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Abstract

We address the problem of making Conformal Prediction (CP) intervals locally adaptive.
Most existing methods focus on approximating the object-conditional validity of the inter-
vals by partitioning or re-weighting the calibration set. Our strategy is new and concep-
tually different. Instead of re-weighting the calibration data, we redefine the conformity
measure through a trainable change of variables, A → ϕX(A), that depends explicitly on
the object attributes, X. Under certain conditions and if ϕX is monotonic in A for any
X, the transformations produce prediction intervals that are guaranteed to be marginally
valid and have X-dependent sizes. We describe how to parameterize and train ϕX to
maximize the interval efficiency. Contrary to other CP-aware training methods, the objec-
tive function is smooth and can be minimized through standard gradient methods without
approximations.

Keywords: Conformal prediction, local adaptivity, conditional validity, conformity score,
regression.

1. Introduction

Two features of Conformal Prediction (CP) contribute to their increasing popularity, finite-
sample validity and straightforward applicability. Unlike the Bayesian approach, CP algo-
rithms are computationally cheap, provide practical non-asymptotic guarantees, and can
augment any pre-existing or pre-trained point-prediction model. The very reasons for their
success may hide a few structural limitations. On the one hand, finite-sample validity is
hard to achieve on heteroskedastic data, as the prediction intervals should have attribute-
dependent sizes. On the other hand, defining the same (fixed) CP algorithm for any point-
prediction model may be a sub-optimal strategy for certain types of tasks or data. Lastly, it
is unlikely that machine learning algorithms trained to generate good point-like predictions
are automatically CP-efficient without being retrained.

We introduce a new CP-aware fine-tuning scheme to make CP algorithms more effi-
cient and locally adaptive. Compared to analogous strategies, our approach does not break
data exchangeability. This implies the obtained locally-adaptive prediction intervals are
marginally valid, as the non-adaptive ones, but have attribute-dependent sizes. Moreover,
since the scheme does not modify the underlying point-prediction model, it can be merged
with other localization methods. The idea is to boost the local adaptivity of the prediction
intervals by optimizing a set of learnable transformations of the conformity scores. The
trained transformations are guaranteed to produce marginally valid prediction sets by con-
struction. The prediction sets become locally adaptive when we map them back to the label
space by inverting the trained transformations.

© 2023 N. Colombo.



Colombo

The scheme generalizes the Error Re-weighted Conformal approach (ERC) of Papadopou-
los et al. (2008, 2011), in which the conformity scores are re-weighted by a pre-fitted
model of the residuals. More precisely, let f be a pre-trained point-prediction algorithm,
f(X) ≈ EY |X(Y ), A the standard conformity score, A = (f(X) − Y )2, and (1 − α) ∈
[0, 1] a user-defined confidence level. ERC can be viewed as a coordinate transforma-
tion A → ϕX(A) = A

g(X)2+γ
, where g is a model of the conditional prediction error, i.e.

g(X) ≈ EY |X(f(X) − Y ), and γ > 0. The boundaries of the prediction intervals are the

solutions of ϕX(A) = (Y−f(X))2

g(X)2+γ
= q̂, where q̂ is the (1 − α)-quantile of the conformity

scores distribution, estimated on the calibration set. By definition of empirical quantile,
the prediction interval at X, C = {y : ϕX(A(X, y)) ≤ q̂}, is marginally valid. The size of C
is |C| =

√
q̂(g(X)2 + γ) and explicitly depends on X, which means the intervals grow and

shrink over the attribute space.
We extend the ERC idea in two ways, 1

• we define a general parametric class of coordinate transformations, Φθ, that are guar-
anteed to produce marginally valid and locally adaptive prediction intervals (Sections
2.3, 2.4 and 2.6) and

• we show how to find a Φθ that maximizes the efficiency of the intervals (Sections 2.7
and 2.8).

To guarantee the validity of the transformed prediction sets and their interpretability as
prediction intervals in the label space, we require the attribute-dependent transformations,
ϕX ∈ Φθ, to be monotonic in A and have the same codomain for all X (Assumption 1).
Validity and local adaptability are proven in Theorem 1 by adapting a standard proof of
CP marginal validity and using the assumed invertibility of ϕX . To train Φθ, we introduce
a confidence-specific cost function that measures the non-efficiency of the intervals at a
given confidence level (ℓα in (21)). The confidence-specific cost function contains non-
differentiable terms but becomes smooth and tractable when it is averaged over all possible
confidence levels and estimated empirically on a finite-size data set (ℓall in (22)). This
makes the learning task a smooth and unconstrained optimization problem, which can be
solved with gradient approaches even if the inverse map, ϕ−1

X , is not available analytically.
In the experiments, we compare four classes of attribute-dependent transformations with
the standard non-adaptive CP algorithm and ERC.

1.1. Related work

Redefining the conformity functions to include an attribute-dependent factor is not new.
The first example of this technique is the ERC method of Papadopoulos et al. (2008, 2011)
(see also Section 5 of Romano et al. (2019)). Our transformation of the conformity score is
more general and is not pre-trained by fitting the residuals.

A growing stream of works addresses the problem of producing prediction intervals that
are approximately object-conditional valid (whit finite-size data). Approximate conditional
validity is obtained through an attribute-dependent re-weighting of the calibration samples.

