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Abstract

Conformal Prediction (CP) offers a shift on the traditional supervised classification paradigm.
Whereas in supervised learning one generally aims to optimize the error of a classifier at
predicting the label correctly (prediction error), in CP one aims to optimize the size of a
prediction set (efficiency), where this set is guaranteed to contain the true label with prob-
ability ≥ 1 − ε, for a user-defined ε ∈ [0, 1]. CP works as a wrapper around a traditional
learning model; yet, it is unclear how the prediction error of the underlying model affects
the efficiency of the CP. In this note, we study a simple class of CPs whose efficiency is
proportional to the prediction error of the underlying model.
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Notation. Consider a sequence of IID random variables {(X1, Y1), ..., (XN , YN ), (X,Y )} ∈
(X × Y)N+1, sampled from an unknown distribution, and let Z = X × Y; we assume that
Y is finite. A Conformal Predictor (CP) predicts a set of labels for the test object X, given
access to {(Xi, Yi)}Ni=1; for a user-defined ε ∈ [0, 1], the prediction set output by CP is
guaranteed to contain the true label Y with at least 1− ε probability (Vovk et al., 2005).

A CP is defined for a function A : Z × Z∗ → R≥0, the nonconformity measure, which
indicates how “strange” an example z = (x, y) ∈ Z looks like w.r.t. a multiset of examples
D ∈ Z∗; we call D the training set, and write A(z;D) to indicate that the nonconformity
measure is computed for z given D. Informally, A(z;D) takes a small value if z looks similar
to the points in D, and a large value otherwise. For simplicity, we develop our results on
split CP (Papadopoulos et al., 2002). In split CP (henceforth, CP), the training set D of
the nonconformity measure A(·;D) must be independent from (X,Y ) and {(Xi, Yi)}Ni=1;
typically, it is sampled from the same data distribution.

Coarse nonconformity measures. We study a special class of nonconformity measures,
which we call coarse. They are defined on the basis of a classifier gD : X → Y, trained on
the training set D. For a chosen classifier g, a coarse nonconformity measure is defined as:

Ag((x, y);D) = I(gD(x) 6= y) ; (1)

I is the indicator function, which takes value 1 if gD(x) 6= y, and 0 otherwise. While
not as informative as typical nonconformity measures, which incorporate the belief of the
classifier on its prediction, coarse measures prove a useful tool to study CP.

P-values of CPs with coarse nonconformity measures. Consider a CP with coarse
nonconformity measure Ag, tasked with making a prediction for the test object X. For
every possible label ŷ ∈ Y, the CP computes a p-value as follows:

Pŷ =
#{i ∈ [N ] : Ag((Xi, Yi);D) ≥ Ag((X, ŷ);D)}+ 1

N + 1

where # is the cardinality of a set. A label ŷ is included in the prediction set if Pŷ > ε.
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We analyze the value of Pŷ for CPs with coarse nonconformity measures, and then state
two simple corollaries on their performance (efficiency). Proofs are omitted for brevity.

Proposition 1 For any classifier g : X → Y, the CP defined by the coarse nonconformity
measure Ag outputs a p-value Pŷ for test object X such that

Pŷ =

{
1 if g(X) = ŷ
NR̂g+1
N+1 otherwise

where R̂g = 1
N

∑N
i=1 I(g(Xi) 6= Yi) is the empirical error of classifier g on {(Xi, Yi)}Ni=1.

Remark. This shows a direct correspondence between the error of the underlying classifier
and that of the CP. In particular, for a large N , the p-value will be either Pŷ = 1 or
Pŷ → Rg, where Rg is the expected error of the classifier on the underlying distribution.

Efficiency of CPs with coarse nonconformity measures. Since a CP’s error is guar-
anteed, the main parameter for judging its performance is the “tightness” of its prediction
set; this is referred to as the efficiency of a CP. Various efficiency criteria have been consid-
ered in the past (Vovk et al., 2016). We study two: i) the sum of p-values, ES =

∑
ŷ∈Y Pŷ

(Corollary 2, Fig. 1), and ii) the prediction set size, Eε
N = #{ŷ ∈ Y : Pŷ > ε} (Corollary 3).

Corollary 2 (Sum of p-values) Let L = |Y|. The sum of p-values of a CP with coarse

nonconformity measure Ag is ES = 1 + (L− 1)
NRg+1
N+1 .

Corollary 3 (Prediction set size) The prediction set of a CP with coarse nonconfor-

mity measure has size 1 for ε ≥ NR̂g+1
N+1 , and size L otherwise.

Figure 1: Sum of p-values (ES)
on the MNIST dataset; average
across 100 test points. Dotted
line: asymptotic behavior
implied by Corollary 2:
ES → 1 + (L− 1)Rg. Results
are for 3 coarse nonconformity
measures (scikit-learn
logistic regressors, default
parameters), resp. trained on:
20 examples (“Poor”), 1K
examples (“Base”), and on the
entire training, calibration, and
test data to observe
near-optimal behavior (“Best”).

Observe that the worst-case error is achieved when the
classifier guesses the label uniformly at random; hence, R̂g ≤
U = L−1

L for all g. Combined with Corollary 3, we conclude
that a CP with coarse nonconformity measure has perfect ef-
ficiency (i.e., Eε

N = 1) for ε ≥ NU+1
N+1 , regardless of the under-

lying classifier.

Conclusions and future work. We showed that the per-
formance (efficiency) of CP is correlated with the performance
(error rate) of its underlying classifier for the class of coarse
nonconformity measures. A natural next step is to extend
this analysis to more general (and informative) nonconformity
measures, such as those deriving from the confidence of the
classifier on its prediction; this can be done by replacing the
0-1 loss in Equation (1) with a loss that uses the confidence of
the classifier. Obtaining tight bounds may be harder in this
case, but we expect the same behavior to hold. Ultimately,
we hope this line of work can lead to i) the ability to predict
the efficiency of a CP before deployment, ii) a better under-
standing of what constitutes a good efficiency criterion for CP
(Vovk et al., 2016), and in general iii) a deeper understanding
of the connection between traditional learning and CP.
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