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Abstract

KNIME is an end-to-end software platform for data science with an open-source analyt-
ics platform for creating solutions and a commercial server solution for productionization.
Conformal classification and regression have previously been implemented in KNIME. We
extend the conformal prediction package with added support for conformal predictive sys-
tems, taking inspiration from the interface of the Crepes package in Python. The paper
demonstrates some typical use cases for conformal predictive systems. Furthermore, the
paper also illustrates how to create Mondrian conformal predictors using the KNIME im-
plementation. All examples are publicly available, and the package is available through
KNIME’s official software repositories.

Keywords: Conformal predictive systems, software implementation, KNIME Analytics
Platform, Mondrian conformal predictive systems

1. Introduction

Machine learning and data science have become increasingly popular in recent years, with
techniques such as random forests and deep learning now widely available through libraries
and tools. This trend has led to a proliferation of machine learning applications across
various industries, influencing decision-making and work processes wherever it is applied.
One approach to building data science workflows is using tools that allow users to construct
workflows using nodes. Each node represents a specific behavior, such as data manipula-
tion, modeling, or visualization. These workflows can be created using visual programming,
enabling the creation of no-code data science pipelines without any coding knowledge. Pop-
ular tools for creating these workflows include RapidMiner, WEKA, Orange, and KNIME.
Although these tools vary in interactivity, openness, and ease of use, their goal is to make
data analysis more accessible to novice users.

In this paper, we introduce an extension of the Conformal Prediction package (Löfström
et al., 2022) for KNIME1 (Berthold et al., 2009), implementing conformal predictive systems.
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© 2023 T. Löfström, A. Bondaletov, A. Ryasik, H. Boström & U. Johansson.

https://www.knime.com
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Furthermore, the paper also illustrates how Mondrian conformal prediction can be achieved
using the current implementation.

Conformal prediction (Vovk et al., 2005a) is a powerful framework that provides accurate
levels of confidence in predictions. Despite attracting growing scientific interest in recent
years, it has not yet gained widespread recognition outside of academia as a valuable tool
for improving the quality of decision-support systems based on predictions. Therefore, it is
crucial to make this framework more easily accessible to a broader audience, regardless of
their programming knowledge, to expand its reach and impact.

A conformal prediction toolbox for KNIME is available through KNIME’s official soft-
ware channels as a community package. It was originally developed for conformal classi-
fication by Redfield AB (Ryasik and Landrum, 2020; Ryasik, 2023b) and later extended
to include support for conformal regression (Löfström et al., 2022; Ryasik, 2023a). In this
paper, we introduce an update and extension of the package to include conformal predictive
systems.

2. KNIME Analytics Platform

KNIME is a data science platform developed by a university group at the University of
Konstanz in 2004 and released as an open source tool in 20062. Since then, it has grown into
a comprehensive and open platform supported by an active user community. The platform
provides extensive support for data blending, preprocessing, integration, and deployment,
and it also includes built-in support for most standard machine-learning techniques. One of
the key strengths of KNIME is its vast library of community content, which covers a wide
range of application areas, with a particular emphasis on life science (Fillbrunn et al., 2017;
Afantitis et al., 2020). This content includes advanced techniques like deep learning and
support for various data sources like images, text, and network mining.

3. Conformal Prediction

Conformal predictors are models that provide a level of confidence for each prediction they
make. Specifically, given a test pattern xi and a significance level ϵ, a conformal predictor
generates a prediction region Γϵ

i , which is a set of values that includes the true target yi
with probability 1 − ϵ. In classification problems, the prediction regions are sets of class
labels, while in regression problems, they are prediction intervals.

Errors occur in conformal prediction when the true target falls outside of the prediction
region. However, conformal predictors are automatically valid, meaning that under the
exchangeability assumption, the error rate will be exactly ϵ over the long run. Therefore,
the key criterion for evaluating conformal predictors is their efficiency, which refers to the
size of the prediction regions. In addition to being small, prediction regions should also
be individualized or sharp to increase their informativeness. For regression problems, this
means that the prediction intervals should be as tight as possible for each test instance.