1. For simplicity, we focus on regression and make standard i.i.d. assumptions, but the approach generalizes
with minor changes to classification problems and exchangeable data.
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Data exchangeability is temporarily broken and needs to be restored at the end. The idea
of Lei and Wasserman (2014) and Vovk (2012) has been refined in the last few years by
establishing links to Kernel Density Estimation and the covariate shift problem (Barber
et al. (2022); Han et al. (2022); Guan (2023)). Here, we follow a conceptually different
path, where data exchangeability is preserved at all stages.

In the Conformalized Quatile Regression model of Romano et al. (2019), the standard
conformity function is replaced with a proxy of the pinball loss. Given (1 − α) ∈ [0, 1],
the optimum of the pinball loss is an estimate of the conditional (1− α)-quantile function.
This implies the method can not quantify the uncertainty of a pre-trained point-prediction
model and needs to be retrained for each α ∈ [0, 1]. See Sesia and Candès (2020) for a
review of conformal quantile regression methods.

Evaluation scores similar to ℓα defined in (21) are popular in the CP literature. Recent
works exploit objective functions similar to (21) to train the underlying prediction models in
a CP-aware way. Here, we fix the underlying prediction model and learn a new conformity
function, ϕX(A). We also average ℓα over α ∈ [0, 1], which makes the optimization problem
smooth. This is a significant improvement compared to most CP-aware objectives used in
the past, which often require smooth relaxations that may be hard to optimize (Bellotti
(2020); Stutz et al. (2021); Einbinder et al. (2022)).

A recent work, Einbinder et al. (2022), is particularly close to ours. The authors propose
to train a point-prediction model by forcing the distribution of conformity scores to be uni-
form on [0, 1] for all X. The definition of the conformity scores does not change. It would
be interesting to investigate whether tuning the underlying model or the conformity score is
equivalent, theoretically and practically. Also, while our approach extends straightforwardly
to classification tasks (provided the distribution of the conformity scores is continuous), it
may be hard to adapt Einbinder et al. (2022) to the regression setup. As for Conformal-
ized Quantile Regression, the CP algorithm of Einbinder et al. (2022) requires fine-tuning
the underlying model and cannot quantify the uncertainty of a pre-trained non-conformal
classifier.

Using the Inverse Function Theorem to compute the gradient of implicit functions is a
common technique for minimizing objective functions without analytical form (Krantz and
Parks (2002)). The idea has become popular in the domain of implicit layers optimization
(David Duvenaud and Johnson (2020)).

1.2. Contribution

To the best of our knowledge, this is the first time locally adaptive and efficient conformal
prediction intervals are obtained from a data-driven definition of the conformity scores.
Previous works on training CP, e.g. Bellotti (2020), Stutz et al. (2021), or Einbinder
et al. (2022), also aim to optimize the efficiency of the intervals but focus on tuning the
underlying point-predictor instead of the CP construction on top of it. See Section 1.1 for
a brief discussion of those works.

Proposing a differentiable CP-aware objective function is also relevant. The averaged
objective function presented here may help define a differentiable version of Bellotti (2020),
Stutz et al. (2021), or Einbinder et al. (2022).
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As Papadopoulos et al. (2008), our approach is orthogonal to methods that fine-tune
the underlying point-prediction model, e.g. Romano et al. (2019), and is compatible with
localization approaches based on the selection/re-weighting of the calibration objects (Lei
and Wasserman (2014); Izbicki et al. (2019); Romano et al. (2020); Foygel Barber et al.
(2021); Sesia and Romano (2021); Guan (2023)). Merging different localization techniques,
as in Guan (2023), may boost the usability of CP on specific tasks.

Finally, we believe this work is one of the first to exploit, at the same time, the invariance
of CP intervals under monotone transformations of the conformity scores and recent ideas
on conformity-aware training.

2. Methods

2.1. A regression task

Let {D, (Xtest, Ytest)} = {(Xn, Yn) ∈ X × R}Nn=1 ∪ (Xtest, Ytest) be a collection of i.i.d.
random variables following an unknown joint distribution, PXY , f : X → R a pre-trained
point-prediction model that approximates the object-conditional mean of Y , i.e. f(X) ≈
EY |X(Y ), and

D = {(xn, yn) ∈ X × R}N+1
n=1 (1)

a sample of {D, (Xtest, Ytest)}. In what follows, we use D to train a set of conformity score
transformations, Φθ, through a Leave-One-Out strategy where N samples are interpreted
as a calibration set and the remaining sample as a test object. The resulting CP algorithm
will be tested on unseen data, i.e. a new sample of {D, (Xtest, Ytest)}.

2.2. Prediction intervals

Given f and {D, (Xtest, Ytest)}, CP algorithms use a conformity function, a = a(f(X), Y ),
to evaluate the conformity of f(Xtest) with the predictions made on the calibration set,
{f(Xn)}Nn=1. Let (1 − α) ∈ [0, 1] be a user-defined confidence level. The corresponding
prediction set

C = {y : a(f(Xtest, y)) ≤ q̂}, q̂ s.t.
∣∣{a(f(Xn), Yn) ≤ q̂}Nn=1

∣∣ = ⌈(N + 1)(1− α)⌉ (2)

where |S| is the cardinality of S, is said to be marginally valid with confidence (1 − α)
because

Prob (Ytest ∈ C) ≥ 1− α (3)

Lower bounds for Prob (Ytest ∈ C) can also be obtained as a function of N . When a is
monotonic in |f(X)− Y |, C is a symmetric interval centred on f(Xtest). The size of C can
be associated with the reliability of f(Xtest). For example, if a(f(X), Y ) = (f(X) − Y )2,
the prediction interval can be written explicitly as C = [f(Xtest)−∆, f(Xtest) +∆], where
∆ = 2a−1(q̂) = 2

