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Abstract

In many situations, probabilistic predictors have replaced conformal classifiers. The main
reason is arguably that the set predictions of conformal classifiers, with the accompanying
significance level, are hard to interpret. In this paper, we demonstrate how conformal
classification can be used as a basis for a classifier with reject option. Specifically, we
introduce and evaluate two algorithms that are able to perfectly estimate accuracy or
precision for a set of test instances, in a classifier with reject scenario. In the empirical
investigation, the suggested algorithms are shown to clearly outperform both calibrated
and uncalibrated probabilistic predictors.

Keywords: Conformal prediction, Classification, Classification with reject option, Preci-
sion

1. Introduction.

Binary classification, where a model approximates the function f(X,y) — {0, 1}, often
provides a natural representation of the problem at hand when using machine learning
models for decision-making. Some examples from different domains are loan applications
(approve/reject), return prediction (return or not) and spam filters (spam or not). Decision-
making can be fully automated, or involve a human, acting with the aid of the model
predictions, possibly augmented with explanations and/or estimates of how credible the
prediction is. For most model types, the actual class prediction is based on internal prob-
ability estimates from the model. In binary classification, a threshold on the probability
estimate will determine the predicted class, with the typical value being 0.5. In the standard
classification setup, all instances are predicted by the model, including those around this
threshold, for which the model is very uncertain.

An alternative is to use classification with reject option, where the classifier can refrain
from making predictions for certain instances. This option of not predicting all instances
can be exploited in several different ways. For human-in-the-loop situations, it is possible
to split the workload between human and machine decision-making, so that easy and clear-
cut instances are predicted by the classifier, and more difficult cases are referred to the
human. When acting upon an erroneous prediction that has an associated cost or risk,
having the classifier refrain from making uncertain predictions can actually be beneficial,
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see e.g. Hanczar and Sebag (2014). For classification with reject option, there is a clear
trade-off between accuracy and rejection rate (Hansen et al., 1997). For some applications,
there is also a difference in which type of error is most costly, and consequently a trade-off
between precision and recall.

Conformal classification, with its predicted label sets and guaranteed validity for a
confidence level provided by the user, may initially appear as a very strong option for
the classifier with reject scenario. Intuitively, the conformal classifier would predict the
instances with singleton label sets, while rejecting to make predictions when the label sets
are empty or contain several labels. However, if used in this way, it must be noted that
the accuracy of the singleton predictions would not meet the provided confidence level. In
fact, the error rate of the singleton predictions would most likely be significantly higher
than indicated by the confidence level supplied by the user. Even more importantly, the
empirical accuracy of the singleton predictions could not be estimated in a straightforward
way. Furthermore, it is not trivial to set up a conformal set predictor guaranteeing precision,
rather than accuracy.

With this in mind, the most obvious choice for classification with reject option would be
to use probabilistic predictors. In this paper, however, we introduce an alternative approach
that is in fact based on conformal classifiers, but using confidence-credibility scores rather
than set predictions. The suggested procedure requires access to a set of test instances, i.e.,
it can not be used in a streaming scenario, but the result is a classifier with reject option
inheriting the validity guarantees from conformal classification.

In the empirical investigation, we will demonstrate the suggested approach, showing
that the accuracy estimates of the conformal classifier will be well-calibrated for all reject
levels. We will also extend the approach to well-calibrated precision estimates, by using a
Mondrian conformal classifier.

2. Background.

2.1. Probabilistic prediction and calibration

Probabilistic predictors output a probability distribution over the possible labels. The prob-
abilistic predictor is well-calibrated if the probability of a certain label, given a probability
estimate for that label, is equal to the probability estimate, i.e.,

p(cj | p9) =p9. (1)

where p% is the probability estimate for class j. If tested empirically, the (average) proba-
bility estimate for the predicted label should correspond to the empirical accuracy. If we,
as an example, make a (large) number of predictions, with the (mean) probability estimate
0.95, we would expect the empirical accuracy of these predictions to be 0.95.

While almost all classifiers return such probability estimates, these may not be well-
calibrated. Instead, techniques like decision trees (Provost and Domingos, 2003) and naive
Bayes (Niculescu-Mizil and Caruana, 2005) often produce classifiers that are very poorly
calibrated. More recent studies show that this also applies to both modern (i.e., deep) neural
networks (Guo et al., 2017) and traditional neural networks (Johansson and Gabrielsson,
2019), although to a lesser degree. There are, however, many so-called external calibration
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methods that transform classifier scores into calibrated probability estimates. One example
is Platt scaling (Platt, 1999), where a sigmoid function is fitted to the probability estimates
from the model, using a separate calibration set. The function is

1
N ciy
p(CJ’pj)_l_i_eAs—l—B’ (2)

where p(c; | p“) is the calibrated probability estimate that the instance belongs to class
¢;, given the probability estimate p“ from the model. A and B are found by minimizing a
specific loss function, using a gradient descent search, for details see (Platt, 1999).

2.2. Conformal classification

In conformal classification, a test instance is tentatively labeled (xg41,%), and then a p-
value statistic is calculated to attempt to reject the hypothesis that 4 is the true label yg11
at a significance level e. This procedure is repeated for all possible labels, resulting in the
label set § C Y containing all labels that were not rejected. This label set is, under mild
conditions, guaranteed to contain the true target yiy1 with a probability of 1 — e.

