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Abstract
Uncertainty quantification is critical when using Automatic Speech Recognition (ASR) in High

Risk Systems where safety is highly important. While developing ASR models adapted to such
context, a range of techniques are being explored to measure the uncertainty of their predictions.
In this paper, we present two algorithms: the first one applies the Conformal Risk Control paradigm
to predict a set of sentences that controls the Word Error Rate (WER) to an adjustable level of
guarantee. The second algorithm uses Inductive Conformal Prediction (ICP) to predict uncertain
words in an automatic transcription. We analyze the performance of the three algorithms using
an open-source ASR model based on Wav2vec 2.0. The CP algorithms were trained on the “clean
test” part of the LibriSpeech corpus that contains approximately 2,600 sentences. The results show
that the three algorithms provide valid and efficient prediction sets. We guarantee that the WER
is below 2% with a confidence level of 80% and an average set size of 29 sentences and we detect
90% of the badly transcripted words.
Keywords: uncertainty quantification, conformal prediction, natural language processing, auto-
matic speech recognition, high risk systems, robustness

1. Introduction

Air Traffic Control (ATC) is a service provided by ground-based air traffic controllers who direct
aircrafts on the ground and through given sections of controlled airspace. The primary purpose of
ATC worldwide is to prevent collisions, organize and expedite the flow of air traffic, and provide
information and other support for pilots. ATC may issue instructions that pilots are required to
obey, or advisories that pilots may, at their discretion, disregard. The pilot in command is the
final authority for the safe operation of the aircraft and may, in an emergency, deviate from ATC
instructions to the extent required to maintain safe operation of their aircraft. Air traffic controllers
monitor the location of an aircraft in their assigned airspace by radar and communicate with the
pilots by radio using distinctive call signs.

Having an on-board ASR application to keep track of the received messages would reduce the
pilot’s cognitive workload. It would however certainly require the addition of robustness assessment
and/or uncertainty quantification tools to ensure its reliability. The recent advances in Automatic
Speech Recognition (ASR) and Natural Language Processing (NLP) technologies have certainly
opened the way to potential applications in the field of aeronautics and Air Traffic Control (ATC).
(Pellegrini et al., 2018)(Delpech et al., 2018)
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The present work illustrates an application of the conformal prediction paradigm as an un-
certainty quantification technique to an open-source end-to-end Speech-to-text model based on
wav2vec 2.0 and trained on a public dataset (LibriSpeech).

The paper is organised as follows. We will start by introducing Conformal Prediction as well
as wav2vec 2.0, the Automatic Speech Recognition model used in this study. We will then present
two applications of conformal prediction: the first aims to predict a set of sentences with a certain
guarantee on the error and the second one aims to predict the uncertain words in an automatic
transcription.

Figure 1: Example

2. Related Work

Conformal prediction has scarcely been used in NLP tasks. (Maltoudoglou et al., 2020) applied
inductive conformal prediction (ICP) on a transformers based model for the task of sentiment
classification. Paisios et al. (2019) also investigated the use of ICP for the task of multi-label text
classification. Dey et al. (2021) used ICP for the task of text infilling and part-of-speech prediction
for natural language data. To our knowledge, conformal prediction has not been applied yet to the
field of Automatic Speech Recognition.

3. Conformal Prediction

3.1. Introduction

Conformal Prediction (CP) is a set of methods designed to evaluate the uncertainty of predictions
produced by any machine learning (ML) model. Learning from a calibration set, CP enables the
creation of statistically rigorous intervals in regression problems or a set of classes in classification
problems. The prediction sets are valid in a distribution-free sense: they provide explicit, non-
asymptotic guarantees even without distributional assumptions or model assumptions.

3.2. Basic Setting and Assumptions

Consider a basic setting from (N. Balasubramanian et al.) where there is no ML model involved.
Given a set of examples, the goal is to predict a new example. We will assume that the examples

are elements of a measurable space Z with | Z |> 1. The examples of the set will be denoted z1, ..., zl

and the one to be predicted zl+1.
We will make two assumptions about how the examples z1, ..., zl+1 are generated:

• Randomness : It assumes that the l + 1 examples are generated independently from the same
probability distribution Q on Z

• Exchangeability : It assumes that the sequence (z1, ..., zl+1) is generated from a probability
distribution P on Z l+1 that is exchangeable i.e for any permutation π of the set {1, ..., l +1},

2



Conformal prediction applied to end-to-end Speech-To-Text model

the predicted sequence (zπ(1), ..., zπ(l+1)) is generated from the same probability distribution
P on Z l+1

A CP algorithm constructs a set predictor which is a function Γ that maps any sequence
(z1, ..., zl) to a set Γ(z1, ..., zl) ⊆ Z. Such set is called a prediction set. The statement implicit in a
prediction set is that it contains zl+1 and it is regarded as erroneous if it fails to contain zl+1.

The two main indicators of a set predictor are its validity and its efficiency. A set predictor
is exactly valid at a significance level α if P (zl+1 /∈ Γ(z1, ..., zl)) = α. Efficiency measures the
informativeness of a prediction set. An example of a prediction set we would better avoid is the
whole example set Z, it is absolutely reliable but not informative.

A trade-off needs to be found between reliability and informativeness depending on the signifi-
cance level α.

The last object to define is the non-conformity measure A : Z → R. It assigns to every element
of the example space a non-conformity score.

The conformal predictor Γ defined by A as a non-conformity measure and α as a significance
level is defined by: Γα(z1, ..., zl) := {z|pz > α} where for each z ∈ Z, the corresponding p-value pz

is defined by pz = |{i∈[1,l+1],αz
i ≥αz}|

l+1 and ∀i ∈ [1, l + 1], αi = A(zi).
Under the exchangeability and randomness assumptions, the probability of error will not exceed

α because an error is made if and only if αl+1 is among the ⌊α(l + 1)⌋ largest elements in the
sequence (α1, ..., αl+1). Because of the exchangeability assumption, all permutations of (α1, ..., αl+1)
are equiprobable and a random permutation moves one of the ⌊α(l + 1)⌋ largest elements to the
(l + 1)th posititon with probability α which is therefore the probability of error. This proposition
was proved in (Vovk et al.).