2. KNIME: How it all began.
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3.1. Conformal Regression

Constructing a conformal predictor for regression, known as an inductive (split) conformal
regressor, involves the following steps:

1. Divide the training set Z into two disjoint subsets, resulting in a proper training set
Zt and a calibration set Zc, where |Zc| = q.

2. Using Zt, fit a regression model h to be used as the underlying model.

3. Let the absolute error be defined as the nonconformity function:

f(zi) = |yi − h(xi)| . (1)

4. Apply the nonconformity function on all calibration instances to get nonconformity
scores f(z) for all zi ∈ Zc. Sort them in descending order to obtain α1 ≤ α2 ≤ ... ≤ αq.

5. Assign a significance level ϵ ∈ (0, 1), where typical choices include ϵ = 0.01, ϵ = 0.05,
or ϵ = 0.1.

6. The index of the (1−ϵ)-percentile nonconformity score, αs, is defined as s = ⌊ϵ(q + 1)⌋.

7. To determine the prediction interval for a new instance xi the following equation is
used:

Γϵ
i = h(xi)± αs, (2)

where the interval is centered around h(xi) and has a width of 2αs. The size of this
interval is based on the observation that the probability of a test instance having
a larger absolute error than αs, under the exchangeability assumption, must be ϵ.
Therefore, the interval contains yi with confidence 1− ϵ.

Other nonconformity functions for a specific underlying regression model could be used
to define a different conformal regressor. However, even if all of these conformal regressors
will be valid, they may result in significant differences in terms of efficiency. In the procedure
described above, using f(zi) = |yi − h(xi)| and Γϵ

i = h(xi) ± αs, the size of all prediction
interval will be 2αs.

To obtain individual bounds for each xi, normalized nonconformity function can be
used. By incorporating the additional terms σi and β into the basic nonconformity function,
normalized conformal regression achieve increased informativeness. These terms adjust the
prediction interval based on the estimated difficulty (represented by σi) of predicting the
target variable yi. Intuitively, the quality (or difficulty) estimate σi represents our confidence
in the prediction for yi given xi. The normalized nonconformity function is defined as:

f(zi) =
|yi − h(xi)|

σi + β
(3)

where β controls the sensitivity of the normalization term, and determines the relative im-
portance of σi in determining the size of the prediction interval. The normalized prediction
interval for a new example is given by:

Γϵ
i = h(xi)± αs(σi + β). (4)
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By using a normalized nonconformity function, we can obtain individualized prediction
intervals that adjust to the specific difficulty of predicting yi for each input xi, potentially
leading to smaller and more informative prediction regions.

3.2. Conformal Predictive Systems

Conformal predictive systems (Vovk et al., 2019) are an extension of conformal regressors
that produce conformal predictive distributions, which are cumulative distribution functions.
These distributions can be used for various purposes, such as deriving prediction intervals
for specified confidence levels or obtaining threshold values based on the probability of
the true target falling below or above a certain level. For example, the probability that
an ordered spare part is delayed beyond the safety buffer. Since prediction intervals in
conformal regressors do not provide any information about how values within and outside
the intervals are distributed, these capabilities are important additions.

Efficiently generating (normalized) inductive conformal predictive systems is similar to
how inductive conformal regressors are formed. The most important difference is that the
nonconformity scores are calculated by considering actual and not absolute errors:

f (zi) = yi − h (xi) , (5)

or, when using normalization:

f (zi) =
yi − h (xi)

σi + β
, (6)

where σi, xi, and β are defined as before. The prediction for a test instance xi (potentially
with an estimated difficulty σi) then becomes the following cumulative distribution function
(conformal predictive distribution):

Q(y) =

{
n+τ
q+1 , if y ∈

(
C(n), C(n+1)

)
, for n ∈ {0, ..., q}

n′−1+(n′′−n′+2)τ
q+1 , if y = C(n), for n ∈ {1, ..., q}

(7)

where C(1), . . . , C(q) are obtained from the calibration scores α1, . . . , αq, sorted in increasing
order:

C(i) = h (x) + αi

or, when using normalization:

C(i) = h (x) + σαi

with C(0) = −∞ and C(q+1) = ∞. τ is sampled from the uniform distribution U(0, 1) and
its role is to allow the p values of target values to be uniformly distributed. n′′ is the highest
index such that y = C(n′′), while n′ is the lowest index such that y = C(n′) (in case of ties).
For a specific value y, the function returns the estimated probability P(Y ≤ y), where Y is
a random variable corresponding to the true target.