√
q̂ and a−1 is defined by S = a−1(a(S)). Other possible choices for a

include aabs = |f(X)−Y | or alog = log((f(X)−Y )2). Here, we always let a = (f(X)−Y )2.
Some advantages of using alog are outlined in Section 2.5.
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2.3. Coordinate transformations

CP intervals are invariant under composition with a monotone function, e.g. if a → alog =
log

√
a or a → aabs =

√
a. This happens because the intervals only depend on the ranking of

the conformity scores, which is preserved if the conformity scores are transformed monoton-
ically. This work is a generalization of this idea. Let Φθ = {ϕX : R+ → BX , X ∈ X} be a set
of attribute-dependent parametric functions of a base conformity scores, A = a(f(X), Y ) ∈
R+. The task is to find a Φθ that maximizes the efficiency of a CP algorithm based on the
conformity scores transformed by ϕX ∈ Φθ. To avoid overfitting, all ϕX ∈ Φθ should share
a smooth functional dependence on X, e.g. we may require ϕX(A) ∼ ϕX′(A) if X ∼ X ′ for
all A ∈ R+. Some assumptions are needed to guarantee that B = ϕX(A) is a well-defined
conformity score. If so, the transformed prediction sets are defined like in 2 for any A and
X. More explicitly, we let

C = {y : ϕXtest(A), y)) ≤ q̂}, q̂ s.t.
∣∣{ϕXn(An) ≤ q̂}Nn=1

∣∣ = ⌈(N + 1)(1− α)⌉ (4)

where (Xn, Yn) ∈ D, ϕXn ∈ Φθ, An = a(f(Xn), Yn), n = 1, . . . , N , and α ∈ [0, 1]. If
a(f(X), Y ) = (f(X)− Y )2 and under certain assumptions on Φθ, e.g. if Φθ is defined as in
Assumption 1 (see below), C can be rewritten as

C = [f(Xtest)−∆, f(Xtest) + ∆], ∆ =
√

ϕ−1
Xtest

(q̂) (5)

Differently from the case of a rigid, i.e. object-independent, monotone transformation, the
prediction intervals produced by different Φθ may not be equivalent. See Section 2.5 for an
example.

2.4. Model classes

In the examples of Section 2.5, the coordinate transformations belong to simple model
classes, e.g. Φθ = {ϕX(A) =

√
A − θX, θ ∈ R}. Varying the value of the parameter with

a class produces non-equivalent intervals. Choosing different classes may also change the
intervals. For concreteness, we restrict ourselves to model classes that satisfy the following
assumption.

Assumption 1 Let X = Rd, BX ⊆ R, and

Φθ = {ϕX : R+ → BX , X ∈ X} (6)

Φθ is such that

ϕ′
X(A) > 0, for all X ∈ X and all A ∈ R+ (7)

BX = BX′ , for all X,X ′ ∈ X (8)

where A = a(f(X), Y ), a = (f(X)− Y )2, and h′(s) = d
dsh(s) =

d
ds′h(s

′)|s′=s.

Requiring ϕ′
X > 0 guarantees that B = ϕX(A) is a well-defined conformity score and the

existence of the inverse map, ϕ−1
X : BX → R+, which is defined implicitly by ϕ−1

X (ϕX(A)) =
A. Requiring the codomain of the transformations to be the same for all X guarantees that
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we can convert the transformed prediction sets in (4) into lable-space symmetric intervals
centred in f(Xtest). Imagine that Φθ does not fulfil the second requirement of Assumption
1 and, for example, Btest ⊂ BXn for any n = 1, . . . , N . Then the inequalities in (4) may not
have a real solution because q̂ = ϕXn∗(An∗), n∗ ∈ {1, . . . , N}, may lay outside the codomain
of ϕXtest . Both assumptions are satisfied if, for example, ϕX(A) → ϕX(logA) + ϵ logA,
ϕ′
X(A) > 0 for all X and A, and ϵ > 0.

2.5. Examples

2.5.1. Inequivalent intervals

Let X = R, B = ϕX(A) =
√
A−θX, and θ± = ±1. Let the calibration set be {(xn, yn)}3n=1,

f such that (a1, x1) = (1, 1), (a2, x2) = (2, 2), and (a3, x3) = (3, 3), xtest = 0, and α = 1
2 . If

θ = 1, {bn}3n=1 = {2,
√
2 + 2,

√
3 + 3} and q̂ = q̂+ =

√
2 + 2. If θ = −1, {bn}3n=1 = {0,

√
2−

2,
√
3−3} and q̂ = q̂− =

√
2−2. The prediction intervals, C± = [f(xtest)−∆±, f(xtest)+∆±]

with ∆± =
√

ϕ−1
xtest(q̂±) =

√
(q̂± + θxtest)2 = |q̂±|, have sizes |C+| = 2(2 +

√
2) > |C−| =

2(2−
√
2), i.e. C+ and C− have different sizes.

2.5.2. ERC

Let a = (f(X)−Y )2 and ϕX be the ERC coordinate transformations of Papadopoulos et al.
(2008), i.e.