3.3. Inductive Conformal Prediction for classification

We are now given an example space Z = X × Y where X the object space and Y = {y1, ..., yk} the
label space. Unlike the full conformal prediction framework that uses the whole dataset to predict
a new data point, Inductive or Split Conformal Prediction (ICP) learns a set predictor on a fixed
calibration dataset. It learns on less data points and is therefore more computationally efficient.

Algorithm 1: Inductive Conformal Prediction for a Classification Problem
Require: Dataset {(Xi, Yi)}ni=1, significance level α

1: Split the dataset into 3 substets Itrain, Icalib and Itest

2: Train a ML model f̂ on Itrain

3: Define the non-conformity measure A(X, Y ) ∈ R
4: Compute λ̂ as the ⌊(ncalib+1)(1−α)⌋

ncalib
quantile of the calibration scores {s = A(X, Y ), ∀(X, Y ) ∈

Icalib}, ncalib = |Icalib|
5: Use this quantile to form the prediction set for a new examples. Γα(Xtest) := {Y ∈
{Y1, ..., Yk}|A(Xtest, Yk ≤ λ̂}

6: Evaluate the conformal set predictor validity and efficiency on Itest

The validity of the prediction sets is guaranteed for any non-conformity measure and distribution
of the data by the Conformal coverage guarantee theorem.

Theorem 1 (Conformal coverage guarantee; Vovk, Gammerman, and Saunders) Sup-
pose (Xi, Yi)i=1,...,n and (Xtest, Ytest) are independent and identically distributed. q̂ is defined as in
step 4 above and Γα(Xtest) as in step 5 above. Then the following holds: P (Ytest ∈ Γα(Xtest) ≥ 1−α
Proof See Appendix D of [9]
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3.4. Conformal Risk Control

The Conformal Risk Control is an extension of the basic Conformal Prediction framework to provide
guarantees of the form E[l(Γ(Xtest), Ytest)] ≤ α for any bounded loss function l that shrinks as the
prediction set grows.

Theorem 2 (Conformal Risk Control) Consider a set predictor Γλ(.) that depends on a pa-
rameter λ that encodes its level of conservativeness and a loss function l(Γ(X), Y ) ∈ (−∞, B]
bounded by B < ∞ and non-increasing as a function of λ. Let R̂n(λ) =

∑ncalib
i=1 l(Γλ(Xi),Yi)

ncalib
and

λ̂ = inf{λ| ncalib
ncalib+1R̂n(λ) + B

ncalib
≤ α} with α the desired significance level.

The set predictor Γλ̂ guarantees that α− 2B
ncalib+1 ≤ E[l(Γ(Xtest), Ytest)] ≤ α.

Proof See theorem 1 and 2 in (N. Angelopoulos et al.).

Note that the coverage guarantee seen in the past paragraph is a special case of Conformal Risk
Control with l(Γα(X), Y ) = 1(Y /∈ Γ(X))

3.5. Effect of the calibration set (Training Conditional Validity)

In the past paragraphs, we tackled the validity of conformal predictors in the sense of uncondi-
tional validity while it is possible to explore their conditional validity, among other things (label
conditional, object conditional, ...) and on the calibration dataset (Training-conditional validity).

The property of training-conditional validity (TCV) has been formalized in (Vovk) using a
PAC-type 2-parameters definition which means that for an example space Z = {Xi, Yi}i=1..n in
which the samples are iid, a set predictor is (α, δ) − valid if for any probability distribution P on
Z, P ncalib(E(l(Γα(X), Y ) ≤ α) ≥ 1− δ.

Proposition 2b in (Vovk) states that such predictor is (α, δ) − valid if and only if the non-
conformity measure is continuous and δ ≥ binn,α(⌊α(n + 1)− 1⌋).

Proposition 2a in (Vovk) states that a set predictor Γα−
√

−ln(δ)
2n will be (α, δ) − valid. The

term
√

−ln(δ)
2n can be seen as a correction to the significance level that makes the set predictor less

conservative to take into account the effect of the calibration dataset. It is recommended to set
δ = 0.1 in the literature. (N. Angelopoulos and Bates)

3.6. Label-conditional and feature-conditional Inductive Conformal Prediction

The motivation behind Conditional Conformal Predictors comes from the fact that ICPs do not
always achieve the required probability α of error Yl+1 /∈ Γα(Xl+1) conditional on (Xl+1, Yl+1) ∈ E
for important sets E ⊆ Z.

An inductive m-taxonomy is a measurable function K : Zm ×Z→ K where K is a measurable
space. Usually the category K((z1, ..., zm), z) of an example z is a kind of classification of z, which
may depend on the proper calibration set (z1, ..., zm).

The conditional inductive conformal predictor for a classification task Γ defined by A as a non-
conformity measure and α as a significance level is defined by: Γα(z1, ..., zl, x) := {y | py > α}
where for each y ∈ Y , the corresponding p-value py is defined by py = |{i∈[1,l],κi=κy∧αi≥αz}|+1

|i∈[1,l],κi=κy |+1 with
∀i ∈ [1, l], αi = A(zi), κi = K(., zi) and κy = K(., (x, y)).

A label-conditional ICP is a conditional ICP with the m-taxonomy K(., (x, y)) = y and a
feature-conditional ICP is a conditional ICP with the m-taxonomy K(., (x, y)) = xi with i ∈ [1, m]
if the object space X can be divided into m subsets.
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Theorem 3 If random examples Z1, ..., Zl, Zl+1 = (Xl+1, Yl+1) are exchangeable, the probability
of error Yl+1 /∈ Γα(Z1, ..., Zl, Xl+1) given the category K((Z1, ..., Zl), Zl+1) of Zl+1 does not exceed
α for any α and any conditional inductive conformal predictor Γ corresponding to K.(Vovk)

3.7. Evaluating Conformal Prediction

We start with plotting the histograms of the prediction set sizes. We benefit from these histograms
in two ways. First, a big average set size would suggest that the conformal process is not particularly
precise, suggesting that there may be an issue with the score or underlying model. Second, the
distribution of the prediction set sizes reveals whether the prediction sets correctly adapt to the
difficulty of examples. A broader spread is typically preferred because it indicates that the method
is successfully differentiating between easy and difficult inputs.