When deciding which labels can be rejected, a so-called nonconformity function A :
X XY — R is used. The purpose of the nonconformity function is to measure the relative
strangeness of the instance (x,7), i.e., the tentative label together with the input feature
values, compared to a set of instances with known target values. If the p-value for that
combination is lower than the threshold ¢, the label can be rejected.

In practice, the nonconformity function is normally based on the prediction of a machine
learning model, called the underlying model. In this study, we will employ a frequently used
option, the hinge loss function,

Afh(z:), gl =1— DB, (i | i), (3)

where Py, (§ | ) is the probability estimate provided by the machine learning model h for
the instance x; and the label 7.

In more details, an inductive conformal classifier (ICP) (Papadopoulos et al., 2002;
Vovk et al., 2005; Papadopoulos, 2008), is constructed in the following way:

1. Divide the available labeled training data Z into two disjoint subsets: a proper training
set Z' and a calibration set Z¢, where |Z¢| = q.

2. Train the underlying machine learning model A using the proper training set Z°.

3. Apply the nonconformity function, here, Eq. 3, to all calibration examples in Z¢ to
produce a list of calibration scores o, ..., ay.

To find the predicted label set of a test instance xy,1:
1. Obtain the (probability) prediction h(xy1) from the underlying model.

2. Tentatively assign the label § € Y for x4 1, and measure the resulting nonconformity
of (Z+1,7)
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3. Find the resulting p-value as

Lo 2ozl | o1
qg+1

ziEZC:ai:aiHH—{—l
qg+1

+ 041

SN CY

piﬂ =
where 01 ~ U|0, 1].
4. Repeat steps 2-3 for each possible label § € Y.
5. Compare the p-values to the significance level €, rejecting all labels § where pz 41 <e
6. Include all labels that are not rejected in the final predicted label set I'y ;.

Using this procedure, the probability for the resulting label set to include the true label
is exactly 1 — ¢, as long as the calibration set and the test set are exchangeable.

By conditioning the confidence predictions on some characteristic of a test instance, a
so-called Mondrian conformal classifier (Vovk et al., 2005), can provide confidence measures
with similar guarantees, but in a category-wise manner. The most common example is a
class-conditional (Mondrian) conformal classifier, where the validity applies for each of the
classes separately. The Mondrian framework, however, can use any taxonomy for dividing
the instances into categories, and then the validity guarantees will apply to each category
Kj.

To create a Mondrian conformal classifier, (4) simply needs to be redefined as:

G ‘{zieZ“i:aiZai+l}’+l HzieZ’fﬂ':ai:aZHH+1
= 0 5
pk+1 r+1 + Ok+1 r+1 ) ( )

where Z% C Z%, given by some condition(s), and r is the number of calibration instances
in the category k.

While the theory behind conformal classification is solid, and the guarantees strong, it
is still rather awkward to utilize conformal classifiers for decision making. Specifically, a
decision-maker would most likely be tempted to focus on singleton predictions, i.e., label
sets containing only one label. The problem is, however, that when looking at the singleton
predictions, it is not straightforward to estimate the probability that these are in fact
correct. In particular, the probability of an error is almost guaranteed to be (significantly)
higher than e. The explanation is, of course, that the guarantees only hold a priori; once a
predicted label set has been observed, the likelihood of an error is highly dependent on the
size of the set. Specifically, if the label set contains all labels, it cannot be an error; and if it is
empty, it must be an error. Looking at two-class problems, and the quite frequent situation
where there are no (or very few) empty predictions, all (or almost all) errors most come
from the singleton predictions. With this in mind, many researchers and practitioners have
moved away from conformal classification, instead using probabilistic predictors, including
Venn predictors. There is, however, a less frequently used option for conformal classifiers,
called confidence-credibility predictions. These are also based on the p-values, and for each
test instance x; we can calculate the following three values:

e The predicted class label §;, i.e., the label with the highest p?.
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e The confidence, calculated as one minus the second largest p-value.

e The credibility, which is equal to the largest p-value.

The connection between confidence-credibility measures, and the set predictions, is that
the confidence represents the highest significance level where we get a singleton prediction,
while the credibility is equal to the significance level where all labels are rejected.

In this paper, we will utilize the confidence measure, and a set of test instances, to
produce classifiers with reject option having statistical guarantees. While the suggested
approach is heavily inspired by Linusson et al. (2018), it is now generalized to obtain
precision, instead of just accuracy.

To appreciate the approach, it is vital to understand exactly what a confidence score \;
for the test instance x; represents. Instead of providing a probability estimate for just the
instance x;, the correct interpretation is actually that if we look at all m predictions with
a confidence of at least \; these will contain (on average) n(1 — \;) errors, where n is the
total number of predictions made, i.e., the size of the test set. So, in a classifier with reject
scenario, if we reject all instances with a confidence score lower than \;, the expected error
rate of the predicted instances is:

n-(1—X)
SR (©)

If the conformal classifier is a standard ICP, the guarantees will be for overall error rate,
i.e., accuracy, but if a Mondrian setup is used, the guarantees will apply to each category
individually. In this paper, we will use a Mondrian taxonomy where the categories are
determined from the label predicted by the underlying model. Consequently, if we look at
the category where the model predicted the positive class (label 1), the guarantees will in
fact be for precision.

