , we define the prediction at time t as

pt =

∑
J∈J wJ,tg

J
t∑

J ′∈J wJ ′,t
.
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Note that the values gJt of the experts at time t only depend on X<t, Y<t, Xt, so that this is a valid
prediction. We have the following result, representing the main theorem of this work. In particular,
in conjunction with the necessity of L(H) < ∞ for online learnability, established by Daniely,
Sabato, Ben-David, and Shalev-Shwartz (2015), our Theorem 1 immediately follows from this.

Theorem 4 For any concept class H and T ≥ 2L(H), the algorithm AAG defined above satisfies

regret(AAG, T ) = O

(√
L(H)T log

(
T

L(H)

))
.

Proof Let h∗ ∈ H satisfy
∑T

t=1 1[h∗(Xt) ̸= Yt] = minh∈H
∑T

t=1 1[h(Xt) ̸= Yt]. Denote by
R∗ = {t ∈ {1, . . . , T} : h∗(Xt) = Yt}, and note that the subsequence (XR∗ , YR∗) is realizable by
H. Define a sequence jr inductively, as follows. Let j1 = min{t ∈ R∗ : SOA(∅, ∅, Xt) ̸= Yt} if it
exists. For r ≥ 2, if jr−1 is defined, let

jr = min{t ∈ R∗ : t > jt−1 and SOA(Xj<r
, Yj<r

, Xt) ̸= Yt}

if it exists. Finally, define
J∗ = {jr : r ∈ N and jr exists}.

In other words, J∗ represents the sequence of mistakes SOA would make on the sequence R∗ using
conservative updates: that is, only adding an example (Xt, Yt) to its history if it is a mistake point.

In particular, note that if J∗ = ∅, then every t ∈ R∗ satisfies gJ
∗

t = SOA(XJ∗
<t
, YJ∗

<t
, Xt) =

SOA(∅, ∅, Xt) = Yt. If J∗ ̸= ∅, then any t ∈ R∗
<j1

has gJ
∗

t = SOA(XJ∗
<t
, YJ∗

<t
, Xt) =

SOA(∅, ∅, Xt) = Yt; similarly, any r ∈ {1, . . . , |J∗| − 1} and t ∈ R∗
<jr+1

\ R∗
≤jr

has gJ
∗

t =

SOA(XJ∗
<t
, YJ∗

<t
, Xt) = SOA(Xj<r+1

, Yj<r+1
, Xt) = Yt; also, for r = |J∗| (the largest r for which

jr is defined), any t ∈ R∗ \R∗
≤jr

has gJ
∗

t = SOA(XJ∗
<t
, YJ∗

<t
, Xt) = SOA(Xj<r+1

, Yj<r+1
, Xt) =

Yt. In other words, gJ
∗

t = Yt for every t ∈ R∗ \ J∗. Therefore,

T∑
t=1

1[gJ
∗

t ̸= Yt] ≤ |J∗|+ (T − |R∗|) = |J∗|+min
h∈H

T∑
t=1

1[h(Xt) ̸= Yt].

Moreover, since (XR∗ , YR∗) is realizable by H, and J∗ ⊆ R∗, the subsequence (XJ∗ , YJ∗) is
also realizable by H. By definition, SOA makes a mistake on every time when run through the
subsequence (XJ∗ , YJ∗): that is, SOA(Xj<r

, Yj<r
, Xjr) ̸= Yjr for every jr ∈ J∗. Thus, by the

guaranteed mistake bound L(H) for SOA on realizable sequences, we conclude that |J∗| ≤ L(H).
In particular, this implies J∗ ∈ J . Altogether, by Lemma 3, we have that

T∑
t=1

|pt − Yt| ≤

(
T∑
t=1

1[gJ
∗

t ̸= Yt]

)
+
√
(T/2) ln(|J |)

≤ min
h∈H

T∑
t=1

1[h(Xt) ̸= Yt] + L(H) +

√
(T/2)L(H) ln

(
eT

L(H)

)
,

=⇒ regret(AAG, T ) ≤ L(H) +

√
(T/2)L(H) ln

(
eT

L(H)

)
= O

(√
L(H)T log

(
T

L(H)

))
.
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4. Online Uniform Convergence Versus Online Learnability

In PAC learning for binary classification, for a given data distribution, a class H satisfies the uniform
law of large numbers (i.e., is P -Glivenko-Cantelli) if and only if the (normalized) Rademacher
complexity converges to 0 in sample size. Moreover, the rate of uniform convergence is dominated
by a converging distribution-free function of sample size if and only if the VC dimension is finite.
By a chaining argument (Talagrand, 1994; van der Vaart and Wellner, 1996), the optimal form for
this rate is Θ(

√
VC(H)/n), where n is the sample size and VC(H) is the VC dimension of H.