The next step is to verify if the theoretical coverage guarantee has been achieved and to compute
the empirical converage conditionally on certain features or labels that could be of interest to explore
possible miscoverages on certain groups of the example space and correct it by implementing the
Conditional ICP.

Running the algorithm once will not be enough to check the validity of our conformal predictor.
We will be running the procedure over R trials, resampling the calibration and test sets at each
trial.

Let Cj = 1
nval

∑nval
i=1 1{Y (val)

i,j ∈ Γα
j (X(val)

i,j )}, for j = 1, ..., R

We will plot a histogram of the (Cj)j=1..R and verify that it is centered at roughly 1−α.(N. An-
gelopoulos and Bates)

4. Automatic Speech Recognition (ASR) and wav2vec 2.0

Wav2vec 2.0 (Baevski et al., 2020) is a framework for semi-supervised learning of representations
from both labeled and unlabeled audio data. The training was done in two phases: a pre-training
phase using self-supervised learning to achieve the best speech representation possible, and a fine-
tuning phase that uses labeled speech data to learn to predict sequences of words. The model
pre-training procedure makes it more frugal in terms of need of annotated data for the speech
recognition downstream task. By pre-training on 53k hours of unlabeled data and only using ten
minutes of labeled speech data, the model achieves a 4.8% WER on the LibriSpeech clean test set.

4.1. Wav2vec 2.0 pretraining mechanism

The architecture of the model consists of a multi-layer convolutional feature encoder f : X → Z
which takes as input raw audio X and outputs latent speech representations z = z1, . . . , zT for T
time steps.

The model makes use of a Quantization Module to automatically learn discrete speech units
to benefit from the fact that voiced speech could be separated into phones. The Quantization
Module discretizes the output of the feature encoder z to a finite set of speech representations
via Product Quantization. The idea of Product Quantization is to decompose the space into a
Cartesian product of low dimensional subspaces and to quantize each subspace separately. The
space of Z has been decomposed into G codebooks or groups, each one consisting of V code words
or entries. The feature vector z is then mapped to l ∈ RG×V logits. One entry is chosen for each
group using a hard Gumbel softmax.
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v∗ = argmax
v

exp((lg,v + nv)/τ)∑V
k=1 exp((lg,k + nk)/τ)

With nv = −log(log(u)), u a random sample from U(0, 1) and τ the temperature. nv and τ
make the difference compared to the usual softmax function. This adds randomization to encourage
the model to use different entries during training.

The entries are concatenated to form a vector of quantized speech representations q of the same
size of c. We naturally get a vector of quantized speech representations for each time step and end
up with q = q1, . . . , qT .

Similarly to masked language modeling in BERT(Devlin et al., 2019), certain time steps in the
output of the feature encoder are masked to the Transformer module during pre-training and the
objective function that is minimized is a sum of a contrastive loss Lm and a diversity loss Ld.

L = Lm + αLd

For each masked time step t, the contrastive loss’ objective is to train the model to predict a
vector representation ct similar to the true quantized latent speech representation qt. A set of K+1
candidates Qt which contains qt and K distractors is used:

Lm = −log
exp(sim(ct, qt))/τ∑

q̃∈Qt
exp(sim(ct, q̃)/τ)

The diversity loss is a regularization technique, its objective is to encourage the model to take
advantage of all code words.

Ld = 1
GV

G∑
g=1

V∑
v=1

exp((lg,v + nv)/τ)∑V
k=1 exp((lg,k + nk)/τ)

4.2. Model fine-tuning

The fine-tuning phase requires labeled data i.e., pairs of audios and their corresponding ground-
truth text. A recurrent neural network is trained to take as input the vector of context representa-
tions c = c1, . . . , cT and output a matrix containing a score for each token from a list of 30 tokens,
for each time-step. A token can be a character, a combination of characters, a word boundary
token or a blank token, not to be confused with a white space.

The model is trained by minimizing a Connectionist Temporal Classification (CTC) loss (Graves
et al.). It is usually used to train models for sequence to sequence problems where we don’t have the
alignment between the input and the output. It is the case for speech recognition; we do not know
the alignment of the characters in the corresponding audio. For example, if “hello” was transcripted
without a CTC loss, we could get “hhhheeeelllllllloooo”. Removing all duplicates would result in
“helo”. The CTC loss solves the issue by learning to predict the blank token at the right place.

4.3. Beam Search decoding

A fine-tuned model based on wav2vec 2.0 uses the beam search method to decode a CTC-output
matrix. It comes down to iteratively create text candidates (beams) and score them.

To compute the logit score of a beam, we compute the sum of the log-probabilities of all the
paths that lead to the beam. For example, over 3 time-steps, the score of “aa” is given by:

Pt3(aa) = Pt1(a).Pt2(a).Pt3(−) + Pt1(a).Pt2(−).Pt3(a) + Pt1(−).Pt2(a).Pt3(a)
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with (-) the blank token and Pt2(a) corresponds to the score of the token "a" at the 2nd timestep
in the CTC-output matrix.

An optional language model can be used at the end of the beam search to compute a language
model score for every decoded sentence. The lm-score can be either added to or averaged to the
logit score to give the combined score.

