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Abstract

We apply Conformal Predictive Distribution Systems (CPDS) and a non-exchangeable
version of the traditional Conformal Prediction (NECP) method to short-term wind speed
forecasting to generate probabilistic forecasts. These are compared to the more traditional
Quantile Regression Forest (QRF) method. A short-term forecast is available from a few
hours before the forecasted time period and is only extended a couple days into the future.
The methods are supplied ensemble forecasts as input and additionally the Conformal
methods are supplied with post-processed point forecasts for generating the probability
distributions. In the NECP case we propose a method of producing probability distributions
by creating sequentially larger prediction intervals. The methods are compared through a
teaching schedule, to mimic a real-world setting. For each model update in the teaching
schedule a grid-search approach is applied to select each method’s optimal hyperparameters,
respectively.

The methods are tested out of the box with tweaks to few hyperparameters. We also
introduce a normalized nonconformity score and use it with the conformal method that
handles data that violates the exchangeability assumption. The resulting probability dis-
tributions are compared to actual wind measurements through Continuous Ranked Proba-
bility Scores (CRPS) as well as their validity and efficiency of certain prediction intervals.
Our results suggest that the conformal based methods, with the pre-trained underlying
model, produce slightly more conservative but more efficient probability distributions than
QRF at a lower computational cost. We further propose how the conformal-based methods
could be improved for the application to real-world scenarios.

Keywords: conformal predictive distribution systems · quantile regression forests · ex-
changeable · non exchangeable · short-term wind forecast · normalized nonconformity
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1. Introduction

Wind prediction has become a hot topic the last couple of years. There are many appli-
cations where good wind forecasts are interesting. Perhaps most notably, as the world is
transitioning to fossil free energy, wind power production is playing a larger role in our
energy supplies. Being able to reliably predict wind speed on the short-term is paramount
for both energy trading markets and for planning other types of energy production to en-
sure stability of the grid. Forecasts have historically mostly been deterministic, but as the
demand for wind forecasts has increased so has the demand for research into producing
prediction intervals and distributions, especially in wind power production (Bazionis et al.
(2022)). With the introduction of ensemble forecasts, where several simulations of the at-
mosphere are run simultaneously with slightly differing conditions, methods efficiently using
these to produce probabilistic forecasts have risen in popularity.

Conformal predictions (Vovk et al. (2022)) is a relatively new method which is used to
produce set predictions from machine learning models. The application of Conformal pre-
dictions with extensions to weather and power forecasting is, to the best of our knowledge,
a relatively unexplored subject of research apart from the application to power markets
(Kath and Ziel (2021)). Our work should be viewed as an introduction to how Conformal
Prediction methods can be used in the area of probabilistic wind forecasting. In section
2 we will briefly describe Conformal Predictions (CP) and Conformal Predictive Distribu-
tion Systems (CPDS) (Vovk et al. (2022)) and cover basic theory. In the same section we
will also explain how CP can be extended to the non-exchangeable setting, we will cover
Quantile Regression Forest (QRF), which is used as comparison method to the previously
mentioned methods and we will explain how these methods will be evaluated. Section 3
will describe how we use these methods on a data set of measurements and forecasts, the
results of which we present in section 4. Finally, in section 5 we discuss the results and
suggest how we could move forward with research on this subject.

2. Preliminaries

2.1. Conformal Prediction and CPDS

In a machine learning setting it is natural to ask, given a point prediction from some model,
how well we can trust the prediction. Conformal prediction is a simple and efficient way
of producing valid set predictions, a sort of quantified uncertainty analysis. Using already
viewed data points we can construct sets for predictions. Based on what we have viewed
previously, these sets can be constructed in such a way that they will contain the actual
value with some probability. In this study, we will try to follow the notation in (Vovk
et al. (2022)) as far as possible. We stick to the regression type problem and for an object
xn ∈ X, we would like to predict either; the prediction range, Γϵ ∈ R, where ϵ is a significance
level corresponding to the fraction of errors we are prepared to tolerate, or the probability
distribution. In both the CP and the CPDS setting we are given a training set of n − 1
examples where the training examples are denoted by zi = (xi, yi), i = 1, . . . , n− 1.