ϕX(A) =
A

g(X)2 + γ
, A = (f(X)− Y )2, g : Rd → R, γ > 0 (9)

Φθ = {ϕX : R+ → BX , X ∈ X} fulfils the requirements of Assumption 1 because ϕ′
X(A) =

1
g(X)2+γ

> 0 and BX = R+ for all X. The inverse transformation is ϕ−1
X (B) = B(g(X)2+γ)

and C = [f(Xtest)−∆, f(Xtest)+∆], where ∆ =
√
q̂(g(Xtest)2 + γ) and q̂ is the transformed

conformity score of a calibration object. If q̂ is the (⌈(N + 1)(1 − α)⌉)th smallest object
of {(ϕXn(An))}Nn=1, the interval is marginally valid with confidence (1− α) and has Xtest-
dependent size |C| = 2∆. In Papadopoulos et al. (2008), g is chosen to be a model of the
conditional residuals, i.e. g(X) ≈ EY |X(f(X)− Y ), but other choices are also possible.

2.5.3. Non-adaptive transformations

If the transformation does not depend on X, the second requirement in Assumption 1 is
always satisfied. For example, consider

ϕ0(A) = logA+ γ, A = (f(X)− Y )2, γ ∈ R (10)

then ϕ′
0(A) = 1

A > 0, BX = (−∞,∞) for all X, and ϕ−1
0 (B) = exp (B − γ). The cor-

responding prediction intervals have size |C| = 2
√
exp (q̂ − γ), which does not depend on

Xtest.
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2.5.4. Different codomains

A set of transformations that satisfy ϕ′
X(A) > 0 for all X ∈ X but may have BX ̸= BX′ is

ϕX(A) = A+ g(X)2, A = (f(X)− Y )2, g : Rd → R (11)

as ϕ′
X(A) = 1 > 0 and BX = [g(X)2,∞) ⊂ R+ for all X and A. The inverse transformation,

ϕ−1
X (B) = B − g(X)2 is well defined for all B and all X. The prediction intervals, however,

may not have a straightforward interpretation in the label space. If q̂ = ϕXn∗(An∗) =
An∗ + g(Xn∗) is the (⌈(N + 1)(1− α)⌉)=th smallest object of {Bn = An + g(Xn)

2}Nn=1, the
interval at Xtest is defined by Atest ≤ An∗ + g(Xn∗)

2 − g(Xtest)
2, which is meaningless if

An∗ + g(Xn∗)
2 < g(Xtest)

2 because Atest = (f(Xtest) − Ytest)
2 > 0. The problem does not

arise if ϕ(A) → ϕ(logA).

2.6. Validity of the prediction intervals

Global monotone transformations of the conformity scores do not affect the resulting predic-
tion intervals. The first example of Section 2.5 shows this is not the case for locally-defined
transformations. Under Assumption 1, however, the inverse map produces label-space pre-
diction intervals that are marginally valid and have attribute-dependent sizes.

Theorem 1 Let (X1, Y1), . . . , (XN , YN ), (Xtest, Ytest) ∼ PXY be a collection of i.i.d. ran-
dom variables, f ∼ EY |X(Y ) a point-prediction model, and An = (f(Xn) − Yn)

2, n =
1, . . . , N . Let Φθ be a family of strictly increasing scalar functions satisfying the require-
ments of Assumption 1 and Bn = ϕXn(An), n = 1, . . . , N . Assume Bn ̸= Bn′ if n ̸= n′.
Then there exists a permutation of {1, . . . , N}, {mn = π(n)}Nn=1 such that Bm1 < · · · <
Bmn < · · · < BmN and, for any α ∈ [ 1

N+1 , 1], the interval

C = [f(Xtest)−∆, f(Xtest) + ∆], ∆ =
√

ϕ−1
Xtest

(Bm∗)), m∗ = ⌈(N + 1)(1− α)⌉ (12)

is marginally valid with confidence 1− α, i.e.

Prob (Ytest ∈ C)) ≥ 1− α (13)

Proof of Theorem 1 If Bn ̸= Bn′ if n ̸= n′, the exchangeability of (Xn, Yn), n−1, . . . , N ,
and (Xtest, Ytest) implies

Prob(Btest ≤ Bmn) =
mn

N + 1
, n = 1, . . . , N (14)

where Btest = ϕXtest(Atest) = ϕXtest((f(Xtest)− Ytest)
2). In particular,

Prob(Btest ≤ Bm∗) =
⌈(N + 1)(1− α)⌉

N + 1
≥ 1− α (15)

or, equivalently, Prob(ϕXtest(Atest) ≤ Bm∗) ≥ 1− α. The strict monotonicity of ϕX(A) for
all X ∈ Rd implies that ϕXtest is invertible with inverse ϕ−1

Xtest
: BXtest → R+ defined by

7
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A = ϕ−1
Xtest

(ϕXtest(A)). ϕ−1
Xtest

and is also strictly increasing because ϕ−1′

Xtest
= 1

ϕ′
Xtest

and

ϕ′
Xtest

> 0. 2 The validity of (12) follows from

1− α ≤ Prob (Btest ≤ Bm∗) (16)

= Prob
(
ϕ−1
Xtest

(Btest) ≤ ϕ−1
Xtest

(Bm∗)
)

(17)

= Prob
(
Atest ≤ ϕ−1

Xtest
(Bm∗)

)
(18)

= Prob
(
(f(Xtest)− Ytest)

2 ≤ ϕ−1
Xtest

(Bm∗)
)

(19)

= Prob (Ytest ∈ [f(Xtest)−∆, f(Xtest) + ∆]) (20)

where ∆ =
√
ϕ−1
Xtest

(Bm∗) and the first equality holds because ϕ−1
Xtest

is strictly increasing.