A simplified pseudo-code of a modified version of wav2vec 2.0’s beam search that will output
not only one but a set of sentences and their corresponding scores is detailed in figure 2

Algorithm 2: Modified version of the Beam Search (wav2vec 2.0)
1: beams← [] Empty list
2: scores← {} Empty dictionary that assigns a score for each beam
3: for i in range(T) do
4: bestBeams← bestBeams(beams, scores, BW, beamPruneLogp)
5: beams← [] Empty list
6: for b in bestBeams do
7: for c in tokens do
8: if mat(index(c), t) ≥ tokenMinLogp then
9: path← concat(b, c)

10: scores[(path, t)]← calcScore(mat, path, t)
11: beams← beams ∪ path
12: end if
13: end for
14: end for
15: beams, scores← mergeBeams(beams, scores)
16: end for
17: if useLanguageModel = TRUE then
18: beams, scores← addLanguageModelScore(beams, scores)
19: end if
20: return beams, scores

The list of beams and a score dictionary are initialized with an empty list (step 2 and 3). The
algorithm iterates over the time-steps (step 4).

At each time-step, only the best scoring beams from the previous time-step are kept and are
sorted in descending order based on their scores (step 5). Beam width (BW) specifies the maximum
number of beams to keep and beamPruneLogp specifies the maximum difference between the score
of the best beam and the last one to keep.

Further, each beam is extended by the tokens whose logit score is superior to tokenMinLogp
(step 9 and 10) and a logit score is calculated for each path (step 11). After that, the paths that
lead to the same beam are merged, the score is recalculated and the beams are sorted (step 16).

An optional language model score (also a log-probability) is computed for each beam and is
added to the logit score of the beam and the beams are sorted (step 18).

Note that the number of predicted sentences per audio depends on the audio and the parameters
(BW, tokenMinLogp, beamPruneLogp) but can only be lower than BW.

4.4. Word Error Rate

The Word Error Rate (WER) is a common metric used to assess the performance of an ASR model.
It is computed as : WER = S+D+I

N = S+D+I
S+D+C where S is the number of substitutions, D is the
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number of deletions, I is the number of insertions, C is the number of correct words and N is the
number of words in the reference (N = S + D + C).

A WER of 5-10% is considered to be good quality. Cloud-based Speech-To-Text services like
Amazon, Google and Microsoft for example claim to achieve a WER of approximately 5%. We note
that multiple benchmarkings have refuted this claim and showed that their average WER may be
closer to 10% than 5%. (Jarmulak; Xu et al.)

We will use the Word Error Rate metric to measure the precision of our model as it is more
informative than the exact transcriptions ratio. Nonetheless, we acknowledge that WER has strong
flaws e.g., it does not consider the fact that some words are more important for the general meaning
of the sentence than others.

5. Data

We used the model ‘wav2vec2-base-100h-with-lm’ from Huggingface (hug) which was trained on
53k hours of unlabeled data and finetuned using LibriSpeech’s (lib) ‘train clean’ subset (around
100h of labeled speech). It uses a 4-gram language model (a 4-state Markov chain) to compute
the language model score, trained with KenLM (Heafield). We used the ‘test clean’ subset which
contains 2620 audios of different durations (4h20min in total) to implement the algorithms used in
the next chapters.

First we give some insights about this dataset. Fig. 2 shows the distribution of the number
of time-steps or tokens in the the CTC-output matrices of the 2620 audios. It can be seen as the
distribution of the durations of the audios given the fact that a time step is approximately 20ms.

Figure 2: Distribution of the number of tokens/logits per audio

In order to evaluate the effect of the beam search’s parameters on the computational time and
the number of sentences that would be predicted, we picked three audios that have approximately
the same number of time-steps as the (0.5,0.75,0.95)-quantiles and predicted their outputs using
different sets of parameters (BW, tokenMinLogp, beamPruneLogp).
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number of time-steps number of sentences predicted time (s)
≈ 0.5− quantile 97 114 0.54
≈ 0.75− quantile 154 99 0.84
≈ 0.95− quantile 286 76 2.1

Table 1: BW = 200, tokenMinLogp = -10, beamPruneLogp = -100 (set one)
number of time-steps number of sentences predicted time (s)

≈ 0.5− quantile 97 287 5.91
≈ 0.75− quantile 154 323 10
≈ 0.95− quantile 286 311 19.2

Table 2: BW = 400, tokenMinLogp = -15, beamPruneLogp = -150 (set two)

We chose to use the parameters of the sets one and two in order to compare them as it was a
good trade-off between computational time and number of sentences predicted. The goal was to
make the same experiments with the two sets to see which one has the best ‘value for money’. We
will name the two datasets we obtain "Economy" dataset (set one) and "Quality" dataset (set two).

"Economy" dataset "Quality" dataset
mean nsentences 102 312
std nsentences 18 33
max nsentences 200 397
min nsentences 67 174

exact first transcription 60.53% 61.57%
exact prediction in set 82.21% 84%

mean minWer 1.57% 1.36%
std minWer 5.19% 4.6%

mean bestWerIndex 2.6 4.8
std bestWerIndex 8.4 16.7
max bestWerIndex 109 174

Table 3: Statistics of Datasets "Economy" and "Quality"

(a) "Economy"
dataset

(b) "Quality"
dataset

Figure 3: Histograms of number of predicted sentences per audio
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Figure 4: Combined score of transcriptions identical to the ground truth versus number of tokens
for the ‘Economy’ dataset

Fig. 4 that shows the transcription score versus the token number. We see that the longer the
sentences, the larger the scores (in absolute value). This comes as no surprise as the scores are
accumulated along the word hypotheses. These scores therefore need to be normalized if we want
to use them as non-conformity scores.

6. Applying the Conformal Risk Control algorithm to predict a set of sentences

The goal is to predict, for each audio, a set of sentences that guarantees, with a certain significance
level, that at least one of the sentences has a WER lower than a chosen wertarget . As it is not
a classification nor a regression task, we resort to the Conformal Risk Control framework that is
explained in 3.4. Since the output score depends on the length of the sentence, a softmax is applied
on the top-k sentences and the resulting values are used to construct the set predictor.