It all starts with the choice of a (non-)conformity function, A, that maps an object x
together with all training examples to a real number, a conformity score,

αi = A(z1, . . . , zn).
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We remark that the most obvious setup for A is that we use both training and prediction of
a machine-learning model as part of the application of A. The validity, the fraction of errors
we can tolerate compared to the actual errors made, of the predictions is not dependent
on the choice of conformity score, however the efficiency, the size of the prediction range,
might improve if it is chosen well. The idea behind the conformity score is to quantify how
the test object, assuming a label for the object xn, conforms to the training examples. This
is called a conformal transducer and it creates a p-value

pyn =
|{i = 1, . . . n− 1 | αi < αn}|

n
.

The conformal transducer can in turn be used to form a range prediction

Γϵ = { pyn > ϵ} .

We choose different y, without knowing yn, in the range of values in which y can lie such
that the ratio of conformity scores less than αn is ϵ. Usually the conformal prediction is
built around some underlying predictive model. As an example assume we have a ma-
chine learning model that predicts yi from xi by producing ŷi. We could then construct a
conformity score where

αi = |yi − ŷi|,
which would be dependent on all other examples since that is what we have trained the
model on. The model would however need to be retrained for each data point to exclude
itself from the prediction. This can be computationally heavy which is why it is common
to construct a proper training set, to train the underlying model, and a calibration set
which will produce the needed conformity scores. This is commonly called an inductive
algorithm. The conformal prediction algorithm will, under the assumption that the data is
exchangeable, produce valid prediction intervals (Vovk et al. (2022)).

In certain applications one would prefer to get entire probability distributions instead
of set predictions. One of the advantages of conformal transducers is that it is possible to
use them to create a distribution for y. These are called Conformal Predictive Systems that
produce Conformal Predictive Distributions, or Conformal Predictive Distribution Systems
(CPDS) to simplify things. Instead of using a conformal transducer to create a range
prediction, we use the conformal transducer to create a distribution, Π, by arranging the
p-values in to a distribution function. Certain criteria need to be fulfilled:

1. Π(z1, . . . , zn−1, (xn, y)) is an increasing function of y ∈ R

2. limy→−∞Π(z1, . . . , zn−1, (xn, y)) = 0

3. limy→∞Π(z1, . . . , zn−1, (xn, y)) = 1

There are several ways in which a distribution can be formed, for further details see (Vovk
et al. (2022)). These distributions are valid in the sense that the conformal transducer create
p-values that are uniformly distributed on [0, 1], under the same assumptions as earlier, while
the efficiency will depend on the underlying model and conformity score (Vovk (2020)). To
reduce computational complexity an inductive-conformal method is often used as to not
have to recompute all the conformity scores for each possible value of y, similar to the CP
case.
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2.2. Non-exchangeable CP

Though exchangeability is slightly relaxed compared to the classical i.i.d. assumption, it
is still quite idealised compared to the real world. Exchangeability means in rough terms
that a set of data points has the same conditional likelihood no matter the ordering of the
points, e.g. we are just as likely to get {x1, x2, x3} as {x3, x1, x2} or any other permutation
when we collect the data. For exchangeability to hold it is also assumed that the underlying
model supplying the point predictions treat data points symmetrically. Real world processes
can seldom be assumed to be strictly exchangeable and wind, which for instance might
have a seasonable component, would be no different. This is why, in recent years there
have emerged several techniques for performing conformal prediction on non-exchangeable
data. One such technique is where weights ωi ∈ [0, 1] are assigned to each example with
higher weights to examples that are “trusted” more (Barber et al. (2023)). We call this
Non-Exchangeable Conformal Prediction (NECP). In a time-series setting with potential
distribution drift it would be wise to assign larger weights to recent examples since they
will likely have a more similar distribution as the point to predict. To produce a prediction
interval for yn we first normalize the weights according to

ω̃i =
ωi

ω1 + · · ·+ ωn−1 + 1
, i = 1, . . . , n− 1,

ω̃n =
1

ω1 + · · ·+ ωn−1 + 1
.