Given a conformal predictive distribution, a two-sided prediction interval for a cho-
sen significance level ϵ can be obtained by [C⌊(ϵ/2)(q+1)⌋, C⌈(1−ϵ/2)(q+1)⌉]. One-sided pre-
diction intervals can be obtained by [C⌊ϵ(q+1)⌋,∞] for a lower-bounded interval, and by
[−∞, C⌈(1−ϵ)(q+1)⌉] for an upper-bounded interval. Similarly, a point prediction correspond-
ing to the median of the distribution can be obtained by C⌈0.5(q+1)⌉.
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Figure 1: A conformal predictive distribution with three different intervals representing 90%
confidence are defined: Lower-bounded interval: more than the 10th percentile;
Two-sided interval: between the 5th and the 95th percentiles; Upper-bounded
interval: less than the 90th percentile. The black dotted lines indicate how to
determine the probability of the true target being smaller than 0.5, which in this
case would be approximately 80%.

Figure 1 illustrates how the conformal predictive distribution can form one-sided and
two-sided confidence intervals. It also illustrates how the probability of the true target
falling behind a given threshold can be determined. Or, conversely, it illustrates what
threshold a specific probability does correspond to.

3.3. Mondrian Conformal Predictive Systems

As pointed out by Boström et al. (2021), neither standard nor normalized predictive systems
may be very effective tools for calibrating the predictions when the residuals (differences
between actual and predicted values) are heteroscedastic, e.g., their distribution is not
independent of the actual predictions. An example of such a model is an ensemble averaging
the predictions from the base regressors, resulting in a tendency to overestimate low actual
values and underestimate high actual values. The result will be that the residuals for low
predicted values will be negative on average and positive on average for high predicted
values. Since the distribution’s median will always be on the same side relative to the
underlying prediction, the distribution can suggest moving the predictions at most in one
direction. As pointed out above, neither standard nor normalized conformal predictive
systems can correct this, as the shape of standard predictive distributions will be the same
for all predictions and σ always being positive, resulting in the direction of the normalization
correction being the same as for the standard distribution.
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Mondrian conformal predictive systems were proposed in (Boström et al., 2021). The
idea was borrowed from Mondrian conformal prediction (Vovk et al., 2005b), originally
proposed for allowing control of error levels of objects falling into a priori defined categories.
The most typical use is to define the categories as class labels, ensuring the same error level
for all classes. Mondrian conformal regressors were introduced in (Boström and Johansson,
2020) to handle two problems of normalized conformal regressors; 1) prediction intervals
may be several times larger (or smaller) than the largest (or smallest) previously observed
error, and 2) the sizes of the intervals become less uniform with less informative quality
(difficulty) estimates. It was shown that categories formed by binning the quality estimate
σ resulted in 1) intervals bounded by the size of the largest observed error and 2) non-
informative quality estimates resulting in more uniformly sized intervals.

A solution for the ensemble example above would be to use two categories defined using
the predictions of the underlying model, where one corresponds to low-valued predictions
and the other corresponds to high-valued predictions. These two categories would enable
the conformal predictive distribution to correct for systematic overestimations and under-
estimations. As the predictions from conformal regressors are centered around the point
predictions and provide no information on whether the true target can be expected to be
higher or lower than the point prediction, the same kind of correction can not be done for
them. Still, defining Mondrian categories using the quality estimate σ may be used to form
normalized conformal predictive distributions.