6.1. Algorithm

Given a wertarget, an audio X, its ground truth transcription Y , the set of sentences predicted by
the model sent(X) = sent1, ..., sentnX ranked from the most probable to the least probable, the
corresponding raw output scores score1, ..., scorenX with nX ≤ BW , k the maximum number of
sentences in the conformal prediction sets, the loss function is the following:

l(Γ(X), Y ) = 1(∀i ∈ [1, nλ], WER(senti, Y ) ≥ wertarget)

with nλ = inf{j ∈ [1, min(k, nX)], ∑j
l=1

exp(scorel)∑min(k,nX )
i=1 exp(scorei)

≥ λ}

It is clear that the loss is bounded by B = 1 and that it is non-increasing as a function of λ.
The higher λ is, the more sentences will be included in the conformal prediction set Γλ(X) and so
the higher the probability will be to include a sentence that has a lower WER than wertarget.

The conditions to build an (α, δ)−valid set predictor under the Conformal Risk Control frame-
work (3.4) are then satisfied.

We note that the wertarget should be higher than the meanMinWer and that the confidence
level 1− α should be lower than the proportion of audios whose top-k sentences contain at least a
sentence with a lower WER than the wertarget.
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Algorithm 3: Conformal Risk Control to predict a set of sentences prediction
Require: Dataset {(Xi, Yi)}ni=1, significance level α, δ, wav2vec 2.0 parameters (BW, tokenMin-

Logp, beamPruneLogp), maximum number of sentences k, wertarget, the binary search’s preci-
sion ϵ

1: Predict a set of sentences for each audio using the modified version of wav2vec 2.0 with the
parameters (BW, tokenMinLogp, beamPruneLogp) to obtain a set of sentences sentencesi =
sent1i , ..., sentnXi

and their corresponding scores scoresi = score1i , ..., scorenXi
for each audio

in the dataset.
2: ∀i ∈ [1, n], nXi ← min(k, nXi) We keep k sentences if nXi > k and we keep all sentences if

nXi < k
3: Apply a softmax function on the top-k scores. ∀i ∈ [1, n], softmaxScoresi =

( exp(score1i
)∑nXi

j=1 exp(scoreji
)
, ...,

exp(scorenXi i
)∑nXi

j=1 exp(scoreji
)
)

4: Compute the wer array for each audio. ∀i ∈ [1, n], weri =
(wer(sent1i , Yi), ..., wer(sentnXi

, YnXi
)). The dataset is now of the form

{Xi, Yi, sentencesi, softmaxScoresi, weri}ni=1

5: Verify: wertarget ≥ MeanMinWer with MeanMinWer =
∑n

i=1 min(weri)
n and α ≥ αmin with

αmin = ∑n
i=1 1(min(weri) ≥ wertarget)× 1

n If not, choose a higher wertarget or a smaller α
6: Split the dataset into 2 substets Icalib and Itest

7: Verify: δ ≥ binncalib,α(⌊α(ncalib + 1)− 1⌋) If not, augment the calibration dataset’s size or α or
δ

8: λarray ← Array(0, 1, step = ϵ)
9: Proceed to a binary search to find λ̂ = inf{λ ∈ λarray| ncalib

ncalib+1R̂n(λ) + B
ncalib

≤ α −
√

−ln(δ)
2n }

with R̂n(λ) =
∑ncalib

i=1 l(Γλ(xi),yi)
ncalib

, l as defined above and B = 1
10: Evaluate the (α, δ)− valid conformal predictor on the test dataset by computing the empirical

coverage α̂ = ∑
(X,Y )∈Itest

l(Γλ̂(X), Y ) × 1
ntest

and the mean size of the conformal predictions
sets

6.2. Implementation

For the experiments, we adopt δ = 0.1 and a precision e = 0.0001. We make k vary ∈ {50, 100, 300},
for the top-k sentences that we will keep to predict the CP sets. Each k can yield a different
MeanMinWer. We set the target WER to wertarget = 2%. α is put to 0.2. It would not be
possible to hope for a smaller significance level due to the Training-Conditional Validity hypothesis.
The following tables summarise our experiments.

MeanMinWer wertarget αmin α

k = 50 1.6% 2% 0.172 0.2
k = 150 1.6% 2% 0.168 0.2
k = 300 1.6% 2% 0.168 0.2

Table 4: Experiments with "Economy"

MeanMinWer wertarget αmin α

k = 50 1.6% 2% 0.166 0.2
k = 150 1.4% 2% 0.153 0.2
k = 300 1.4% 2% 0.152 0.2

Table 5: Experiments with "Quality"

6.3. Results

The empirical confidence level in the tables below represent the mean of the distribution of the
empirical confidence levels 1− α̂ of R = 100 trials. (See 3.7).
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wertarget theoretical confidence level empirical confidence level average set size
k = 50 2% 80% 82.38% 36
k = 150 2% 80% 82.82% 44
k = 300 2% 80% 82.5% 40

Table 6: Results with "Economy"
wertarget theoretical confidence level empirical confidence level average set size

k = 50 2% 80% 82.65% 31
k = 150 2% 80% 82.4% 30

k = 300 2% 80% 82.45% 29

Table 7: Results with "Quality"

(a) "Economy"
dataset

(b) "Quality"
dataset

Figure 5: Distribution of the empirical coverage for k = 150

(a) "Economy"
dataset

(b) "Quality"
dataset

Figure 6: Distribution of the prediction set sizes for k = 150

• The empirical coverage lower bound is respected for all cases. The fact that it is higher than
the upper bound is due to the implementation of the training-conditional validity.

• It seems that using "Quality" dataset with k = 50 yields the most adaptive prediction sets
with the same validity. This confirms the intuitive idea that more time and storage consuming
implementations of the beam search give better and more precise sentences.

• Different variants of the non-conformity measure were tried (applying a softmax on the raw
output scores, applying a softmax after dividing the score by the number of time steps of
the audio..) but the best results were observed when applying a softmax after dividing the
output scores by 5.
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• We could investigate feature-conditional ICP over the number of tokens (> 0.5-quantile or
not) because shorter audios tend to yield better transcriptions. See 6.5

6.4. Examples

Figure 7: Example of a CP set of sentences

Outputting a set of 30 sentences can appear unpractical but this model can be coupled with other
models to improve their efficiency.