The resulting interval Ĉ, given a prediction ŷn from an underlying model is then

Ĉn = ŷn ±Q1−ϵ

(
n−1∑
i=1

ω̃i · δRi + ω̃n · δ+∞

)

where Q1−ϵ represents the 1 − ϵ quantile of the expression within parentheses, δ is the
Dirac delta function and Ri = |yi− ŷi|. This is called the Nonexchangeable Split Conformal
method in (Barber et al. (2023)), note that this is an inductive approach, since it assumes
a pre-trained underlying model. This method has a theoretical coverage result which is
described by

P{yn ∈ Ĉn} ≥ 1− ϵ−
n−1∑
i=1

ω̃i · dTV (RsplitCP (Z), RsplitCP (Z
i)) (1)

P{yn ∈ Ĉn} < 1− ϵ+ ω̃n +

n−1∑
i=1

ω̃i · dTV (RsplitCP (Z), RsplitCP (Z
i)) (2)

where dTV (RsplitCP (Z), RsplitCP (Z
i)) is the total variation distance in distributions between

the residuals (RsplitCP (Z))i = |yi − ŷi| and the residuals RsplitCP (Z
i) where the ith point

has been replaced by the nth point. Condition (2) holds when, for the pre-trained model,
the residuals R1, . . . , Rn are distinct, with probability 1. If the exchangeability assumption
holds, all ωi should be put to 1, giving the standard CP method.
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2.3. Quantile regression forest

The Quantile Regression Forest (QRF) (Meinshausen (2006)) is a generalization of the
Random Forest regression method. It is a non-parametric method for predicting conditional
quantiles. The random forest algorithm grows a number of decision trees to perform the
regression. Each decision tree will split the predictor variables along the height of the tree
to gather ”similar” predictors in a leaf where the mean of the labels associated with the
predictors is stored. The random forest bags the training data for each tree and randomly
selects a subset of predictor variables at each split node. The predicted mean of a new point
from the forest is the averaged output of all the trees, which is the mean stored in the leaf
associated with the predictor of the new point. The mean is produced by assigning weights
to all observations in the training set. Passing the object xn ∈ X to the trees, each tree
will then have a corresponding leaf, l(xn), associated with the object, the leaf representing
some subset Xl(xn) ⊆ X. Going through all examples i = 1, . . . , n− 1 in the training set we
set the weight ωi(xn) to

ωi(xn) =
1{xi∈Xl(xn)}

|{j : xj ∈ Xl(xn)}|

i.e. examples associated with other leafs gets weight 0 and the ones associated with the
same get weights which in total sum to 1. This procedure is performed for all the trees in
the forest. The final weight ω̄i for each example is the averaged weight of that example over
all trees. The final output is then

ŷn =

n−1∑
i=1

ω̄i(xn)yi.

The QRF deviates from the Random Forest by storing all labels associated with each leaf in
each tree, instead of just the mean. From that we can construct the estimated conditional
CDF from

F̂ (y|X = xn) =
n−1∑
i=1

ω̄i(xn)1{yi≤y}.

From this, conditional quantiles can be produced and in extension, a numerical represen-
tation of the estimated conditional distribution. Note that we have not used the exact
mathematical notation in this segment, for the full presentation of the theory we refer to
the source. The QRF method has been used successfully in calibrating wind speed and
surface temperature from ensemble forecasts by Taillardat et al. (2016). It was shown
to outperform the parametric Ensemble Model Output Statistics method, which can be
considered baseline in ensemble post-processing.

2.4. Continuous ranked probability score

Evaluating probabilistic forecasts is not as straightforward as point predictions. Usually one
or several scoring rules are employed. Common ones are the logarithmic score, continuous
ranked probability score (CRPS) and variogram score (Bjerreg̊ard et al. (2021)). Since in
this article we work with univariate prediction, and we get the estimated CDF from the
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Data type Longitude Latitude

Measurement 58.0937 11.3312
Ensemble 58.101800 11.309300

Deterministic Forecast 58.099915 11.327288

Table 1: Coordinates of the different data-types

models, we will only consider CRPS (Matheson and Winkler (1976)) due to computational
efficiency. The score is calculated through the following formula

CRPS(F, y) =

∫ y

−∞
F (x)2dx+

∫ ∞

y
(1− F (x))2dx (3)

where F is the estimated CDF and y is the true value of a prediction. Scores closer to 0
are considered better. It is easy to see that the optimal predicted distribution is the step
function in y. If we are 100% confident in the point-prediction, and it turns out to be right,
we get the best possible score. To get the score over a set of predictions we take the mean
CRPS of all predictions.

3. Method

All the code referenced in this part together with the data can be found on the Github1

page for this article with the results in the supplied Jupyter Notebook2

3.1. Data

The data3 used in the analysis is a little over a year’s worth of measurements, ensemble
forecasts and deterministic forecasts from January 2, 2022 until January 23, 2023. All
measurements are made at noon and forecasts are produced 24 hours in advance. The
coordinates of each data-type can be seen in Table 1.