2.3. Related Work

Related work in classification with reject option, not using the conformal prediction frame-
work, includes Li and Sethi (2006), where a design methodology for confidence-based clas-
sifiers was proposed, with SVMs as the underlying models. The objective is to control the
error rate of a classifier with reject option, but the approach does not yield any statisti-
cal guarantees. In Hanczar and Dougherty (2008), classification with reject option is set
up so that the user can specify a desired accuracy level, and the rejection region is found
from this. In Johansson et al. (2023), conformal classification is employed to automatically
suggest which accuracy levels that can be exactly met, with statistical guarantees, using
classification with reject option. In Fisch et al. (2022), conformal classification is adapted
to achieve guarantees on the false positive rate in the prediction sets produced.

3. Method.

As described in the introduction, the purpose of the study is to investigate how conformal
classifiers can be used as the basis for classifiers with reject option, capable of estimating
the accuracy or precision level, with statistical guarantees.
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The classifiers used were standard decision trees and random forests (Breiman, 2001),
as implemented in scikit learn. Parameters were left at default values, except the decision
tree min_leaf parameter, which was set to 7.

In the first experiment, the targeted metric is accuracy, i.e., all models should estimate
their accuracy, given a certain reject level. In the second experiment, the goal is instead
to estimate the precision. In both experiments, and for both model types, three different
setups were used:

e Uncal - Uncalibrated models. Here, the probabilitiy estimates produced by the de-
cision tree or random forest model are used as the basis for rejecting instances in the
subsequent classification. More specifically, the accuracy or precision estimate for a
certain subset of the instances is the mean probability estimate for the predicted label
of these instances. In Experiment 1, all instances are considered, but in Experiment
2, only the instances predicted as the positive class are considered.

e Platt - Platt scaling. Models are calibrated using Platt scaling, with the Calibrat-
edClassifierC'V method in scikit-learn, and the resulting probabilities are used in the
classification with reject option, in an identical way as for the uncalibrated models.

e Conf - Conformal classification. A conformal classification model is trained and cali-
brated, as described above. Confidence scores are calculated for the test instances and
used as a basis for the classification with reject option. Here, the accuracy or precision
estimate is found using (6). In Experiment 1, a standard conformal classifiers is used,
but in Experiment 2, a Mondrian version where the categories are determined by the
predicted label of the underlying model is employed. As a consequence, only instances
belonging to the positive class are included in the calibration set in Experiment 2.

The evaluation of the classification with reject scenarios was performed using reject
proportions of 10%, 20%, etc, up to a 90% rejection rate on test set instances, sorted on
either the uncalibrated scores from the underlying model (Uncal), calibrated probabilities
(Platt) or confidence scores (Conf).

The testing protocol employed was repeated hold-out with 100 repetitions, for each
data set, of a 75/25 split into training and test sets, respectively. For the setups using
a calibration set, i.e., Platt and Conf, a further partition of the training set, into 67%
training instances and 33% calibration instances, was used. In the second experiment, the
calibration instances belonging to the negative class was, for the conformal approach, just
ignored. Uncal was, of course, trained on the entire training set.

The 10 publicly available benchmarking data sets used (see Table 1), are all two-class
problems, from either the UCI repository (Bache and Lichman, 2013) or the PROMISE
Software Engineering Repository (Sayyad Shirabad and Menzies, 2005). We can see that
most data sets are rather small, and that some of them are fairly unbalanced. In pc4, and
to a lesser degree kcl, kc2, transfusion, diabetes, and wbc, the positive class is in a clear
minority.
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Table 1: Data set descriptions - showing number of instances, number of input attributes
and the proportion of instances that belongs to the positive class.

Data set #inst  #attrib  prop. pos. Source
creditA 690 16 0.44 UCI
diabetes 768 9 0.35 UCI
german 1000 21 0.70 UcCI
kel 2109 22 0.26 Promise
kc2 522 22 0.27 Promise
kr-vs-kp 3196 36 0.52 UCI
pcd 1458 38 0.13 Promise
transfusion 748 5 0.26 UCI
ttt 958 10 0.65 UcCI
wbc 699 10 0.35 UCI

4. Results.

To establish a baseline for classification with reject option, we first present the predictive
performance, measured using accuracy and AUC in Table 2 below. Regarding accuracy, the
expectation is that uncalibrated models would outperform calibrated models, based on the
advantage of having more training data available for model building. This holds for Uncal
vs. Conf, but models calibrated with Platt scaling actually obtains the the highest accuracy,
for both decision trees and random forest. However, differences are small on average and
also vary between data sets, despite the large number of repetitions. For AUC, the results
are more in line with expectations, i.e., uncalibrated models obtain the best performance,
on average, followed by conformal and Platt calibrated models, respectively.