Similarly, in adversarial online learning for binary classification, Alon, Ben-Eliezer, Dagan,
Moran, Naor, and Yogev (2021a) showed that a class H satisfies an adversarial uniform law of
large numbers if and only if the (normalized) sequential Rademacher complexity converges to 0 in
the sequence length.3 The rate of adversarial uniform convergence, uniform over sequences, is then
controlled by the Littlestone dimension. Again by a chaining argument (Alon et al., 2021a), the
optimal form for this rate is Θ(

√
L(H)T ).4

Importantly, for both of these facts, the complexity measure controlling the rate of uniform con-
vergence is the same as the complexity measure that determines learnability: for PAC learning, the
VC dimension, and for online learning, the Littlestone dimension. In particular, together with sepa-
rately established lower bounds for learning, these facts imply that the optimal rate of convergence
of expected excess error in agnostic PAC learning is Θ(

√
VC(H)/n) (Talagrand, 1994), whereas

the optimal regret bound for agnostic online learning is Θ(
√
L(H)T ) (Alon et al., 2021a).

In the case of PAC learning for multiclass classification, it again holds that the classification
losses satisfy the uniform law of large numbers if and only if the Rademacher complexity converges
to 0 in sample size. However, in this case, there exists a distribution-free bound on the rate of uni-
form convergence if and only if the graph dimension is finite (Ben-David, Cesa-Bianchi, Haussler,
and Long, 1995; Daniely, Sabato, Ben-David, and Shalev-Shwartz, 2011, 2015), and the optimal
such bound is Θ(

√
dG(H)/n), where n is the sample size and dG(H) is the graph dimension. No-

tably, the graph dimension does not control PAC learnability of the class (Natarajan, 1988; Daniely
et al., 2011, 2015); rather, a recent result of Brukhim et al. (2022) established that multiclass PAC
learnability (including agnostic learnability) is controlled by a quantity they call the DS dimension
(originally proposed by Daniely and Shalev-Shwartz, 2014, who proved it provides a lower bound),
and there are simple examples where the DS dimension is finite while the graph dimension is infi-
nite (necessarily with an infinite number of possible class labels). Thus, in the case of multiclass
classification, we see that the uniform law of large numbers, and PAC learnability, are controlled
by different parameters of the class, and there are PAC learnable classes which do not satisfy the
uniform law of large numbers. Thus, PAC learning algorithms generally cannot rely on a uniform
law of large numbers, in contrast to binary classification.

3. Rakhlin, Sridharan, and Tewari (2010, 2015a,b) also studied a notion of sequential uniform law of large numbers.
Though formulated somewhat differently, that notion was also shown to be equivalent to convergence of sequential
Rademacher complexity to 0, and hence is satisfied iff the notion of AULLN studied by Alon, Ben-Eliezer, Dagan,
Moran, Naor, and Yogev (2021a) is satisfied.

4. This result of Alon et al. (2021a) was in fact only shown under a further technical restriction on H (rooted in the work
of Rakhlin et al., 2010, 2015a), so that the rounds of the online learning game satisfy the minimax theorem. As the
results in this section are based on this result of Alon et al. (2021a), we also suppose this condition is appropriately
satisfied. It remains open whether this

√
L(H)T regret for binary classification, and consequently our theorems

below, remain valid without any restrictions on H.

9
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In this section, we note an analogous result holds for the adversarial uniform law of large
numbers. We find that, while the adversarial uniform law of large numbers is again satisfied if
and only if the sequential Rademacher complexity converges to 0 in sequence length, the optimal
sequence-independent bound on the convergence depends on the sequential graph dimension. Thus,
in light of our Theorem 1, establishing that agnostic online learnability is controlled by the Little-
stone dimension, we again see that the parameter controlling the adversarial uniform law of large
numbers differs from the parameter controlling online learnability (including agnostic learnability).
Moreover, we provide a simple example where the sequential graph dimension is infinite while the
Littlestone dimension is finite, thus showing that not all online learnable classes satisfy the AULLN.