Figure 2 illustrates Mondrian conformal predictive systems by showing four instances
from the four different bins defined using equal-frequency binning of the predictions from the
underlying model. The bins are defined based on the predictions, with Bin 1 representing
the lowest predictions and Bin 4 representing the highest predictions. As can be seen, in
the (two) lowest bin(s), the median (ŷ0.5) is clearly below the prediction, correcting for the
bias of the random forest. Similarly, the median (ŷ0.5) is above the prediction in the highest
bin, again, making a correction of the bias of the random forest.

3.4. Adding Conformal Predictive Systems in KNIME

Redfield AB deployed the Conformal Prediction package in KNIME for class conditional
conformal classification in 2020. In 2022, the package was extended to include conformal
regression.

For the release of the updated Conformal Prediction package, functionality for conformal
predictive systems has been added. The aim was to follow the same logic as used in the
original implementation. Consequently, a calibrator, a predictor, and a classifier for confor-
mal predictive systems have been added. Furthermore, a Predictive Systems Regression node
has also been added, combining the functionality of the calibrator, predictor, and classifier
nodes. Finally, the Conformal Scorer (Regression) was updated to allow more alternatives
when evaluating regression results.

• Predictive Systems Calibrator (Regression) - Calculates the α-values for all calibration
instances using Equation (5) for standard conformal predictive systems. If normal-
ization is used, the difficulty, or σ, and β are also used in calculating α, according to
Equation (6).
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Figure 2: Four Mondrian conformal predictive distributions from four different bins.

• Predictive Systems Predictor (Regression) - The node takes the calibration table and
the test data and defines the conformal predictive distribution using Equation (7). If
normalization was used for calibration, the same setting as in the Predictive Systems
Calibrator (Regression) must also be used in this node.

• Predictive Systems Classifier (Regression) - This node is used to define how to query
the conformal predictive distribution. Following the logic used in the crepes3 package
in Python (Boström, 2022), the node takes four types of input parameters:

– Target value: A fixed threshold for the target value v. When this parameter is
used, the node will output a column containing P(Y ≤ v), i.e., the estimated
probability that the predicted value is below v.

– Target Column: A column containing individual thresholds vi for each instance.
When this parameter is used, the node will output a column containing P(Y ≤
vi), i.e., the estimated probability that the predicted value is below vi.

– Lower Percentiles (%): A dynamic number of user-defined lower percentiles. For
each lower percentile defined, the node will output a column with the values
corresponding to that percentile in the conformal predictive distribution.

– Upper Percentiles (%): A dynamic number of user-defined upper percentiles.
For each upper percentile defined, the node will output a column with the values
corresponding to that percentile in the conformal predictive distribution.

3. https://github.com/henrikbostrom/crepes
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• Predictive Systems Regression - This node combines the functionality in the three nodes
above with the sum of the parameters available in the individual nodes. The purpose
of this node is to create an ease-of-use node for regular use cases.

• Conformal Scorer (Regression) - This node has been updated to allow evaluation of
both two-sided and one-sided intervals. It compares prediction intervals with actual
values and calculates metrics for estimating conformal predictions.

As explained in (Löfström et al., 2022), the first three nodes are intended to be used
within conformal loops, enabling multiple training models and calculating a set of CDFs.
Afterwards, the CDFs are aggregated with the median function. This approach helps to
increase the robustness of the predictions, however, it requires more effort in building the
workflow and execution time due to repetitive training and calculating CDFs.

4. Use cases

To illustrate how conformal predictive systems can be applied in KNIME, a number of use
cases, from simple to more complex, will be presented here. All examples and experiments
presented below are available for download at KNIME Hub4.

Figure 3: Regression without conformal prediction

Figure 3 illustrate how to train and evaluate a machine learning model in KNIME. The
data set is divided into a training and a test set using a Partitioning node. A model is
trained using a Learner node applied to the training set and the prediction is achieved by
applying a Predictor node to the test set. Finally, evaluation is done using a Scorer node.