6.5. Example of feature-conditional ICP

We arbitrarily use "Quality" dataset with k = 150, wertarget = 2% and α = 0.2. The setup is
similar to the previous section but using feature-conditional ICP on the number of tokens/logits of
the audio. We divide the dataset in two subsets; subset0 contains audios whose number of tokens
is inferior to the 0.5-quantile and subset1 contains audios whose number of tokens is superior to
the 0.5-quantile. We implement the Risk Control Framework independently. Results are shown in
Fig. 8.

(a) Distribution of
the prediction set

sizes

(b) Distribution of
the empirical

coverage

Figure 8: Results of the feature-conditional ICP when not adapting α

A simultaneous gain (probably for subset0) and loss (subset1) of adaptivity can be observed.
This may be due to the fact that wertarget and α are not appropriate for the two subsets.

We decide to adapt wertarget and α to the two subsets. We take wertarget0 = wertarget1 = 2%,
α0 = 0.15 and α1 = 0.25 and obtain the results presented in Fig. 9.
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(a) Distribution of
the prediction set

sizes

(b) Distribution of
the empirical

coverage

Figure 9: Results of the feature-conditional ICP when adapting α

We show that it is possible to improve adaptivity with the assumption that P (ntokensnewexample >
0.5− quantile) = P (ntokensnewexample < 0.5− quantile).

7. Applying the Conformal Prediction algorithm to predict uncertain words in
a sentence

Motivated by the fact that a long list of sentences are difficult to digest for humans, we want to
further explore guarantees at a world level on the top-1 sentence using CP. The idea is to predict
the wrongly transcribed words in the most probable sentence using a set of sentences that can
be defined by the top-k sentences or by the conformal predictions sets introduced in 6. It could
be done by training a classifier that predicts whether each word of the most probable sentence is
correct or not using features extracted from the set of sentences.

To train such a classifier, we will need to construct a dataset {word, feature1, ..., featurex, label}ni=1

7.1. Dataset construction

In this section we explain how the dataset for "uncertain words" is constructed. A word from the
most probable sentence will be labeled 1 (correct) if it is present at the same position than in the
ground truth transcription (with a tolerance of 1 word to account for possibly different sentence
lengths) The score represents the presence rate of the corresponding word in the sentences of the
set. This score heuristic was inspired from the example 7 where the wrongly transcribed word is
predicted differently in nearly each sentence of the set.

Consider the following input:

• most probable sentence : HE IS AN ENGINEER

• set of sentences :

– sentence 1 : HE IS AND ENGINEER
– sentence 2 : HE ISN’T AN ENGINEER
– sentence 3 : HE IS A PILOT
– sentence 4 : HE IS AND ARCHITECT

• groundtruth sentence : HE IS AN ENGINEERING TEACHER

We would obtain the following dataset:
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firstWord lastWord nChar nWords scoreWBefore scoreWAfter score label
HE 1 0 2 4 Nan 0.75 1 1
IS 0 0 2 4 1 0.25 0.75 1

AN 0 0 2 4 0.75 0.5 0.25 1
ENGINEER 0 1 8 4 0.25 Nan 0.5 0

Table 8: Example of dataset construction

In the example above, the word "HE" is present in 4 out of 4 sentences. Thus, it has a score of
1 and since it is the first word of the sentence, the score of the word before (scoreWBefore) is not
attributed. The word "IS" is present in 3 out of 4 sentences and has a score of 0.75. nChar matches
the word’s number of characters and nWords matches the number of words in the sentence.

7.2. Algorithm

Based on the dataset presented in last section, we implement the Inductive Conformal Predic-
tion algorithm introduced in §2.3 . We split the dataset and train an XGBoost classifier f̂(x :
[score, numCharacters, numWordsInSentence, firstWord, ...] → y : label. XGBoost is an opti-
mized distributed gradient boosting library designed to be highly efficient, flexible and portable. It
implements machine learning algorithms under the Gradient Boosting framework.(xgb)

We set the non-conformity measure to be one minus the softmax output of the true class. It
is the ordinary non-conformity measure for a classification task. The non-conformity score will be
high when the model is not confident in the output of the true class and vice versa.

A slight correction of the significance level will be made in the algorithm 1 in §2.3 to take into
account the effect of the calibration dataset.

The set predictor will predict whether a word is correct {1}, wrong {0} or uncertain if it outputs
{1, 0} at a confidence level of 1− α with a probability 1− δ.

7.3. Implementation

As in 6, we will make experiments on both datasets "Economy" and "Quality".

"Economy" dataset "Quality" dataset
nelements 52780 52773

number of wrong words (label = 0) 2915 2893
number of correct words (label = 1) 49865 49880

ratio n0/n1 0.058 0.058
mean score of correct words 0.91 0.91
std score of correct words 0.16 0.13

mean score of wrong words 0.64 0.65
std score of correct words 0.29 0.29

Table 9: Statistics of Datasets "Economy" and "Quality" for uncertain words prediction

The resulting datasets are very unbalanced in the number of wrong/correct words.
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Splitting the dataset and Training the XGBoost Classifier We propose the following split
of the "Quality" dataset with k=150:

nsentences nwords n0 n1
Entire dataset 2620 52773 2893 49880

XGBoost training 1400 28725 1603 27122
XGBoost testing 400 8663 317 8346

Calibration 500 9343 591 8752
Test 320 6041 381 5659

Table 10: Split of "Quality" dataset with k = 150

We train the XGBoost classifier by assigning the ratio n0/n1 to the "scale_pos_weight" pa-
rameter. It makes sure that the model gives more weight to the misrepresented labels during
training.