3.1.1. Measurements

The gathered data was based around the choice of weather station where we could gather
wind-speed measurements for surface wind. For this reason, we picked the station on
Måseskär4, a small island outside the west coast of Sweden, in the hopes that the local
topography would affect the wind minimally. The weather station is operated by the Swedish
Meteorological and Hydrological Institute (SMHI) so the data was subsequently gathered
from their website 5.

1. https://github.com/salthoff/wind-prediction-conformal
2. https://nbviewer.org/github/salthoff/wind-prediction-conformal/blob/master/model_

compare.ipynb

3. Gathered under CC BY 4.0 license https://creativecommons.org/licenses/by/4.0/

4. https://goo.gl/maps/rxTZtzNKs4BvCwGB6
5. https://www.smhi.se/data/meteorologi/vind

6

https://github.com/salthoff/wind-prediction-conformal
https://nbviewer.org/github/salthoff/wind-prediction-conformal/blob/master/model_compare.ipynb
https://nbviewer.org/github/salthoff/wind-prediction-conformal/blob/master/model_compare.ipynb
https://creativecommons.org/licenses/by/4.0/
https://goo.gl/maps/rxTZtzNKs4BvCwGB6
https://www.smhi.se/data/meteorologi/vind


Data type Variable Unit

Measurement wind speed m/s
Ensemble x_wind_10m m/s

y_wind_10m m/s
Deterministic wind_speed_10m m/s

Table 2: Data type with corresponding MET Norway and SMHI variable names and units.

3.1.2. Ensemble

The input that generates the probabilistic forecasts is the ensemble forecasts. In this case
they come from the MetCoOp Ensemble Prediction System (MEPS) (Müller et al. (2017))
which is a numerical ensemble forecasting model for the Nordic region. It is a collabora-
tion between the meteorological institutes of Sweden, Finland, Norway and Estonia. It is
developed from the AROME model which was produced by météo-France. The ensemble
system has 30 members meaning each forecast time should contain 30 different forecasts.
New forecasts are produced every 6 hours and contain forecasts for each hour up to 61 hours
into the future. The system produces forecasts over a grid which has a horizontal resolution
of about 2.5 km. The grid spans the Scandinavian countries, Finland and the Baltic states
as well as the Baltic Sea and parts of the North Sea and Atlantic Ocean. We gathered the
data from one of the closest grid-points to the Måseskär weather station, the coordinates of
which can be viewed in Table 1. The data was fetched from the Norweigan Meteorological
Institute (MET Norway) using their thredds server6.

3.1.3. Deterministic Forecasts

Before being delivered to the end consumer, the ensemble forecasts are post-processed to
become deterministic. MET Norway supplies these forecasts as well through their thredds
service. They are also down-scaled to a finer grid with about a 1 km resolution. Subse-
quently another closer point to the weather station was used the coordinates of which is
also displayed in Table 1. The forecasts gathered here are the ones that are supplied to the
service yr.no. These datapoints are effectively output from an underlying machine-learning
model, which we utilize in our NECP and CPDS methods.

3.1.4. Data handling and cleaning

The raw data contains a lot of unnecessary variables as well as NaN values and thus the
data has to be processed. What variables to include in a post-processing method is a topic
for intense research. Here only the most basic variables were used for simplicity. The
variables of each datatype together with units are presented in Table 2. Wind speed in this
regard represents the mean wind speed at 10 meters over surface during 10 minutes. The
measurements and deterministic forecasts have one value per time point, meaning if one of
these are corrupted then that renders all data for that time useless. Thus we remove all
such data in the import process. The ensemble data contains 30 ensemble members and

6. https://thredds.met.no/thredds/metno.html
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two variables, resulting in 60 values per time point. If the ratio of corrupted values is below
75% we bootstrap the missing values from the others of the same variable. If the ratio
is above that threshold the time-point was however discarded. Bootstrapping is done at
import stage which might result in slightly differing results between runs of the analysis.

3.2. Models

In the following section we will describe how each method was implemented. Since the
application of CP and CPDS methods to forecast post processing is quite novel we keep
modifications to the algorithms to a minimum and the QRF will be applied in a similar
fashion. If a basic versions of these methods can compare to a basic version of the baseline,
the QRF in this case, that would suggest that it is a valid technique to keep researching. The
Conformal methods use some input, in this case the ensemble, together with the underlying
point forecast to produce the distribution around it. The QRF uses the ensemble as input
and produces a distribution directly from this data without an additional deterministic
forecast. This is all visualized in Figure 1.