All of the steps described above are included when applying conformal predictive sys-
tems, but some additional steps also need to be done. As before, the data must first be
divided into training and test sets. Since inductive conformal predictive systems also re-
quire a calibration set, the training set is divided into a proper training set used to train
the model and a calibration set used for calibration. As before, the model is trained using a
Learner node applied to the proper training set. Since calibration and test sets must always
be exchangeable, they must always be handled similarly, so both sets are predicted using
Predictor nodes. The predictions from both sets are fed into the Predictive Systems Regres-
sion node to get the outputs based on the user-defined parameters for Target value(s) and

4. KNIME Community Hub > tuwelofstrom > Spaces > Predicting with Confidence > COPA 2023 -
Conformal Predictive Systems
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Figure 4: Conformal predictive systems with scoring using partitioning

lower and upper percentiles. Finally, if lower and/or upper percentiles are defined, the inter-
vals they form can be evaluated using a Conformal Scorer (Regression) node. Regardless of
whether the data set is simply divided into a training and test set using a Partitioning node,
see Figure 4, or whether Cross-Validation is used, see Figure 5, the evaluation is done once
at the end, on the entire evaluated data. In order to use normalized conformal predictive

Figure 5: Conformal predictive systems using cross validation

systems, an additional column of data representing σ, i.e., how difficult an instance is, must
exist in the data. If such a column exists, changing from standard conformal predictive
systems to normalized conformal predictive systems requires only opting for normalization,
selecting the σ-column, and assigning a β-value. If using a random forest as the underly-
ing model, the prediction variance, suitable to use as σ, will automatically be added as a
separate column along with the prediction.

Consequently, by only changing the Normalization options, without altering the work-
flow, standard conformal predictive systems (using the configuration in Figure 6(a)) will
change into normalized conformal predictive systems using prediction variance from the
random forest (using the configuration in Figure 6(b)).

However, if your underlying model does not automatically provide you with a difficulty
estimate, as is the case for most techniques, a difficulty estimation must be defined sepa-
rately somehow. One way of doing that is to train a separate model on the absolute error

9
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(a) Standard conformal predictive systems without Normalization

(b) Normalized conformal predictive systems with prediction variance as σ

Figure 6: Setting up conformal predictive systems

of the first model. An example of how this is done for conformal regression was given
in (Löfström et al., 2022) with a workflow available at KNIME Hub5. The exact same
procedure works for conformal predictive systems as well.

Looking at the conformal predictive systems on an individual data set, the Stock data set
in this case, Figure 7 shows the results using four different line plots for a standard conformal
predictive system with two intervals representing significance levels ϵ ∈ {0.01, 0.2}. These
two intervals are formed using the 0.5th lower and 99.5th upper percentiles for ϵ = 0.01
and the 10th lower and 90th upper percentiles for ϵ = 0.2. The two subplots to the left are
sorted on target values, and the two subplots to the right are sorted on prediction values,
here represented by the 50th percentile, i.e., the median. The plot shows the result for
standard conformal predictive systems, where the prediction intervals are equally wide for
all instances. That the intervals are equally wide is most clearly seen in the two subplots
to the right, since they are sorted on the prediction values. The two top plots compare the
median and the two intervals defined using the conformal predictive systems to the true
target (in black).

The same set of plots for normalized conformal predictive systems using prediction
variance as difficulty estimate can be seen in Figure 8. As can be seen, the prediction
intervals are clearly affected by the difficulty estimate used, with some intervals being narrow
and others being wide. The interval’s width can be used to estimate an instance’s difficulty.
β was set to 0.005, to create the visual effect of intervals with a great difference. Smaller
β-values increase the impact of σ. Generally, to get a similar impact of σ in conformal
predictive systems compared to conformal regression, smaller β-values will be needed.

To illustrate how the target value and target column parameters can be used, two
additional examples are introduced. In the first example, the target value parameter is
set to 0.5, resulting in an output column named P (cpds < 0.5). Figure 9 illustrates how
P (cpds < 0.5) is related to the median.