Table 2: Experiment 1: Predictive performance

DT RF
Acc AUC Acc AUC
Data sets  Uncal Platt Conf|Uncal Platt Conf|Uncal Platt Conf|Uncal Platt Conf
creditA .844 .839 .840| .843 .837 .838| .875 .869 .869| .872 .866 .866
diabetes 725 721 .720| .698 .665 .689 | .764 .759 .759| .725 .715 .719
german .636 .700 .627| .521 .500 .523| .664 .699 .662| .531 .501 .529

kel 681 .734 .682| .580 .509 .574| .751 .748 .743| .612 .567 .597
ke2 744 765 .750| .678 .631 .675| .782 .787 .779| .696 .680 .694
kr-vs-kp 977 974 974 | .977 .974 .974| .989 .985 .985| .989 .985 .984
pcd 873 .875 .870| .714 .632 .700| .900 .897 .896| .663 .699 .645
transfusion .728 .737 .730| .615 .536 .609| .720 .738 .722| .605 .541 .607
ttt 915 .899 .898| .899 .880 .880| .983 .965 .952| .976 .961 .935
wbc 948 944 944 | .945 .938 .939| .970 .967 .968| .968 .964 .966
Mean .807 .819 .803|.747 .710 .740| .840 .841 .833|.764 .748 .754
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Turning to the results for the conformal classifier, Table 3 shows the empirical error
rates (Err.) and average number of labels in the prediction set (AvgC) for significance
levels € = 0.01,0.05, and 0.1. Starting with the error rates, we as expected see that they
match the e values, almost perfectly. The results for classification efficiency follow clear and
obvious patterns, with fewer labels in the prediction set as € increases. In addition, harder
data sets also lead to larger label sets, while the stronger random forest models have smaller

prediction sets on average.

Table 3: Experiment 1: Conformal classification

e =0.01 €=0.05 e=0.1
DT RF DT RF DT RF
Data sets Err. AvgC|Err. AvgC|Err. AvgC|Err. AvgC|Err. AvgC| Err. AvgC
creditA .010 1.884|.011 1.764|.050 1.455|.051 1.277|.100 1.160|.100 1.071
diabetes  .010 1.942|.009 1.800(.049 1.711|.049 1.548|.097 1.478|.099 1.357
german .010 1.956 |.011 1.909 |.050 1.789|.051 1.728|.103 1.623|.102 1.562
kel .010 1.956 |.012 1.907|.050 1.783|.052 1.666 |.100 1.569 |.104 1.436
ke2 .011 1.925].008 1.759|.051 1.640|.052 1.452{.103 1.380|.100 1.285
kr-vs-kp ~ .010 1.049|.011 1.014|.052 .959 |.050 .955 |.101 .902 |.101 .901
pcd .010 1.831|.010 1.332].052 1.253|.050 1.139|.104 1.061|.097 1.015
transfusion .010 1.936 |.009 1.901 |.048 1.691|.053 1.661|.097 1.484|.103 1.461
ttt .009 1.563|.010 1.170|.051 1.144|.053 .995 |.101 1.010|.104 .917
wbc .011 1.529|.012 1.149|.047 1.027|.053 .969 |.099 .935 |.105 .906
Mean .010 1.757(.010 1.570|.050 1.445|.051 1.339|.100 1.260|.102 1.191

As an introduction to the results for the classification with reject option, Fig. 1-3 show
the decision tree and random forest models for classification with reject option, for three
different data sets. Each dot represents a rejection level, from 10% up to 90%, with z-axis
as the estimated accuracy and the y-axis as the actual accuracy obtained.
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Figure 1: German data set: accuracy estimation

In Figures la — 1b, showing the german data set, uncalibrated models, both decision
trees and random forests, are seen to be overconfident, i.e. over-estimate their accuracy, for
all rejection levels. The conformal models exhibit near perfect estimation of actual accuracy,
and the Platt scaling models produce reasonable good estimates. Actual accuracies, for the
lower rejection levels, are in line with the overall accuracies, presented in Table 2 above, with
Platt scaling models obtained the highest accuracies, followed by uncalibrated models and
conformal models. However, this advantage in predictive performance is diminished as the
rejection level increases, and for 90% rejection rate (represented by the topmost dots in each
color, conformal and uncalibrated models obtain higher accuracy on the predictions that
they do make. For the Transfusion data set, shown in Figures 2a — 2b, the picture is quite
similar, i.e. perfectly estimated performance from the conformal models at all rejection
levels, with good estimates from the Platt scaling models and consistent over-estimation
of predictive performance from uncalibrated models. However, for the higher rejection
levels, actual accuracy for Platt scaling models is seen to level off and this is not caught
by the accuracy estimates, making the models over-estimate their predictive performance.
For the quite easy kr-vs-kp data set, in Figures 3a — 3b, models exhibit a highly differing
behaviour when performing classification with reject option. Looking first at decision tree
models, uncalibrated models have identical values for both estimated and actual accuracies,
at all rejection levels, and again over-estimate actual accuracy. Inspection of the estimated
accuracy, reveals that, in fact, all instances have a score of 1, which entails that no instances
are excluded on any level, and thus that the model will behave identically at all levels.
Platt scaling models obtain the highest accuracy, but for this data set, consistently under-
estimates its performance. Conformal classifiers provide correct estimations of accuracy on
all rejection levels. For random forest models, both Platt scaling and conformal classification
have high and largely correctly estimated accuracies at all levels, while uncalibrated random
forests under-estimates its similarly high accuracy at all lower rejection levels.
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Figure 2: Transfusion data set: accuracy estimation
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Figure 3: kr-vs-kp data set: accuracy estimation

Aggregated accuracy results for the classification with reject option are shown in Ta-
bles 4 — 6, for rejection proportions of 50%, 70% and 90%, respectively. For all three
rejection levels, uncalibrated models, both decision trees and random forests, consistently
and substantially over-estimate accuracy. Conformal models are seen to provide better
accuracy estimates than Platt scaling models, for all three levels shown in these tables.
Compared to the full accuracy results, in Table 2 above, accuracies for classification with
reject are slightly more varied between models and setups. For decision trees, Platt scaling
has slightly better performance than uncalibrated trees and the conformal approach, but

10
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differences are generally small. For random forest models, uncalibrated models have the
highest average accuracy for all three rejection levels.