We begin by recalling the following definitions of Alon, Ben-Eliezer, Dagan, Moran, Naor,
and Yogev (2021a). An adversarially uniform law of large numbers (AULLN) can be viewed as a
sequential game between a sampler S and an adversary. On each round t, the adversary chooses
(xt, yt) ∈ X×Y , and the sampler decides whether to include (xt, yt) in its “sample”: a subsequence
K. The sampler may be randomized, and the adversary may observe and adapt to the sampler’s past
decisions (though not its internal random bits).

Definition 5 (Alon et al., 2021a) A concept class H satisfies the adversarial uniform law of large
numbers (AULLN) if, for any ε, δ ∈ (0, 1), there exists k(ε, δ) ∈ N and a sampler S such that, for
any adversarially-produced sequence (x̄, ȳ) = {(xt, yt)}Tt=1 of any length T , the sample K selected
by S always satisfies |K| ≤ k(ε, δ), and with probability at least 1−δ, K forms an ε-approximation
of (x̄, ȳ) (with respect to H), meaning5

sup
h∈H

∣∣∣∣∣∣ 1

|K|
∑

(xt,yt)∈K

1[h(xt) ̸= yt]−
1

T

T∑
t=1

1[h(xt) ̸= yt]

∣∣∣∣∣∣ ≤ ε.

The AULLN was shown by Alon, Ben-Eliezer, Dagan, Moran, Naor, and Yogev (2021a) to be
intimately related to the sequential Rademacher complexity of the class of indicator functions, in this
case, (x, y) 7→ 1[h(x) ̸= y], h ∈ H. Formally, we recall the definition of sequential Rademacher
complexity from the work of Rakhlin, Sridharan, and Tewari (2010, 2015a). Let ε = {εt}t∈N be
i.i.d. Uniform({−1, 1}) random variables. Let z = {(xt, yt)}t∈N be any sequence of functions
(xt, yt) : {−1, 1}t−1 → X × Y , denoting by (xt(ε<t), yt(ε<t)) the value of this function on ε<t.
For any T ∈ N, the sequential Rademacher complexity is defined as

RadT (H) = sup
z

E

[
sup
h∈H

1

T

T∑
t=1

εt1[h(xt(ε<t)) ̸= yt(ε<t)]

]
.

Alon, Ben-Eliezer, Dagan, Moran, Naor, and Yogev (2021a) proved that, for binary classifica-
tion, the best achievable bound on the sequential Rademacher complexity is the Littlestone dimen-
sion of H. However, binary classifiation enjoys a special property that composition of H with the
0-1 loss does not change the complexity. In contrast, in multiclass classification, the Littlestone
dimension of H composed with the 0-1 loss is a different quantity, which we term the sequential
graph dimension:

5. To be clear, the sum over (xt, yt) ∈ K treats duplicates as distinct: that is, there are |K| terms in the sum.
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Definition 6 The sequential graph dimension of H, denoted dSG(H), is defined as

dSG(H) = L({(x, y) 7→ 1[h(x) ̸= y] : h ∈ H}).

Explicitly, dSG(H) is the largest n ∈ N ∪ {0} s.t. ∃{(xb, yb) : b ∈ {0, 1}t, t ∈ {0, . . . , n− 1}} ⊆
X × Y with the property that ∀b1, . . . , bn ∈ {0, 1}, ∃h ∈ H with

(1[h(xb<1
) ̸= yb<1

], 1[h(xb<2
) ̸= yb<2

], . . . ,1[h(xb<n
) ̸= yb<n

]) = (b1, . . . , bn).

If no such largest n exists, define dSG(H) = ∞. Also define dSG(∅) = −1.

Here we state an extension of the result of Alon, Ben-Eliezer, Dagan, Moran, Naor, and Yogev
(2021a) for AULLN to the multiclass setting. The result follows immediately by applying Theorems
2.2 and 2.3 of Alon, Ben-Eliezer, Dagan, Moran, Naor, and Yogev (2021b) to the class of binary
functions G = {(x, y) 7→ 1[h(x) ̸= y] : h ∈ H}, along with (for the final claim about RadT (H)) the
analogous application to G of Corollary 12 of Rakhlin, Sridharan, and Tewari (2015a) and the upper
bound on sequential Rademacher complexity in the proof of Theorem 12.1 of Alon, Ben-Eliezer,
Dagan, Moran, Naor, and Yogev (2021b).