5. See the COPA 2022 - Redfield & JU - Conformal Regression Experiment workflow.
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Figure 7: Standard conformal predictive systems without normalization

In practice, the P (cpds < 0.5) represents the proportion of the conformal predictive
distribution below 0.5 for a particular instance. For this particular data set, with target
values normalized to the interval [0, 1], the following can be seen:

• For instances with median values ≤ 0.4, the probabilities are P (cpds < 0.5) ≈ 1.0.

• For instances with median values ≥ 0.6, the probabilities are P (cpds < 0.5) ≈ 0.0;

• For instances with median values ≈ 0.5, P (cpds < 0.5) ≈ 0.5.

Figure 10 illustrate the result of assigning the column containing target values (RE-
GRESSION) in the target column parameter. In the figure, the data is sorted on the
P (cpds < [REGRESSION]) column, i.e., on the probability of the true target being below
the prediction. In practice, this corresponds to the percentiles corresponding to the posi-
tion of the target value in the conformal predictive distribution. Naturally, sorting based
on P (cpds < [REGRESSION]) will produce a similar ordering as if sorting on the residuals.

Obviously, using the target column in that way will not be possible when evaluating
new data, since the target values will not be known. However, these two examples serve to
illustrate how the target value parameter works. The target column parameter is identical to

11
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Figure 8: Normalized conformal predictive systems using the prediction variance as diffi-
culty estimate

Figure 9: The target (REGRESSION), median and P (cpds < 0.5), sorted on median

the target value parameter except that each instance gets its (potentially unique) threshold
from the column assigned. A typical use case for the target value parameter is when a
fixed threshold exists for which it is important to identify if a prediction is at risk of
falling below or above. Analogously, if the threshold depends on some outer factor, e.g.,

12
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Figure 10: The target (REGRESSION), median and residual, sorted on the probability of
the true target being below the prediction.

time, temperature, or speed, the target column parameter can be used to define dynamic
thresholds instead.

Figure 11 introduces how Mondrian conformal prediction can be achieved in KNIME.
The functionality to support Mondrian solutions have not been implemented into the nodes,
but can easily be achieved by using a few extra nodes. Since all Mondrian solutions are
based on dividing the calibration sets into subgroups based on some category, the first step
is to decide the categories. When the categories are based on a numerical feature, the values
must be binned somehow. In KNIME, the Auto-Binner node can automatically bin data
based on parameters like deciding between percentile-based binning or by a given number
of bins combined with a choice between equal-width or equal-frequency binning. In this
case, the binning is performed on the prediction from the underlying model using four bins
and equal-frequency binning. Once the categories (the result from the binning) are defined,
one conformal predictive system is fitted and applied for each set of instances covered by
the category. In KNIME, this can be done using a Group Loop Start node, looping over
groups of calibration instances, conditioned on the categories. The current category from
the loop is used in a Reference Row Filter node to include test instances covered by the same
category. The Predictive Systems Regression node is used just like before. Finally, a Loop
End node wraps up the procedure. This example shows that applying Mondrian categories
to conformal predictive systems (or conformal prediction) is a matter of dividing instances
based on the categories and applying conformal predictive systems (or conformal prediction)
to one category at a time. Consequently, if someone wants to use another categorization
(like defining the categories based on the quality estimate σ), it is just as easy.

13
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Figure 11: Solution to achieve Mondrian conformal predictive systems.

The solutions presented above and additional example workflows can be downloaded
and used as templates6. No coding knowledge is required to use the Conformal Predictive
Systems nodes introduced above (even if some supplementary material includes nodes with
short code snippets).

5. Experimental setup

The Conformal Predictive Systems nodes have also been evaluated in experiments using 23
benchmarking data sets. The selection criteria were based on convenience as these data sets
had been used in previous studies. Furthermore, since the Mondrian setups divide instances
into five equal-sized subsets, only fairly large data sets were used. The target variables for
all regression data sets were Min-Max Normalized, i.e., scaled to [0, 1]. By doing that, all
interval sizes will be comparable and represent the proportion of the range covered by the
prediction intervals in the same scale.