Table 4: Experiment 1: Accuracy estimation. Top 50%

DT RF
Uncal Platt Conf Uncal Platt Conf
Data sets  Est. Acc.|Est. Acc.|Est. Acc.| Est. Acc. |Est. Acc. |Est. Acc.
creditA 1.000 .914(.910 .914(.909 .909|.928 .954 |.948 .951 |.950 .950
diabetes  1.000 .828|.816 .833|.813 .818|.887 .885|.874 .881 |.878 .879
german 905 .693|.737 .716|.709 .703|.863 .753|.762 .762 |.753 .752
kel 2992 .770|.797 .783|.764 .763|.897 .835|.839 .826 |.832 .825
ke2 1.000 .854|.864 .863|.852 .847|.959 .928 |.903 .914|.922 .917
kr-vs-kp  1.000 .998|.992 .997|.997 .996 | .987 .999 |.998 .999 |.998 .998
pcd 1.000 .940(.944 .958|.941 .939|.991 1.000|.979 .997 |.995 .996
transfusion .966 .825.833 .841|.808 .815|.944 .821|.831 .833|.819 .815
ttt 1.000 .982(.963 .978(.976 .978|.908 1.000|.998 1.000|.994 .995
wbc 1.000 .981(.976 .982(.978 .978(1.000 1.000|.987 .995 |.992 .992
Mean .986 .879|.883 .887|.875 .875|.936 .918|.912 .916(.913 .912
Table 5: Experiment 1: Accuracy estimation. Top 30%
DT RF
Uncal Platt Conf Uncal Platt Conf
Data sets  Est. Acc.|Est. Acc.|Est. Acc.| Est. Acc.|Est. Acc. | Est. Acc.
creditA 1.000 .914(.922 .914|.913 .914|.954 .958 |.961 .955|.956 .955
diabetes  1.000 .828|.838 .857|.826 .831|.936 .932 |.905 .926 |.924 .927
german 977 .743|.752 .728|.750 .747|.914 .808 |.782 .803 |.810 .805
kel 1.000 .776|.809 .787|.768 .771|.940 .858 |.862 .844 |.856 .849
ke2 1.000 .854|.881 .873(.865 .859|.991 .970 |.923 .955(.953 .959
kr-vs-kp  1.000 .9981.994 .997|.997 .997|.996 1.000|.999 1.000|.998 .998
pcd 1.000 .940(.947 .958|.941 .939|.998 1.000|.983 .998 |.995 .995
transfusion 1.000 .853|.854 .854|.838 .845|.976 .854 |.850 .841 |.859 .849
ttt 1.000 .982(.970 .981(.979 .981|.939 1.000|.999 1.000{.994 .996
wbc 1.000 .981[.980 .984(.981 .979(1.000 1.000|.990 .996 |.992 .992
Mean .998 .887|.895 .893|.886 .886|.964 .938|.925 .932(.934 .933
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Table 6: Experiment 1: Accuracy estimation. Top 10%

DT RF
Uncal Platt Conf Uncal Platt Conf
Data sets  Est. Acc.|Est. Acc.|Est. Acc.| Est. Acc. | Est. Acc. |Est. Acc.
creditA 1.000 .9141.939 .912|.914 .915|.982 .964 |.974 .964 |.959 .955
diabetes 1.000 .828 |.861 .864|.828 .835|.982 .977|.933 .966 |.960 .968
german 1.000 .770|.781 .747|.773 .783|.967 .890 |.811 .839 |.887 .875

kel 1.000 .776|.825 .784|.769 .773| .983 .883|.886 .861 |.891 .876
ke2 1.000 .854|.907 .864|.866 .852[1.000 .988 |.944 .971|.958 .971
kr-vs-kp 1.000 .998(.995 .998].997 .997|.999 1.000{.999 1.000|.998 .998
pcd 1.000 .940(.954 .958|.942 .938|1.000 1.000{ .987 .997 |.995 .995
transfusion 1.000 .853|.880 .858|.846 .852|.996 .901 | .877 .845|.899 .906
ttt 1.000 .982(.978 .990|.981 .982|.974 1.000{1.000 1.000|.994 .997
wbc 1.000 .981(.987 .980|.982 .977|1.000 1.000{ .993 .996 |.992 .992

Mean 1.000 .890(.911 .895|.890 .890|.988 .960|.940 .944|.953 .953

Table 7 shows signed and absolute errors for the accuracy estimations made by the differ-
ent setups on each rejection level. Starting with decision trees, the uncalibrated models are
extremely overconfident, on all rejection levels. Platt scaling and the conformal approach,
on the other hand, show no systematic error, with average signed errors very close to zero.
A direct comparison of absolute errors shows that the conformal estimations are more ac-
curate, on each rejection level. Turning to the random forests, the uncalibrated models are
slightly overconfident, on average. They also have fairly large absolute errors. For Platt
scaling and conformal, the results here are quite similar to the decision tree results. In fact,
the estimations are generally very good, for both approaches. Again, conformal absolute
errors are smaller than Platt absolute errors, on every rejection level.

Table 7: Experiment 1: Accuracy estimation. The table shows signed errors and absolute
errors, averaged over all data sets for the different rejection levels.