Other parameters: n_estimators = 300, learning_rate = 0.3
The results of the classifier on the test dataset are detailed in the following tables

Accuracy True Positive Rate (TPR) True Negative Rate (TNR) Balanced Accuracy
0.88 0.89 0.44 0.67

Table 11: Classifier’s performance

In the table above 11, BalancedAccuracy = (TPR + TNR)/2
For the experiments, we use δ = 0.1 whenever training-conditional validity (TCV) is used,

varying k ∈ {50, 100, 300} and making R = 100 trials to compute the empirical coverage. We will
also be varying α ∈ {0.01, 0.05, 0.1}.

7.4. Results

We obtain the following results:

mean set size coveragemarginal coverage0 coverage1
α = 0.1 with TCV 1.1 0.9123 0.54 0.94
α = 0.05 with TCV 1.33 0.9615 0.72 0.98
α = 0.01 with TCV NaN NaN NaN NaN

α = 0.1 without TCV 1.06 0.9 0.51 0.93
α = 0.05 without TCV 1.27 0.9516 0.67 0.97
α = 0.01 without TCV 1.68 0.9898 0.88 1

Table 12: Results with "Economy" dataset (k = 150)
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mean set size coveragemarginal coverage0 coverage1
α = 0.1 with TCV 1.08 0.9108 0.51 0.94
α = 0.05 with TCV 1.32 0.9601 0.65 0.98
α = 0.01 with TCV NaN NaN NaN NaN

α = 0.1 without TCV 1.06 0.9001 0.49 0.93
α = 0.05 without TCV 1.25 0.949 0.6 0.97
α = 0.01 without TCV 1.63 0.9895 0.87 1

Table 13: Results with "Quality" dataset (k = 150)

• The average set size indicates the average number of words that would be flagged as uncertain
by the CP-algorithm. For a mean set size of 1.28, 28% of the words would be predicted as
uncertain.

• We obtain slightly more adaptive prediction sets (smaller mean set size) when using "Quality"
dataset but it is maybe not worth a 10x computation cost in practice.

• As it was expected, smaller significance levels yield higher prediction set sizes.

• The lower bound of the coverage is respected for the experiments with TCV.

• The lower and higher bounds for the marginal coverage are not always respected for the
experiments without TCV although they are very close (O( 1

ncalib
)) which seems alright since

the theoretical lower and upper bounds stand when testing on an infinite dataset.

• It is not possible to implement the Training-Conditional Validity with α = 0.01 with a
calibration dataset of 9343 elements.

• The coverage for correct words (label 1) is higher than the one for incorrect words. It was
expected given the misrepresentation of incorrect words (20x less). This leads to trying
label-conditional ICP (See section 7.5).

7.5. Example of label-conditional ICP

We present here an example of label-conditional ICP. We used "Quality" dataset with k = 150 and
did the same experiments as in 4.2.3. We obtain the following results:

mean set size coveragemarginal coverage0 coverage1
α = 0.1 with TCV 1.68 0.91 0.94 0.91

α = 0.1 without TCV 1.55 0.9 0.9 0.9
α = 0.05 with TCV 1.9 0.96 0.99 0.96

α = 0.05 without TCV 1.82 0.97 0.97 0.97
α = 0.01 with TCV NaN NaN NaN NaN

α = 0.01 without TCV 1.9 0.99 0.99 0.99

Table 14: Results of label-conditional ICP with "Quality" (k = 150)

We show that it is possible to have an equally-valid conformal predictor but with the risk of
obtaining large predictions sets and consequently losing efficiency. This is due to the fact that
the dataset lacks 0-labeled elements (wrongly transcribed words). This shows the importance of
applying label-conditional ICP when it is critical to have the same guarantee on every label.
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7.6. Examples

The examples below were generated using "Economy" dataset (k = 150) and with TCV, we used two
different values for α to highlight the effect of the significance level on the prediction of uncertain
words. The wrongly transcribed words are highlighted in red in "Most probable sentence" and the
uncertain words are highlighted in orange in "Prediction of uncertain words".

Figure 10: α = 0.1 with TCV

Figure 11: α = 0.05 with TCV

8. Conclusion

This works presents a promising application of Conformal Prediction in the uncertainty quan-
tification of an Automatic Speech Recognition model and the results are quite encouraging. We
guaranteed a 2% WER with a confidence a level of 80% by predicting a CP set of 30 sentences
in average. We guaranteed a coverage of 90% for the prediction of uncertain words while being
uncertain on 10% of the words.

This work also shows that a less time and storage-consuming way of extracting sentences ("Econ-
omy" dataset) happens to be more efficient than the "greedy" way ("Quality" dataset) for uncertain
words prediction. However, for the prediction of a set of sentences, "Quality" dataset gives the most
efficient conformal predictor (10 fewer sentences in average in the conformal prediction sets).

Given that only four hours of audio data were used to train, calibrate and test the conformal
predictors, we can hope to achieve better results if we used more data. Indeed, we expect that more
data would enable us to implement label-conditional and feature-conditional conformal prediction
or to ask for a very small significance level.

The next step will naturally consist on testing these algorithms on the Air Traffic Control Data.
For further development, we intend to investigate other metrics than the Word Error Rate,

other scoring functions and other ways of computing p-values that could yield more informative
prediction sets. We could use Deep Learning methods to improve the predictors.
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The computational and storage cost of such models could also be investigated from the angle
of Embedded AI.

References

huggingface. https://huggingface.co/patrickvonplaten/wav2vec2-base-100h-with-lm.

librispeech. https://www.openslr.org/12/.

xgboost. https://xgboost.readthedocs.io/en/stable/.

Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A framework
for self-supervised learning of speech representations. CoRR, abs/2006.11477, 2020. URL https:
//arxiv.org/abs/2006.11477.

Estelle Delpech, Marion Laignelet, Christophe Pimm, Céline Raynal, Michal Trzos, Alexandre
Arnold, and Dominique Pronto. A Real-life, French-accented Corpus of Air Traffic Control
Communications. In Language Resources and Evaluation Conference (LREC), Miyazaki, Japan,
May 2018. URL https://hal.science/hal-01725882.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2019.