Figure 1: This illustrates data at one time point. These are the inputs, in form of resultant
of the ensemble and the point forecast, the measurement and example CDFs from
QRF and CPDS, respectively. Note that the vertical axis represents cumulative
probability for the two CDFs and relative frequency for the histogram.
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3.2.1. CPDS

For the CPDS model we used the python library Crepes (Boström (2022)). Here we use
the normalized version which employs a k-nearest neighbors technique for determining the
difficulty of a certain prediction. Here k is kept at the default value of 5. Since the underlying
data might not be exchangeable we added a data window option. This allows the system
to limit the calibration set to the past m training examples. The default is otherwise to
include all training examples. When performing predictions the complete distribution is
produced. All values below 0 are truncated since that is the minimum value possible. We
do not expect the wind speed to be above 100 m/s thus that is added to the end of the
distribution and if 0 is not present that is added to the beginning. Lastly the distribution
is linearly interpolated to a length of 200 to keep it consistent throughout observations.

3.2.2. NECP

An NECP model typically only produces range predictions. To get distributions we se-
quentially add on larger prediction intervals. Each lower interval bound is added to the
beginning of the distribution and the upper bound is analogously added to the end. This
is done until final confidence level is reached. We remark that this constructs symmetric
distributions around the point prediction. We have no theoretical guarantees that this will
maintain validity for the distributions other than that the intervals around the point fore-
cast has the coverage in (1) and (2). Since there might be a seasonality to wind, we also
employ a weighting scheme with exponential decay in time. Given training examples zi,
i = 1, . . . , n− 1, note that the order is chronological, we assign weights according to

ωi = λn−i, λ ∈ [0, 1]

where λ is some forgetting factor, used as a model hyperparameter. Note that if λ = 1 we
get the standard conformal predictor.

Further we also employ a version of this algorithm with a custom conformity score.
We will call this algorithm NECP Normalized (NECP-N). The validity guarantees are not
bound by the choice of the conformity score so to demonstrate the flexibility of the system
we produce this second one. This nonconformity score is influenced by the normalized
nonconformity score in (Papadopoulus et al. (2008)) and the idea is to add information
from each example that would describe the difficulty in predicting it’s label. We proceed to
define our nonconformity score as

αi = |yi − ŷi|(1 + βT σ̂[xi]),

where β is a hyperparameter and σ̂[xi] is the estimated standard deviation of each variable
in the input, i.e. the two wind components from each of the 30 ensemble forecast models.
In this case σ̂[xi] is a vector of size 2× 1 which requires β to be of the same size. To then
get the prediction intervals for confidence 1−ϵ, we arrive at an expression for the prediction
range
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Ĉn = {y ∈ Y : A({z1, . . . , zn−1}, zn) ≤ Q1−ϵ

(
n−1∑
i=1

ω̃i · δαi + ω̃n · δ+∞

)
} =⇒

|yi − ŷi|(1 + βT σ̂[xi]) ≤ Q1−ϵ

(
n−1∑
i=1

ω̃i · δαi + ω̃n · δ+∞

)
=⇒

|yi − ŷi| ≤
1

(1 + βT σ̂[xi])

(
Q1−ϵ

(
n−1∑
i=1

ω̃i · δαi + ω̃n · δ+∞

))
=⇒

Ĉn = ŷi ±
1

(1 + βT σ̂[xi])

(
Q1−ϵ

(
n−1∑
i=1

ω̃i · δαi + ω̃n · δ+∞

))
.

Again, just as the CPDS case, we truncate parts below 0, add 100 (and potentially 0) and
linearly interpolate to get a length of 200.

3.2.3. QRF

For the QRF we use the python library by Zillow available on Github 7. Much like the
the case for CPDS, to adjust for potential distribution drift, we implement a data window
parameter. The other parameter is the number of trees of the forest. We let the library do
the interpolation by requesting evenly spaced quantiles from Q1/200 to Q1−1/200 and add on
the minimum and maximum values to the start and end. However, if necessary, we truncate
the distribution as before and interpolate again ourselves. Note that we do not need to pass
any deterministic forecast here, the QRF predicts directly from the ensemble.