DT RF
Uncal Platt Conf Uncal Platt Conf
Rejected Sig. Abs.| Sig. Abs.| Sig. Abs.| Sig. Abs.| Sig. Abs.| Sig. Abs.
10% .093 .093|.002 .006 |-.001 .003|-.003 .053| .002 .008|.001 .002
20% .098 .098 |-.002 .007|.000 .002]|.003 .053|.002 .007|.001 .002
30% .104 .104 |-.003 .010|.000 .002{.010 .053| .000 .007|.001 .001
40% .106 .106 |-.003 .010|.000 .003]|.015 .051|-.003 .005|.001 .002
50% .108 .108 |-.003 .011|.000 .003|.019 .047|-.004 .006|.002 .002
60% 111 .111}-.002 .011|.000 .004|.024 .044 |-.005 .009|.002 .003
70% 111 .111].001 .011|.000 .003|.026 .041|-.006 .013|.001 .004
80% 110 .110(.007 .014 |-.002 .004|.029 .038|-.006 .016|.002 .005
90% 110 .110(.015 .019|-.001 .005|.028 .033|-.004 .017|.000 .006
Mean .106 .106|.001 .011|.000 .003|.017 .046(-.003 .010(.001 .003
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All-in-all, Experiment 1 has demonstrated a clear advantage of using the conformal ap-
proach in a classifier with reject scenario targeting accuracy, compared to both uncalibrated
and calibrated probabilistic predictors.

Turning to the results from Experiment 2, Table 8 shows the precision and recall of
decision tree and random forest models, for the three setups used. Here, it can be seen
that uncalibrated models again perform well, but also that Platt models are stronger on
precision and conformal models stronger on recall.

Table 8: Experiment 2: Precision and recall

DT RF
Precision Recall Precision Recall
Data sets Uncal Platt Conf|Uncal Platt Conf|Uncal Platt Conf|Uncal Platt Conf
creditA 816 .820 .821| .832 .804 .803| .879 .867 .869| .846 .842 .840
diabetes 598 625 .592| .599 .467 .567| .694 .694 .689| .602 .575 .587
german 709 .700 .714| .804 .998 .764| .720 .706 .721| .858 .988 .857

kel 405 493 403 | 372 .034 .325| .554 .599 .530| .322 .166 .297
ke2 515 991 536 .539 .381 .516| .616 .636 .604| .520 .440 .500
kr-vs-kp 976 977 978 | 981 973 .971| 987 .983 .980| .994 .989 .991
pcd 522 557 514 .509 312 .474| .751 .665 .736| .338 .422 .310
transfusion .446 .493 .469| .405 .149 .356| .456 .503 .450| .358 .119 .345
ttt 919 908 912 .952 .940 .931| 978 .972 .944] .999 .982 .993
wbc 918 915 912 932 914 .916| .956 .955 .955| .965 .955 .960
Mean .682 .708 .685|.692 .597 .662|.759 .758 .748|.680 .648 .668

Table 9 below shows the results for the Mondrian conformal classifier used in Experiment
2. Due to space limitations, we only show results for ¢ = 0.05. First of all, it is important
to remember that this Mondrian conformal classifier uses a taxonomy where the category
investigated is when the underlying model has predicted the label 1. So, the error rates that
are found to match the significance level, are measured only on the test instances predicted
as label 1, but regardless of whether the true target values are 0 or 1. Errors of course still
mean that the correct label is not included in the prediction set, so it becomes interesting to
look at the results for when the true target is 0 and 1 separately, which is presented in the
columns err0 and errl. What we see is the expected behavior; for most data sets all errors
actually come from instances where the underlying model is incorrect, i.e., the true target
is 0. Only for the easiest data sets, i.e., kr-vs-kp, ttt, and wbc, some errors are made when
the true target is 1. For these instances, the prediction set is actually empty, meaning that
the conformal classifier needs empty predictions, i.e., errors, to meet the significance level.
Comparing avgC, precision and recall, we see that the stronger underlying RF models lead
to smaller prediction sets, as well as higher precision and recall.
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Table 9: Experiment 2: Mondrian conformal classifier

DT RF
Data sets error errQ) errl avgC prec. rec. |error errQ) errl avgC prec. rec.
creditA .059 .328 .000 1.520 .821 .803|.045 .343 .000 1.317 .869 .840
diabetes .051 .126 .000 1.826 .592 .567|.046 .147 .000 1.763 .689 .587
german .063 .184 .000 1.768 .714 .764|.048 .171 .000 1.722 .721 .857
kel .047 .079 .000 1.891 .403 .325|.047 .101 .000 1.857 .530 .297
kc2 .045 .098 .000 1.851 .536 .516|.056 .140 .000 1.766 .604 .500
kr-vs-kp 050 .997 .030 .958 .992 .943|.051 .999 .031 .955 .994 .960
pcd .065 .114 .000 1.842 .514 .474|.057 .216 .000 1.696 .736 .310
transfusion .049 .092 .000 1.899 .469 .356|.058 .106 .000 1.885 .450 .345
ttt .052 586 .001 1.137 .912 .930|.050 .767 .008 1.001 .952 .985
wbce .048 519 .003 1.225 913 .913|.044 .835 .006 1.077 .956 .954
Mean .051 .312 .003 1.592 .687 .659|.050 .382 .005 1.504 .750 .663