Theorem 7 For any concept class H, the following are equivalent:

1. H satisfies the adversarial uniform law of large numbers

2. RadT (H) → 0

3. dSG(H) < ∞.

Moreover, if H satisfies AULLN, then Defintion 5 is satisfied with k(ε, δ) = O
(
dSG(H)+log(1/δ)

ε2

)
,

and the minimal achievable k(ε, δ) satisfies k(ε, δ) = Ω
(
dSG(H)

ε2

)
. Additionally, for T ≥ dSG(H),

it holds that RadT (H) = Θ

(√
dSG(H)

T

)
.

While Theorem 7 indeed expresses a fairly tight relation between AULLN, seq. Rademacher
complexity, and the seq. graph dimension, the corresponding result of Alon, Ben-Eliezer, Dagan,
Moran, Naor, and Yogev (2021a) for binary classification additionally found an equivalence to on-
line learnability and agnostic online learnability. Since our Theorem 1 establishes that agnostic
online learnability is characterized by finiteness of the Littlestone dimension (and this is true for re-
alizable online learning as well), rather than the sequential graph dimension, we see a separation in
multiclass classification between AULLN and online learnability. To formally establish this separa-
tion, we present the following example, exhibiting a concept class with finite Littlestone dimension
but infinite sequential graph dimension.

Example 1: The following construction is identical to a known example of Daniely, Sabato, Ben-
David, and Shalev-Shwartz (2011, 2015), originally constructed to show a class that is PAC learn-
able but has infinite (non-sequential) graph dimension. For completeness, we include the full details
of the construction here. Let X be a countable set, let Y = 2X ∪ {∗}, and for each A ⊆ X , define

hA(x) =

{
A if x ∈ A

∗ otherwise
.

11
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Define H = {hA : A ⊆ X}. For any x ∈ X and distinct y0, y1 ∈ Y , it must be that one of y0, y1 is
equal some A ⊆ X . Since only one h ∈ H could possibly have h(x) = A (namely, hA), and even
then only if x ∈ A, we would have L(H(x,A)) ∈ {−1, 0}. It follows that L(H) ≤ 1. It can be seen
that L(H) = 1 by choosing y0 = ∗ and y1 = A for any A such that x ∈ A. On the other hand, for
any n ∈ N and distinct x1, . . . , xn ∈ X , for any b1, . . . , bn ∈ {0, 1}, letting xb<t

= xt and yb<t
= ∗

for each t ≤ n, the function hA, with A = {xt : bt = 1}, satisfies 1[hA(xb<t
) ̸= yb<t

] = bt
for every t ∈ {1, . . . , n}. Thus, dSG(H) ≥ n. Since this is true of every n ∈ N, we see that
dSG(H) = ∞. In particular, in light of Theorems 1 and 7, this class H is agnostically online
learnable (and realizable online learnable), but does not satisfy the adversarial uniform law of large
numbers (nor satisfy RadT (H) → 0). This is precisely analogous to the findings of Daniely, Sabato,
Ben-David, and Shalev-Shwartz (2011, 2015) that this class is PAC learnable but does not satisfy
the (non-adversarial) uniform law of large numbers.

4.1. Finite Label Spaces

In regard to agnostic online learning in the case |Y| < ∞, the best previous regret bound, due
to Daniely, Sabato, Ben-David, and Shalev-Shwartz (2015), is O(

√
L(H)T log(T |Y|)). Based

on Theorem 7, in this section, we improve this regret to O(
√
dSG(H)T ). Further, we prove

in Theorem 8 that dSG(H) = O(L(H) log(|Y|)), so that this additionally implies a guarantee
regret(A, T ) = O(

√
L(H)T log(|Y|)). On the one hand, this improves over Theorem 4 by re-

moving a factor
√

log(T/L(H)), but on the other hand, includes a factor
√
log(|Y|) not present in

Theorem 1. In light of the lower bound Ω(
√
L(H)T ) of Daniely, Sabato, Ben-David, and Shalev-

Shwartz (2015) holding for any A, we see that this O(
√
L(H)T log(|Y|)) regret guarantee is optimal

up to the
√
log(|Y|) factor. As stated in Open Problem 1, it remains an open problem to determine

whether the optimal regret is always of the form Θ(
√

L(H)T ). Formally:

Theorem 8 If |Y| < ∞, for any concept class H, dSG(H) = O(L(H) log(|Y|)).