□

2.7. Efficiency of the prediction intervals

If the conformity function does not depend on X, the size of the prediction intervals is
minimal. 3 If the conformity scores are locally re-defined, i.e. A → ϕX(A), the intervals
can grow and shrink over the attribute space. Under Assumption 1, Theorem 1 ensures that

the obtained locally-adaptive intervals remain valid. Their sizes, |C| = 2
√
ϕ−1
Xtest

(q̂), which

depend on Xtest, Φθ, and the data, are not guaranteed to be optimal. Exact (optimal)
conditionally-valid prediction intervals for all X can be obtained only if a finite-size data
set is available for any X ∈ X , which is impossible for real-valued attributes (Vovk (2012);
Lei and Wasserman (2014)). Like other locally-adaptive CP algorithms, our scheme aims
to approximate such unachievable conditional validity with finite data. To evaluate the
efficiency of Φθ, we compute the average size of the prediction intervals at a user-defined
confidence level, (1− α) ∈ [0, 1], i.e.

ℓα = E

(
2
√

ϕ−1
Xtest

(q̂)

)
, q̂ s.t. |{ϕXn(An) ≤ q̂}| = ⌈(N + 1)(1− α)⌉ (21)

where An = a(f(Xn), Yn), a(f(X), Y ) = (f(X), Y )2, and (Xn, Yn) ∈ D. Training Φθ by
minimizing (21) over θ has two disadvantages. Firstly, ℓα depends on the empirical quantile
of the transformed conformity scores, i.e. on the ranking of {Bn = ϕXn(An)}Nn=1, which
needs to be estimated numerically. Moreover, the dependence of q̂ on Φθ may be hard to
estimate without ad-hoc smooth relaxations. A second possible issue of (21) is it requires
retraining the model if the target confidence level changes.

A possible way out is to average ℓα over all possible confidence levels, (1 − α) ∈ [0, 1].
Taking the expectation of (21) over α produces a model that works well for any α ∈ [0, 1].
More importantly, it bypasses the non-differentiability of (21) without introducing arbitrary
relaxations or approximations. Intuitively, this happens because sorting the transformed
conformity scores becomes redundant if we assume a flat prior over α ∈ [0, 1], i.e. if we let

ℓall = Eα∼U[0,1]
(ℓα) =

∫
[0,1]

dα ℓα (22)

2. ϕ−1′

Xtest
= 1

ϕXtest
′ follows from 1 = d

dA
ϕXtest

−1(ϕXtest(A)) = ϕ′
X(ϕXtest

−1(A))ϕ−1′

Xtest
(A).

3. From the definition of empirical quantile.
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where ℓα is defined in (21). The number of non-equivalent confidence levels in an em-
pirical version of ℓall coincides with the size of the calibration set, |D| = N . Each non-
equivalent confidence level is associated with one of the transformed conformity scores,
{Bn = ϕXn(An)}Nn=1. Since the integral becomes a sum, the commutativity of the addends
makes the reordering redundant. The size-N approximation of (22),

ℓall = E

(
n∑

n=1

√
ϕ−1
Xtest

(ϕXn(An))

)
(23)

is then smooth in θ if Φθ is smooth in θ for all X and A. In practice, Φθ is a fixed
set of parametric transformations. The free parameter, θ, controls the shared functional
dependence of all ϕX ∈ Φθ. Specific functional dependencies may be chosen to ensure that
Φθ is differentiable in θ and satisfies Assumption 1 (see Section 3 for a few examples). Given
such Φθ, we can safely estimate (23) and its gradient (see Section 2.8) from the training data
set, D defined in (1), by computing Bn = ϕxn((f(xn)− yn)

2), n = 1, . . . , N , their empirical
quantile, q̂, and ϕ−1xtest(q̂). A data-efficient strategy is to average over N + 1 splits of D
deformed in (1). In the n-th split, we use (xn, yn) as a test object and the remaining objects
as a calibration set.

2.8. Gradient optimization

The smoothness of (23) allows using any gradient-based optimization method. As ϕ−1
X (ϕX′(A))

depends on θ directly and through its argument, the parameter updates are θ → θ+ηdθℓall,
where η > 0 and dθℓall is the total derivative of (23) with respect to θ, i.e.

dθℓall = E

 n∑
n=1

∇θϕ
−1
Xtest

(ϕXn(An)) + ϕ−1′

Xtest
(ϕXn(An))∇θϕX(An)

2
√
ϕ−1
Xtest

(ϕXn(An))

 (24)

Under Assumption 1, the monotone transformations ϕX ∈ Φθ are guaranteed to be invert-
ible. Assumption 1, however, does not guarantee a closed-form expression of ϕ−1

X . In that
case, ϕ−1

X (B) should be obtained numerically through standard root-finding methods, e.g.

the Bisection method. As for the backward pass, ∇θϕ
−1
X and ϕ−1′

X can be obtained from
∇θϕX and ϕ′

X using

0 = dθϕX

(
ϕ−1
X (B)

)
= ∇θϕX

(
ϕ−1
X (B)

)
+ ϕ′

X

(
ϕ−1
X (B)

)
∇θϕ

−1
X (B) (25)

1 =
d

dB
ϕX

(
ϕ−1
X (B)

)
= ϕ′

X

(
ϕ−1
X (B)

)
ϕ−1′

X (B) (26)

Similar techniques are increasingly popular in machine learning. Especially because they
allow differentiating prediction models that include implicitly-defined outputs, e.g. the
numerical solutions of an ODE (David Duvenaud and Johnson (2020)).