3.3. Teaching schedule and evaluation

To emulate as closely as possible what a real-world scenario would look like, we use a
teaching schedule to determine which of our different methods performs the best according
to the CRPS metric, described below in 3.5. All examples are, as stated earlier, sorted in
chronological order. Through this schedule we train, where applicable, and calibrate models
for a set of hyperparameters. To determine optimal hyperparameters, at each time point,
we do model selection which will be defined below. All examples recorded before the date
will be used for training and model selection, and the example at the prediction date will
be used for testing. The prediction date is advanced in time until it reaches the end of
our dataset. This means that we will have one CRPS metric calculated for all examples
predicted and for each method, respectively. The final evaluation is done by computing the
average of the CRPS metric for each method.

3.4. Model selection

As mentioned earlier, each method has hyperparameters and to select a configuration of
the hyperparameters we will mimic a real world scenario as closely as possible. Some of the
methods are computationally costly so we will use two versions

7. https://github.com/zillow/quantile-forest
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3.4.1. Base model selection

This selection is used for NECP and NECP-N. This is the ideal way to select hyperparam-
eters as it handles the training examples from our teaching schedule in the same way as the
teaching schedule handles all examples. Given a prediction date, we calibrate the models
on all preceding dates before making the prediction. This prediciton date is advanced until
it reaches current prediction date of the teaching schedule. All different configurations of
the hyperparameters is used to build models . The resulting CRPS metrics are averaged
and the best configuration is chosen for the next prediction in the teaching schedule.

3.4.2. Block model selection

The reason for using a block model selection is that CPDS and QRF are more computa-
tionally costly and this will reduce the model-selection time. Similar to the base model
selection, all examples prior to the prediction date are used as training examples. Here,
we split the current training examples in to 5 equal size, chronological in time subsets.
Each subset is held out, in turn, for calculating the CRPS metric and the remainder of the
training examples are used for training. If some of the training examples lay in the future
compared to the held out subset, then those examples are prepended to the other training
examples.

3.5. Evaluation metric

The predicted distributions come in the form of a vector of quantiles from the minimum
value of 0 to the maximum of 100. We estimate the CDF from this empirically

F̂ (x) =

m−1∑
i=0

1

m
· 1{Qi/m≤x} (4)

where Qi/m is the i/m quantile and m is the number of quantiles. To then get the CRPS
we insert (4) and the actual wind measurement into (3) and integrate using the trapezoidal
rule. We also evaluate the validity of certain intervals. Since the predictions give us the
quantiles, we can just calculate the ratio of points that fall within their respective Q0.05 and
Q0.95 to get the validity of the 90% prediction interval.

4. Results

The hyperparameter configurations used in the teaching schedule for all the systems are
presented in Table 3. Additionally the ratio of each configuration to make the final predic-
tions is also displayed. The initial data split used is January 2, 2022 to March 1, 2022 for
training and March 2, 2022 to January 23, 2023 for testing. The data sets then contain 55
and 314 examples, respectively.

The measured results, besides the mean CRPS, are the validity and width of 0.9 and
0.5 prediction intervals, respectively. The width can be interpreted as an efficiency metric.
These results for each model type are presented in Table 4. An important note is that since
the quantiles are not located exactly on the desired ones, we choose the closest ones and
thus we get a small bias in theoretical validity. We should then have 0.8995 and 0.4975
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CPDS Window length Used in test

1 all 0.445
2 200 0.131
3 100 0.287
4 50 0.134

NECP Forgetting factor Used in test

1 1 1
2 0.995 0
3 0.99 0
4 0.98 0
5 0.97 0

NECP-N Forgetting factor β Used in test

1 1 [0.00, 0.00] 1
2 1 [0.05, 0.05] 0
3 1 [0.10, 0.10] 0
4 0.99 [0.00, 0.00] 0
5 0.99 [0.05, 0.05] 0
6 0.99 [0.10, 0.10] 0

QRF Number of trees Window Length Used in test

1 200 100 0.172
2 100 all 0.003
3 200 all 0.825

Table 3: Sets of hyperparameters used in the teaching schedule for each of the models as
well as the ratio of how much each were used in the final result. Due to round-off
the ratios do not all add to 1.

as target, respectively. We can observe that NECP and NECP-N have basically the same
value of the CRPS metric. Also, CPDS and QRF only differ about 0.0004 in error from
optimal validity in the 0.9 case. The execution times8 for each model’s teaching schedule is
presented in Table 5.