Percentiles are extracted so that ϵ ∈ (0, 1) = {0.025, 0.050, . . . , 0.975} to allow plotting
significance levels vs error rates. The tabulated results only include ϵ ∈ {0.05, 0.10, 0.20}.
The experiments use 10x10-fold cross-validation. Four setups are evaluated: standard con-
formal predictive systems, normalized conformal predictive systems using prediction vari-
ance from the random forest to estimate difficulty (σ), Mondrian conformal predictive sys-
tems using five equal-frequency bins defined from the prediction of the underlying model,
and normalized Mondrian conformal predictive systems (combining the setups of normal-
ized and Mondrian conformal predictive systems). The workflow used for the experiments
can be found on KNIME Hub7.

6. The COPA 2023 - Conformal predictive systems simple use cases workflow includes the examples given
above.

7. The COPA 2023 - Mondrian conformal predictive systems experiment workflow includes the experiment
plus some additional results.
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6. Results

In the sections below, the results from our experiments are presented. As four setups have
been evaluated for regression, error rate and efficiency results are separated into Tables 1
and 2. For the error rates, only results corresponding to ϵ = 0.05 are shown, to allow
evaluation of both two-sided and one-sided intervals. Error rate results for ϵ ∈ (0, 1) =
{0.025, 0.050, . . . , 0.975} are shown in Figure 12, below. Std stands for standard conformal
predictive systems, N stands for Normalized conformal predictive systems using prediction
variance from the random forest to estimate difficulty, M stands for (standard) Mondrian
conformal predictive systems, and NM stands for Normalized Mondrian conformal predic-
tive systems (also using prediction variance as σ). The error rate is the fraction of instances
where the true target value is outside the prediction interval from the conformal predictive
distribution. As seen in Table 1, almost all results are the same as the significance levels,
regardless of whether two-sided or one-sided intervals are used. However, there is a slight
tendency for the errors to be conservative on some data sets, more clearly manifested for
normalized conformal predictive systems.

Table 1: Error rates for ϵ = 0.05 from two-sided and one-sided intervals formed using con-
formal predictive systems.

Two-sided interval Lower-bounded interval Upper-bounded interval
Data sets Std N M NM Std N M NM Std N M NM

abalone .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05
bank8fh .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05
bank8fm .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05
bank8nh .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05
bank8nm .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05
concrete .05 .03 .04 .03 .05 .05 .05 .05 .05 .04 .05 .05
cooling .04 .04 .04 .05 .05 .05 .05 .06 .04 .04 .04 .04
deltaA .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05
deltaE .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05
friedm .04 .03 .04 .03 .05 .05 .05 .05 .05 .04 .05 .05
heating .04 .04 .04 .04 .05 .06 .05 .05 .04 .04 .04 .04
kin8fh .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05
kin8fm .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05
kin8nh .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05
kin8nm .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05
laser .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .06 .05
mg .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05
plastic .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05
puma8fh .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05
puma8fm .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05
puma8nh .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05
puma8nm .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05
wizmir .05 .05 .05 .05 .05 .05 .05 .05 .05 .04 .05 .05

Mean .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05

Figure 12 shows the error rate vs the significance levels for two-sided, lower-bounded,
and upper-bounded intervals. As can be seen, the error rate is almost perfectly aligned
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along the diagonal in black representing the significance level, indicating valid results for
all significance levels.

Figure 12: Error rates vs significance levels from conformal predictive systems for two-sided,
lower-bounded upper-bounded intervals.

Looking at the efficiency in Table 2, the results are shown for ϵ ∈ {0.05, 0.10, 0.20}.
Efficiency is defined as the Median Interval Size. As all targets are in the [0, 1] range,
the interval sizes represent the percent of the entire output range covered by an interval
(on average). As expected, smaller significance levels result in wider prediction intervals.
More importantly, there is a clear difference in efficiency between standard, normalized,
Mondrian, and normalized Mondrian conformal predictive systems, with increased efficiency
(i.e., smaller intervals) in that order. These results are in line with previous research and
should be expected. When being 95% confident in the prediction (i.e., when ϵ = 0.05), the

interval will, on average, cover between 1
3

rd − 1
4

th
of the target range (depending on the

setup used). Reducing confidence to 90% or 80% will reduce the interval sizes towards 1
5

th

or 1
6

th
of the target range, respectively (for the most efficient setups).