3. Experiments

We test the feasibility and performance of the proposed scheme by training and comparing
the prediction intervals produced by four different CP algorithms. Each algorithm is based
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on one of the following classes of transformations,

ΦERC = {ϕX(A) =
A

g(X)2 + γ
, γ > 0} (27)

Φlinear = {ϕX(A) = logA+ g(X)} (28)

Φexp = {ϕX(A) = Aeg(X)} (29)

Φsigma = {ϕX(A) = σ (logA+ g(X))} (30)

where g is an unconstrained trainable function of X. In all experiments, we let g be a
fully connected ReLu network with five hidden layers of size 100. All model classes satisfy
Assumption 1 and are trained by minimizing ℓall defined in (23). The ERC model, ΦERC

is also trained as suggested in Papadopoulos et al. (2008), i.e. by minimizing E((g(X) −
(f(X)− Y )2)2). In the plots and tables, we refer to that setup as ERC (error fit). Our
baseline is the non-adaptive CP algorithm, Φ0 = {ϕX(A) = A}. The underlying point-
prediction model is the same for all CP algorithms We use a KNN algorithm with the
Euclidean distance and cross-validated K and pre-train it on a separate proper-train data
set. The model efficiencies are measured by computing the interval sizes and empirical
validities.

We test all models on a synthetic data set (Section 3.1) and five real-world benchmark
data sets (Section 3.2). To optimize the parameterized localization network, g = g(X, θ),
over θ, we use a PyTorch implementation of ADAM (Kingma and Ba (2014)), with a fixed
learning rate, default parameters, and mini-batches of size 16. To avoid overfitting, we
evaluate the efficiency of the intervals on a small validation set at each epoch and retrain
the model up to the one associated with the most efficient intervals. All data sets are
normalized and split into three parts, one to define the KNN point-prediction algorithm,
one for training Φθ, and one for testing.

3.1. Synthetic data

In Figure 1, we show the locally adaptive intervals obtained by the models on four randomly
generated synthetic data sets. In this case, the confidence level is set to α = 0.05. Each
data set consists of 1000 samples generated by perturbing an order-2 polynomial regression
model, ftrue(X) = w0 + w1X + w2X

2, w ∈ N (0, 1)3, with one of the four following X-
depedent error functions,

εcos =
(
ρ+ 2 cos

(π
2
|X|
)

1(|X| < 0.5)
)
ξ (31)

εsquared =
(
ρ+ 2X2 1(|X| > 0.5)

)
ξ (32)

εinverse =

(
ρ+

2

ρ+ |X|
1(|X| > 0.5)

)
ξ (33)

εlinear = (ρ+ (2− |X|) 1(|X| < 0.5)) ξ (34)

ρ = 0.1, ξ ∼ N (0, 1). In all cases, we sample X uniformly in [−1, 1] and then normalize the
input vector (1, X,X2)T across all samples. 4

4. Normalizing the input causes the x-coordinate of some dots to exceeds [−1, 1] in Figure 1.
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Figure 1: Examples of the locally adaptive intervals obtained with the proposed approach.

Figure 1 shows that the trained models can produce intervals of locally adaptive size. As
noted in previous works, e.g. Romano et al. (2019), ERC may become unstable when the lo-
calization network, g, is trained by fitting the conditional squared errors. For the fairness of
the comparison, we regularize ERC (error fit) through the cross-validated early-stopping
technique we use for the other models instead of tuning an additional regularization hyper-
parameter, γ.

3.2. Real data

To check the scalability and efficiency of the algorithms on real-world data comparison, we
have used the following regression data sets,
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• energy, the Energy Efficiency Data Set, 768 observations with eight attributes, Tsanas
and Xifara (2012),

• concrete, the Concrete Compressive Strength Data Set, 1030 observations with nine
attributes, Yeh (2007),

• homes, the King County Home Price Data Set, 21613 observations with 14 attributes,
King County (2015),

• CASP, the Physicochemical Properties of Protein Tertiary Structure Data Set, 45730
observations with nine attributes, Rana (2013),

• facebook 1, the Facebook Comment Volume Data Set, 40949 observations with 54
attributes, Singh (2016).

These are popular public benchmarks for evaluating the local adaptability of conformal
prediction. Visit Tsanas and Xifara (2012); Yeh (2007); King County (2015); Rana (2013);
Singh (2016) or see Romano et al. (2019); Sesia and Candès (2020); Guan (2023) for more
details about the data sets. Table 1 shows the interval sizes and empirical validities on
all datasets and for different confidence levels. Each value is obtained by averaging the
performance over five runs of the training-testing procedure.

The results confirm that ERC may be unstable when the localization function is fitted
to the conditional residual. All models, however, are consistently more efficient than the
non-adaptive baseline, ϕ0. The choice of the model class does not look to be crucial, with
minor and data set-dependent performance differences.

4. Limitations and future work

We recognize that our work should have included a more extensive real-world validation
of the methods. Firstly, we only consider a simple point-prediction model and do not
run a careful ablation study involving more or less advanced regression models. While, in
many cases, a localization network with five hidden layers of size 100 seems to make Φθ ∈
{ΦERC,Φlinear,Φexp,Φsigma} flexible enough, the efficiency of the intervals may be improved
further by considering more general model classes. For example, it may be interesting
to train a linear combination of ΦERC, Φlinear, Φexp, and Φsigma with nonnegative weights.
While the model automatically satisfies Assumption 1, its inverse is not available in analytic
form. The parameters of the localization network should then be trained through the
implicit differentiation strategy described in Section 2.8.