Neil Dey, Jing Ding, Jack Ferrell, Carolina Kapper, Maxwell Lovig, Emiliano Planchon, and
Jonathan P Williams. Conformal prediction for text infilling and part-of-speech prediction,
2021.

Alex Graves, Santiago Fernandez, Faustino Gomez, and Jurgen Schmidhuber. Connectionist Tem-
poral Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks.
URL https://www.cs.toronto.edu/~graves/icml_2006.pdf.

Kenneth Heafield. KenLM Language Model Toolkit. URL https://kheafield.com/code/kenlm/.

Jacek Jarmulak. https://www.voicegain.ai/post/speech-to-text-accuracy-benchmark-june-2022.
URL https://www.voicegain.ai/post/speech-to-text-accuracy-benchmark-june-2022.

Lysimachos Maltoudoglou, Andreas Paisios, and Harris Papadopoulos. Bert-based conformal pre-
dictor for sentiment analysis. In Alexander Gammerman, Vladimir Vovk, Zhiyuan Luo, Evgueni
Smirnov, and Giovanni Cherubin, editors, Proceedings of the Ninth Symposium on Conformal
and Probabilistic Prediction and Applications, volume 128 of Proceedings of Machine Learning
Research, pages 269–284. PMLR, 09–11 Sep 2020. URL https://proceedings.mlr.press/
v128/maltoudoglou20a.html.

Anastasios N. Angelopoulos and Stephan Bates. A Gentle Introduction to Conformal Prediction
and Distribution-Free Uncertainty Quantification. URL https://people.eecs.berkeley.edu/
~angelopoulos/publications/downloads/gentle_intro_conformal_dfuq.pdf.

Anastasios N. Angelopoulos, Stephan Bates, Adam Fisch, Lihua Lei, and Tal Schuster. Conformal
Risk Control. URL https://arxiv.org/pdf/2208.02814.pdf.

Vineeth N. Balasubramanian, Shen-Shyang Ho, and Vladimir Vovk. Conformal Prediction for
Reliable Machine Learning - Theory, Adaptations and Applications.

19

https://huggingface.co/patrickvonplaten/wav2vec2-base-100h-with-lm
https://www.openslr.org/12/
https://xgboost.readthedocs.io/en/stable/
https://arxiv.org/abs/2006.11477
https://arxiv.org/abs/2006.11477
https://hal.science/hal-01725882
https://www.cs.toronto.edu/~graves/icml_2006.pdf
https://kheafield.com/code/kenlm/
https://www.voicegain.ai/post/speech-to-text-accuracy-benchmark-june-2022
https://proceedings.mlr.press/v128/maltoudoglou20a.html
https://proceedings.mlr.press/v128/maltoudoglou20a.html
https://people.eecs.berkeley.edu/~angelopoulos/publications/downloads/gentle_intro_conformal_dfuq.pdf
https://people.eecs.berkeley.edu/~angelopoulos/publications/downloads/gentle_intro_conformal_dfuq.pdf
https://arxiv.org/pdf/2208.02814.pdf


Ernez Arnold Galametz Kobus Ould-Amer

Andreas Paisios, Ladislav Lenc, Jiří Martínek, Pavel Král, and Harris Papadopoulos. A deep neural
network conformal predictor for multi-label text classification. In Alex Gammerman, Vladimir
Vovk, Zhiyuan Luo, and Evgueni Smirnov, editors, Proceedings of the Eighth Symposium on
Conformal and Probabilistic Prediction and Applications, volume 105 of Proceedings of Machine
Learning Research, pages 228–245. PMLR, 09–11 Sep 2019. URL https://proceedings.mlr.
press/v105/paisios19a.html.

Thomas Pellegrini, Jérôme Farinas, Estelle Delpech, and François Lancelot. The airbus air traffic
control speech recognition 2018 challenge: towards ATC automatic transcription and call sign
detection. CoRR, abs/1810.12614, 2018. URL http://arxiv.org/abs/1810.12614.

Vladimir Vovk. Conditional validity of inductive conformal predictors. URL http://proceedings.
mlr.press/v25/vovk12/vovk12.pdf.

Voldya Vovk, Alex Gammerman, and Craig Saunders. Machine-Learning Applications of Algorith-
mic Randomness. URL https://eprints.soton.ac.uk/258960/1/Random_ICML99.pdf.

Binbin Xu, Tao Chongyang, Youssef Raqui, and Sylvie Ranwez. A Benchmarking on Cloud based
Speech-To-Text Services for French Speech and Background Noise Effect. URL https://hal.
science/hal-03874256/document.

20

https://proceedings.mlr.press/v105/paisios19a.html
https://proceedings.mlr.press/v105/paisios19a.html
http://arxiv.org/abs/1810.12614
http://proceedings.mlr.press/v25/vovk12/vovk12.pdf
http://proceedings.mlr.press/v25/vovk12/vovk12.pdf
https://eprints.soton.ac.uk/258960/1/Random_ICML99.pdf
https://hal.science/hal-03874256/document
https://hal.science/hal-03874256/document

	Introduction
	Related Work
	Conformal Prediction
	Introduction
	Basic Setting and Assumptions
	Inductive Conformal Prediction for classification
	Conformal Risk Control
	Effect of the calibration set (Training Conditional Validity) 
	Label-conditional and feature-conditional Inductive Conformal Prediction
	Evaluating Conformal Prediction

	Automatic Speech Recognition (ASR) and wav2vec 2.0
	Wav2vec 2.0 pretraining mechanism
	Model fine-tuning
	Beam Search decoding
	Word Error Rate

	Data
	Applying the Conformal Risk Control algorithm to predict a set of sentences
	Algorithm
	Implementation
	Results
	Examples
	Example of feature-conditional ICP

	Applying the Conformal Prediction algorithm to predict uncertain words in a sentence
	Dataset construction
	Algorithm
	Implementation
	Results
	Example of label-conditional ICP
	Examples

	Conclusion