7. Conclusions

In this paper, we introduce conformal predictive systems as an extension of the Conformal
Prediction package in KNIME through a number of straightforward use cases and experi-
ments. The package has already offered the benefits of conformal prediction, which has now
been extended to include the powerful tools offered by conformal predictive systems. Fur-
thermore, the paper also highlights how Mondrian conformal predictive systems can easily
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Table 2: Efficiency from for two-sided intervals using conformal predictive systems.

ϵ =0.05 ϵ =0.10 ϵ =0.20
Data sets Std N M NM Std N M NM Std N M NM

abalone .329 .286 .255 .266 .251 .224 .201 .207 .168 .154 .148 .149
bank8fh .382 .348 .355 .361 .307 .287 .277 .290 .229 .216 .207 .215
bank8fm .201 .165 .148 .152 .155 .136 .123 .128 .113 .105 .096 .099
bank8nh .450 .395 .412 .416 .343 .312 .304 .313 .244 .220 .216 .220
bank8nm .236 .102 .106 .093 .167 .079 .084 .075 .099 .058 .061 .055
concrete .308 .340 .264 .304 .235 .232 .208 .195 .173 .162 .154 .143
cooling .245 .191 .193 .170 .194 .172 .152 .153 .130 .140 .106 .123
deltaA .155 .130 .132 .129 .117 .099 .103 .095 .081 .072 .073 .068
deltaE .216 .213 .209 .206 .174 .172 .165 .165 .128 .131 .120 .120
friedm .283 .306 .293 .315 .227 .217 .231 .221 .169 .163 .170 .164
heating .168 .117 .104 .096 .106 .098 .083 .082 .080 .073 .066 .065
kin8fh .301 .281 .289 .282 .248 .233 .241 .235 .189 .182 .186 .182
kin8fm .188 .146 .178 .145 .153 .121 .147 .121 .116 .092 .113 .094
kin8nh .495 .501 .490 .489 .421 .420 .416 .411 .330 .326 .328 .320
kin8nm .420 .401 .386 .364 .351 .329 .331 .306 .276 .254 .265 .241
laser .100 .129 .054 .061 .057 .063 .038 .039 .033 .031 .026 .026
mg .403 .403 .186 .205 .284 .295 .145 .154 .177 .180 .110 .112
plastic .654 .643 .723 .700 .549 .577 .590 .577 .421 .437 .443 .433
puma8fh .572 .567 .547 .557 .476 .481 .452 .464 .368 .371 .358 .363
puma8fm .271 .281 .263 .264 .224 .233 .217 .215 .172 .183 .169 .164
puma8nh .543 .548 .503 .512 .445 .453 .408 .415 .339 .332 .319 .315
puma8nm .282 .252 .256 .243 .235 .205 .219 .199 .185 .153 .179 .151
wizmir .085 .089 .081 .086 .068 .068 .064 .066 .051 .051 .049 .049

Mean .317 .297 .279 .279 .252 .239 .226 .223 .186 .178 .172 .168

be achieved through a few additional nodes. Having these strong tools easily accessible in
a user-friendly platform such as KNIME increase the possibility of reaching user groups
otherwise without access to the conformal framework.

Future planned expansions of the package include supporting Venn and Venn-Abers
predictors for classification. Adding internal support for Mondrian categories is also a strong
candidate for future improvements. Smoothed p-values for classification and interpolation
are two other updates on the future work list.

Combining conformal prediction with interpretable models like decision trees and rule
sets has previously been proposed in many papers. Adding nodes that enrich interpretable
models with conformal and Venn predictions is also an interesting option for future work.
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