As mentioned in Section 1.1, the proposed approach is not incompatible with existing
methods that approximate object-conditional validity by re-weighting the empirical distri-
bution of the conformity scores, e.g. Vovk (2012); Han et al. (2022); Barber et al. (2022);
Guan (2023), Combining a global redefinition of the conformity measure with a sample-
specific re-weighting of the calibration distribution may help localize the interval on specific
tasks. Including the proposed strategy in the quantile regression approaches of Sesia and
Candès (2020) would also be possible.

In a follow-up of this work, we will also explore how to interpret Φθ as a Normalizing Flow
between the distribution of the original conformity scores and their transformed versions.
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energy α = 0.05 α = 0.1 α = 0.32

size val size val size val
erc (error fit) 0.86± 0.582 0.968± 0.016 0.431± 0.289 0.924± 0.015 0.103± 0.025 0.684± 0.066

erc 0.259± 0.195 0.944± 0.023 0.184± 0.121 0.888± 0.02 0.083± 0.017 0.684± 0.023
linear 0.172± 0.018 0.948± 0.01 0.134± 0.011 0.9± 0.028 0.078± 0.009 0.688± 0.041
exp 0.161± 0.014 0.928± 0.02 0.131± 0.007 0.868± 0.027 0.075± 0.006 0.66± 0.046
sigma 0.169± 0.027 0.948± 0.016 0.135± 0.009 0.884± 0.008 0.078± 0.01 0.672± 0.016
fixed 0.192± 0.015 0.952± 0.01 0.143± 0.008 0.884± 0.023 0.082± 0.008 0.66± 0.038

concrete α = 0.05 α = 0.1 α = 0.32

size val size val size val
erc (error fit) 0.736± 0.17 0.936± 0.015 0.484± 0.072 0.888± 0.032 0.27± 0.024 0.656± 0.015

erc 0.903± 0.652 0.968± 0.016 0.637± 0.359 0.912± 0.016 0.29± 0.049 0.672± 0.041
linear 0.569± 0.088 0.96± 0.013 0.457± 0.049 0.9± 0.018 0.267± 0.033 0.668± 0.035
exp 0.567± 0.078 0.952± 0.016 0.45± 0.032 0.92± 0.022 0.274± 0.034 0.72± 0.025
sigma 0.557± 0.073 0.952± 0.032 0.453± 0.039 0.904± 0.015 0.268± 0.024 0.688± 0.016
fixed 0.61± 0.08 0.964± 0.02 0.472± 0.049 0.904± 0.046 0.271± 0.025 0.688± 0.052

homes α = 0.05 α = 0.1 α = 0.32

size val size val size val
erc (error fit) 1.664± 1.165 0.936± 0.008 0.864± 0.562 0.892± 0.01 0.234± 0.062 0.68± 0.031

erc 0.526± 0.038 0.936± 0.023 0.409± 0.047 0.876± 0.023 0.195± 0.017 0.656± 0.027
linear 0.522± 0.065 0.944± 0.015 0.425± 0.05 0.904± 0.015 0.206± 0.024 0.704± 0.06
exp 0.521± 0.054 0.94± 0.022 0.392± 0.053 0.892± 0.01 0.197± 0.018 0.68± 0.025
sigma 0.533± 0.077 0.936± 0.02 0.421± 0.058 0.892± 0.027 0.203± 0.027 0.632± 0.045
fixed 0.721± 0.087 0.94± 0.025 0.484± 0.093 0.896± 0.027 0.192± 0.024 0.672± 0.037

CASP α = 0.05 α = 0.1 α = 0.32

size val size val size val
erc (error fit) 1.375± 0.093 0.948± 0.02 1.073± 0.058 0.904± 0.023 0.643± 0.058 0.664± 0.056

erc 1.412± 0.191 0.936± 0.027 1.045± 0.048 0.888± 0.037 0.637± 0.056 0.648± 0.07
linear 1.392± 0.203 0.96± 0.018 1.018± 0.053 0.916± 0.015 0.631± 0.07 0.684± 0.032
exp 1.363± 0.187 0.944± 0.023 1.014± 0.07 0.892± 0.037 0.635± 0.042 0.68± 0.022
sigma 1.321± 0.207 0.956± 0.023 1.03± 0.108 0.904± 0.034 0.629± 0.075 0.688± 0.03
fixed 1.492± 0.207 0.952± 0.02 1.093± 0.086 0.9± 0.031 0.659± 0.063 0.668± 0.037

facebook 1 α = 0.05 α = 0.1 α = 0.32

size val size val size val
erc (error fit) 3.404± 1.063 0.956± 0.015 1.473± 0.293 0.916± 0.029 0.281± 0.062 0.692± 0.032

erc 3.332± 1.36 0.948± 0.024 1.389± 0.434 0.908± 0.027 0.282± 0.061 0.684± 0.029
linear 3.091± 0.694 0.944± 0.02 1.523± 0.353 0.904± 0.015 0.289± 0.068 0.672± 0.03
exp 3.268± 1.024 0.96± 0.022 1.534± 0.305 0.916± 0.041 0.281± 0.049 0.708± 0.02
sigma 3.088± 1.211 0.944± 0.015 1.376± 0.439 0.9± 0.025 0.292± 0.068 0.664± 0.05
fixed 3.612± 1.243 0.948± 0.035 1.519± 0.273 0.908± 0.035 0.276± 0.063 0.656± 0.054

Table 1: Size (left) and empirical validity (right) of the prediction intervals produced by
the models on different datasets and for different confidence levels.
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The goal is then to force the joint distribution of the conformity scores and the attributes
to factorize, i.e. Φθ should be trained so that Pϕ(A)X = Pϕ(A)PX , as this would make
conditional and marginal validity equivalent.