Figures 4 — 7, show plots of estimated precision against empirical precision, for all re-
jection levels, for four different data sets. For the Diabetes data set, in Figures 4a — 4b,
uncalibrated decision trees have the same problems with precision estimation as previously
seen with accuracy, i.e. the model substantially over-estimates its precision, for every rejec-
tion level. Platt models are slightly over-confident, and also achieve lower precision at high
rejection levels. The Mondrian conformal approach is seen to work very well, with almost
perfect estimation and the best precision scores for the top rejection levels. For random for-
est models, all three setups perform similarly for the lower rejection levels, giving reasonably
good precision estimates, but this does not hold on top rejection levels, where models are
either under-confident (Mondrian conformal) or over-confident (Platt and uncalibrated).
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For the CreditA data set, Figures 5a — 5b, uncalibrated decision tree models are unable
to differentiate between rejection levels, as seen by several identical estimated and empir-
ical precision scores. Mondrian conformal and Platt scaling perform similarly, but with
a pronounced tendency for Platt models to over-estimate precision at the high rejection
levels. Uncalibrated random forest models for this data set substantially under-estimate
precision on the lower rejection level, whereas both Platt and Mondrian conformal models
give reasonably good estimates.
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Figure 5: CreditA data set: precision estimation

For the PC4 data set, Figures 6a — 6b, the Mondrian conformal approach again provides
much better precision estimates than Platt and uncalibrated models, for both decision trees
and random forests. Regarding precision performance, however, uncalibrated random forest
models outperform both Mondrian conformal and Platt calibration models.
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Figure 6: PC4 data set: precision estimation

For the KC2 data set, Figures 7a — 7b, arguably the most interesting result is the marked
drop in precision on the highest rejection levels, seen for both Platt calibrated decision trees,

and uncalibrated random forest models.
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Figure 7: KC2 data set: precision estimation

Aggregated precision results for the classification with reject option are shown in Ta-
bles 10 — 12, for rejection proportions of 50%, 70% and 90%, respectively. For all three re-
jection levels, Mondrian conformal models achieve very good average precision estimations,
compared to actual precision, and this also holds on individual data set level. Uncalibrated
decision trees is seen to really struggle on this task, sometimes giving precision estimates
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of 100%, while actual precision is under 60%. In fact, the average difference between es-
timated and actual precision, for uncalibrated decision trees, is over 20 percentage points,
for all three rejection levels. Random forest models do better, but estimates degrade as
rejection proportion goes up. Calibration using Platt scaling works worse for precision than
for accuracy, with larger differences between estimated and actual precision.

Table 10: Experiment 2: Precision estimation. Top 50%

DT RF
Uncal Platt Conf Uncal Platt Conf
Data sets  Est. Prec.| Est. Prec.|Est. Prec.| Est. Prec.|Est. Prec.| Est. Prec.
creditA 1.000 .894 |.909 .885|.895 .878|.921 .966 |.945 .957 |.944 .950
diabetes .964 .666 |.717 .667 |.674 .668 |.773 .776 |.790 .781|.751 .778
german 948 738 |.740 .717|.749 .746 |.878 .788 |.755 .763 |.773 .778

kel .866 .473|.559 .527 |.457 .480|.717 .635 |.643 .664 |.577 .606
kc2 931 .602 |.698 .629 [.633 .626 |.838 .769 |.786 .746 |.746 .717
kr-vs-kp  1.000 .998 |.992 .997 [.996 .996 |.989 .999 |.997 .999 |.997 .997
pcd 960 .591 |.723 .584 |.570 .565 |.710 .845 |.864 .786 |.823 .800
transfusion .784 .491 |[.650 .502 |.508 .514|.803 .474 |.625 .500 |.507 .503
ttt 1.000 .977(.964 .975|.971 .967 |.929 1.000|.998 1.000|.993 .994
wbc 1.000 .964 |.962 .955|.947 .950 |.991 .989 |.979 .982 |.973 .975
Mean .945 .739(.791 .744|.740 .739|.855 .824|.838 .818|.808 .810

Table 11: Experiment 2: Precision estimation. Top 30%

DT RF
Uncal Platt Conf Uncal Platt Conf
Data sets  Est. Prec.| Est. Prec.| Est. Prec.| Est. Prec.| Est. Prec.| Est. Prec.
creditA 1.000 .894 |.924 .884 |.898 .883 |.957 .968 |.961 .967 |.953 .958
diabetes  1.000 .699 |.739 .660 |[.696 .702 |.816 .803 |.831 .785|.791 .789
german 997 770 |.755 .731(.782 .771|.923 .833 |.773 .792|.814 .824

kel 942 511 |.576 .550|.504 .518|.763 .669 |.675 .667 |.634 .636
ke2 994 .664 |.738 .637|.650 .680 |.895 .777 |.830 .749 |.787 .742
kr-vs-kp  1.000 .998 |.993 .997 |.996 .996 |.995 .999 |.998 .999 |.997 .997
pcd 1.000 .637|.761 .617|.621 .612 |.762 .884 |.917 .819 |.837 .817
transfusion .843 .502 |.684 .493 |.522 .503|.857 .508 |.655 .498 |.512 .525
ttt 1.000 .9771.969 .979 |.976 .974 |.954 1.000|.999 1.000|.992 .994
wbe 1.000 .964 |.971 .956 |.953 .954 |.998 .997 |.984 .987 |.973 .975
Mean 978 .762(.811 .750|.760 .759|.892 .844 |.862 .826 (.829 .826
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Table 12: Experiment 2: Precision estimation. Top 10%