5. Discussion

One fundamental assumption we make in this study is that the underlying forecasting model
is not trained on the data we use. If it was it would violate the conditions for inductive

8. The tests were performed on a 2020 MacBook air with M1 processor using a single core.
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Model type CRPS 0.9 validity 0.9 mean width 0.5 validity 0.5 mean width

CPDS 0.8926 0.9172 7.4997 0.5255 2.1089
NECP 0.8649 0.9299 6.0870 0.5064 2.0621

NECP-N 0.8649 0.9299 6.0870 0.5064 2.0621
QRF 0.9207 0.8822 6.9348 0.5000 2.3975

Table 4: Overall results from each model. Note that the actual target intervals are 0.8995
and 0.4975 instead of 0.9 and 0.5. The best result in each category is written in
bold.

Model CPDS NECP NECP-N QRF
Time (min:s) 03:07 08:26 11:09 41:16

Table 5: Execution times for each teaching schedule.

conformal-based methods. However, with an external model it is not possible to perform
for example a full conformal-based method since that requires retraining of the model for
all data points. If the underlying model is trained on the data we use, that might have a
negative impact on the validity of the predicted distributions.

It is clear from the results in Table 5 that the conformal-based methods are computa-
tionally faster than the QRF. However, the conformal-based methods have instant access
to the results of the underlying forecasting model. In the real world this would take time
to produce, while the QRF can work directly on the ensemble. Simultaneously this is one
of the strengths of conformal-based methods. In many cases we might already have a good
deterministic model which we would like to supplement with probabilistic predictions. The
conformal-based methods then provide that very efficiently, of course with the caveat that
some data has to be sacrificed for calibration.

We supply the raw ensemble output of the wind components to the QRF for post
processing. This should not be seen as an optimal use of the QRF algorithm. We can see that
Taillardat et al. (2016) supply a lot more variables to the QRF and generally supply different
quantiles rather than the entire ensemble. Thus we can assume that the QRF results can
be improved with further development. However, likewise there are improvements to be
made to the conformal-based methods as well. The more important question is perhaps
how much can the conformal-based methods be improved?

The first thing to look at, to improve the conformal-based methods is if it is possible to
improve the underlying deterministic model. Assuming that this is optimal there are other
things to consider. One such thing could be the implementation of Mondrian conformal
predictive distributions (Boström et al. (2021)) which is based on sorting the calibration data
into different categories. A Mondrian approach might produce more distinct conditional
distributions and categories could be created based on different wind directions. We also
believe that there still is a potential for improvement regarding the conformity score in
this case. Adding information from different variables and ensuring that these can have a
greater impact than what we get in NECP-N might be a good start. However, NECP-N

13
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still introduces flexibility and allows the normalization to be completely removed by setting
β = 0. We also note that the forgetting factor in NECP is never used in our study. Our
conclusion here is similar to that of the normalization; it is better to allow for it as it might
be useful when studying other types of datasets.

The results in Table 4 do not directly give any conclusive information about which
model is the best in this case. The QRF method seems to produce the intervals with
closest to target validity. It does this with generally wider intervals than the conformal-
based methods, the only exception being the CPDS in the 0.9 case. However, validity of
the conformal-based methods is also always slightly conservative, which might be desirable
in many cases. The reason why the conformal-based methods have higher validity and
generally narrower intervals might be that they base their prediction on a well trained
deterministic forecast. If the QRF was set to predict the error of the deterministic forecast,
it might compete better with the conformal-based methods in this regard. However then
the QRF would loose the competitive edge of not having to wait for a point predicting,
meaning the conformal-based methods would edge out in computational efficiency. Looking
at the CRPS, we can determine that the NECP methods outperform both CPDS and QRF
by a solid margin. The CPDS model is also better in this regard than the QRF but due to
the random nature of the QRF we might see differing results between runs. So while CPDS
performs better in this case, with some margin, the gap might be closed over several test
runs.

5.1. Conclusions

While we cannot draw any solid conclusions about the usefulness of the methods from
data during a small time period and in a single location, we can say something about
what these initial results tell us. Conformal-based methods provide a simple and fast
way of supplementing wind-speed forecasts with a probabilistic prediction. The out-of-box
versions of the conformal-based methods can compete with the QRF method both in terms
of validity and efficiency when supplied with the raw ensemble. Further research should be
put into improving the conformal-based methods to see how they hold up to more optimized
versions of the QRF and other popular ensemble post-processing techniques.
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