Proof We follow a strategy of adaptive experts, rooted in the work of Ben-David, Pál, and Shalev-
Shwartz (2009) (and similar to the extension thereof used by Daniely, Sabato, Ben-David, and
Shalev-Shwartz, 2015 in their multiclass agnostic online learner). Let n ∈ N be any number with
n ≤ dSG(H). Let Q denote the set of all (J, Y ) such that J ⊆ {1, . . . , n} with |J | ≤ L(H), and
Y = {Yj}j∈J is a sequence of values in Y . For any (J, Y ) ∈ Q and any t ∈ {1, . . . , n} and
x1, . . . , xt ∈ X , define a value yJ,Yt (x≤t) inductively, as

yJ,Yt (x≤t) =

{
SOA(x<t, y

J,Y
<t , xt) if j /∈ J

Yj if j ∈ J
.

Consider any set {(xb, yb) : b ∈ {0, 1}t, t ∈ {0, . . . , n− 1}} ⊆ X ×Y satisfying the property
in Definition 6. Now we inductively construct a sequence b1, . . . , bn ∈ {0, 1} as follows. For
t ∈ {1, . . . , n}, suppose we have already defined b1, . . . , bt−1, and let

V<t = {(J, Y ) ∈ Q : ∀i ∈ {1, . . . , t− 1}, 1[yJ,Yi (xb<i
) ̸= yb<i

] = bi}.

Define
bt = argmin

b∈{0,1}
|{(J, Y ) ∈ V<t : 1[yJ,Yt (xb<1

, . . . , xb<t
) ̸= yb<t

] = b}|.

12
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This completes the inductive definition of b1, . . . , bn. In particular, note that for every t ∈ {1, . . . , n}
satisfies |Vt| ≤ 1

2 |Vt−1|, so that |Vn| ≤ 2−n|Q|.
On the other hand, by definition of (xb, yb), there exists h ∈ H with 1[h(xb<t

) ̸= yb<t
] = bt

simultaneously for every t ∈ {1, . . . , n}. Let

J∗ = {t ∈ {1, . . . , n} : SOA(xb<t−1
, h(xb<t−1

), xb<t
) ̸= h(xb<t

)},

interpreting (xb<0
, h(xb<0

) = (∅, ∅). Recall from Section 2.1 that Daniely, Sabato, Ben-David, and
Shalev-Shwartz (2011, 2015) proved a mistake bound of L(H) for SOA, and hence |J∗| ≤ L(H).
For each t ∈ J∗, define Y ∗

t = h(xb<t
), and let Y ∗ = {Y ∗

t }t∈J∗ . By definition of (J∗, Y ∗), we have

∀t ∈ {1, . . . , n}, yJ
∗,Y ∗

t (xb<1
, . . . , xb<t

) = h(xb<t
).

In particular, this implies (J∗, Y ∗) ∈ Vn, so that |Vn| ≥ 1. Altogether, we have

1 ≤ |Vn| ≤ 2−n|Q| = 2−n

L(H)∑
i=1

(
n

i

)
|Y|i ≤ 2−n

(
en

L(H)

)L(H)

|Y|L(H).

Multiplying the leftmost and rightmost expressions by 2n and taking logarithms yields

n ≤ L(H) log2

(
2n

L(H)

)
+ L(H) log2(|Y|) . (2)

Solving for an upper bound on n reveals that n ≤ 2L(H) log2(e|Y|). Specifically, this claim holds
trivially when |Y| = 1, and for |Y| ≥ 2 it follows from (2) by Lemma 4.6 of Vidyasagar (2003).

Theorem 9 If |Y| < ∞, for any concept class H with L(H) < ∞, there exists an algorithm A
satisfying

regret(A, T ) = O
(√

dSG(H)T
)
.

Moreover, this implies regret(A, T ) = O
(√

L(H)T log(|Y|)
)

.

Proof The proof follows identically the proof of Theorem 12.1 of Alon, Ben-Eliezer, Dagan, Moran,
Naor, and Yogev (2021b). Specifically, Theorem 7 of Rakhlin, Sridharan, and Tewari (2015a) pro-
vides that regret(A, T ) ≤ 2RadT (H). The theorem then follows directly from Theorems 7 and 8.
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