DT RF
Uncal Platt Conf Uncal Platt Conf
Data sets  Est. Prec.| Est. Prec.| Est. Prec.| Est. Prec.| Est. Prec.|Est. Prec.
creditA 1.000 .894 |.939 .896 |.894 .895|.983 .965|.976 .962|.953 .959
diabetes ~ 1.000 .699 |.777 .684 |.715 .714 | .873 .796 | .884 .804 |.790 .828
german 1.000 .770|.779 .737|.798 .758 | .970 .912 | .802 .840 |.872 .887

kel 1.000 .570 |.604 .696 |.545 .563 |.835 .684 |.724 .716|.651 .674
ke2 1.000 .691 |.804 .602|.674 .700|.952 .743 |.883 .799|.776 .767
kr-vs-kp ~ 1.000 .998 |.996 .997 |.996 .996 |1.000 1.000| .999 .999 |.997 .996
pcd 1.000 .637 |.808 .629 |.690 .650 | .825 .854 |.965 .825.827 .805
transfusion .927 .476|.764 .474|.509 .520|.929 .544 |.707 .500 |.567 .476
ttt 1.000 .977 (.979 977 |.977 .969 | .981 1.000/1.000 1.000{.992 .996
wbc 1.000 .964 |.986 .961 |.953 .955 |1.000 .998 | .990 .993 |.975 .970
Mean 993 .767|.844 .765|.775 .772|.935 .850|.893 .844|.840 .836

Table 13 summarizes Experiment 2 by showing signed and absolute errors for the pre-
cision estimations made by the different setups on each rejection level. Similar to the
accuracy estimations, uncalibrated decision trees produce very overconfident precision esti-
mations, on all rejection levels. For Platt scaling, however, the decision tree results are quite
different, compared to when targeting accuracy. Here, the estimations are systematically
overconfident, and often fairly large. The conformal approach, however, makes no system-
atic mistake, and both signed errors and absolute errors are close to zero. For random
forests, both uncalibrated models and Platt scaling are systematically overconfident. While
the absolute errors for Platt scaling are much smaller than for the uncalibrated models, only
the conformal approach show no systematic tendency. In addition, the conformal absolute
errors are close to zero, and smaller than the two competing approaches, on every rejection
level.

Interestingly enough, Experiment 2 has shown that using the conformal approach may
be even more beneficiary when the classifier with reject scenario targets precision, instead of
accuracy. In particular, basing the estimations on a conformal predictor, with the associated
guarantees, clearly outperformed the standard procedure of using probabilistic predictors.

Summarizing the experimentation, it is very interesting to see the advantage of using
the more informed confidence measure produced by a conformal classifier, compared to the
probability estimates of probabilistic predictors. The main difference is, of course, that the
confidence measure for every instance represents a property of a set of instances, while a
standard probability estimate is restricted to a single instance. The clear and substantial
benefit of this, in a classifier with reject option, is a key result of this study. Another
important novel contribution is the fact that by using a Mondrian approach, the classifier
with reject option could produce well-calibrated precision estimations.
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Table 13: Experiment 2: Precision estimation. The table shows signed errors and absolute
errors, averaged over all data sets, for the different rejection levels.

DT RF
Uncal Platt Conf Uncal Platt Conf
Rejected Sig. Abs.| Sig. Abs.| Sig. Abs.| Sig. Abs.| Sig. Abs.| Sig. Abs.
10% 162 .162(.033 .035 [-.005 .007|.009 .087|.017 .024|-.013 .015
20% 175 .1751.033 .036|.001 .006|.015 .088]|.021 .027|-.007 .013
30% 185 .1851(.037 .040|.001 .006|.019 .086|.020 .027|-.006 .013
40% 195 .1951.041 .045(.002 .007|.025 .084|.019 .027| .000 .012
50% .206 .206 |.047 .051|.001 .007|.031 .084|.020 .030|-.001 .012
60% 212 .2121.054 .056|.001 .006|.039 .083|.027 .036| .004 .011
70% 216 .216|.061 .064 |.000 .011|.048 .085|.036 .042| .003 .010
80% 220 .2201.075 .076|.001 .015|.060 .087|.045 .052| .004 .013
90% 225 .2251.078 .097|.003 .015|.085 .095|.049 .058]| .004 .021
Mean .200 .200/.051 .055(.001 .009|.037 .086|.028 .036|-.001 .014

5. Concluding remarks.

We have in this paper evaluated conformal prediction for classification with reject option.
Utilizing the strong theoretical properties of conformal prediction, standard and Mondrian
conformal classifiers were used as the basis for classifiers with reject option, targeting either
accuracy or precision. The empirical evaluation, using ten publicly available data sets,
showed that the suggested method produced very exact accuracy and precision estimates,
for all rejection levels investigated.

A direct comparison with probabilistic predictors clearly demonstrates the advantage
of the conformal approach. Even when calibrating the probabilistic predictors using Platt
scaling, the resulting estimations were outperformed by the conformal classifiers, in partic-
ular for precision. Specifically, only the conformal models showed no systematic bias when
estimating either accuracy or precision for the different rejection levels and using the two
underlying models decision trees and random forests.
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