The code to reproduce the numerical experiments described in Section 3 and possibly
updated versions of this manuscript can be found in this Github directory.

Acknowledgements

We thank the COPA reviewers for their useful comments and questions. We are grateful to
V. Vovk for the inspiring discussions in the preliminary stages of this work.

References

Rina Foygel Barber, Emmanuel J Candes, Aaditya Ramdas, and Ryan J Tibshirani. Con-
formal prediction beyond exchangeability. arXiv preprint arXiv:2202.13415, 2022.

Anthony Bellotti. Constructing normalized nonconformity measures based on maximizing
predictive efficiency. In Conformal and Probabilistic Prediction and Applications, pages
41–54. PMLR, 2020.

Zico Kolter David Duvenaud and Matt Johnson. Deep implicit layers - neural odes, deep
equilibirum models, and beyond. NIPS 2020 Tutorial, 2020.

Bat-Sheva Einbinder, Yaniv Romano, Matteo Sesia, and Yanfei Zhou. Training uncertainty-
aware classifiers with conformalized deep learning. arXiv preprint arXiv:2205.05878, 2022.

Rina Foygel Barber, Emmanuel J Candes, Aaditya Ramdas, and Ryan J Tibshirani. The
limits of distribution-free conditional predictive inference. Information and Inference: A
Journal of the IMA, 10(2):455–482, 2021.

Leying Guan. Localized conformal prediction: A generalized inference framework for con-
formal prediction. Biometrika, 110(1):33–50, 2023.

Xing Han, Ziyang Tang, Joydeep Ghosh, and Qiang Liu. Split localized conformal predic-
tion. arXiv preprint arXiv:2206.13092, 2022.

Rafael Izbicki, Gilson T Shimizu, and Rafael B Stern. Flexible distribution-free conditional
predictive bands using density estimators. arXiv preprint arXiv:1910.05575, 2019.

WA King County. House Sales in King County, USA. Kaggle, 2015. DOI: https://www.
kaggle.com/datasets/harlfoxem/housesalesprediction.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Steven George Krantz and Harold R Parks. The implicit function theorem: history, theory,
and applications. Springer Science & Business Media, 2002.

14

https://github.com/nicoloRHUL/onTrainingLocalizedCP
https://www.kaggle.com/datasets/harlfoxem/housesalesprediction
https://www.kaggle.com/datasets/harlfoxem/housesalesprediction


On training locally adaptive CP

Jing Lei and Larry Wasserman. Distribution-free prediction bands for non-parametric re-
gression. Journal of the Royal Statistical Society: Series B: Statistical Methodology, pages
71–96, 2014.

Harris Papadopoulos, Alex Gammerman, and Volodya Vovk. Normalized nonconformity
measures for regression conformal prediction. In Proceedings of the IASTED International
Conference on Artificial Intelligence and Applications (AIA 2008), pages 64–69, 2008.

Harris Papadopoulos, Vladimir Vovk, and Alexander Gammerman. Regression conformal
prediction with nearest neighbours. Journal of Artificial Intelligence Research, 40:815–
840, 2011.

Prashant Rana. Physicochemical Properties of Protein Tertiary Structure. UCI Machine
Learning Repository, 2013. DOI: 10.24432/C5QW3H.

Yaniv Romano, Evan Patterson, and Emmanuel Candes. Conformalized quantile regression.
Advances in neural information processing systems, 32, 2019.

Yaniv Romano, Matteo Sesia, and Emmanuel Candes. Classification with valid and adaptive
coverage. Advances in Neural Information Processing Systems, 33:3581–3591, 2020.

Matteo Sesia and Emmanuel J Candès. A comparison of some conformal quantile regression
methods. Stat, 9(1):e261, 2020.

Matteo Sesia and Yaniv Romano. Conformal prediction using conditional histograms. Ad-
vances in Neural Information Processing Systems, 34:6304–6315, 2021.

Kamaljot Singh. Facebook Comment Volume Dataset. UCI Machine Learning Repository,
2016. DOI: 10.24432/C5Q886.

David Stutz, Ali Taylan Cemgil, Arnaud Doucet, et al. Learning optimal conformal classi-
fiers. arXiv preprint arXiv:2110.09192, 2021.

Athanasios Tsanas and Angeliki Xifara. Energy efficiency. UCI Machine Learning Reposi-
tory, 2012. DOI: 10.24432/C51307.

Vladimir Vovk. Conditional validity of inductive conformal predictors. In Asian conference
on machine learning, pages 475–490. PMLR, 2012.

I-Cheng Yeh. Concrete Compressive Strength. UCI Machine Learning Repository, 2007.
DOI: 10.24432/C5PK67.

15

10.24432/C5QW3H
10.24432/C5Q886
10.24432/C51307
10.24432/C5PK67

	Introduction
	Related work
	Contribution

	Methods
	A regression task
	Prediction intervals
	Coordinate transformations
	Model classes
	Examples
	Inequivalent intervals
	ERC
	Non-adaptive transformations
	Different codomains

	Validity of the prediction intervals
	Efficiency of the prediction intervals
	Gradient optimization

	Experiments
	Synthetic data
	Real data

	Limitations and future work

