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How can forgetfulness and efficiency
coexist? Aren’t these two concepts
absolute opposites? Far from it.

Mike Byster, “The Power of
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Abstract

This paper places conformal testing in a general framework of statistical hypothesis testing.
A standard approach to testing a composite null hypothesis H is to test each of its elements
and to reject H when each of its elements is rejected. It turns out that we can fully cover
conformal testing using this approach only if we allow forgetting some of the data. However,
we will see that the standard approach covers conformal testing in a weak asymptotic sense
and under restrictive assumptions. I will also list several possible directions of further
research, including developing a general scheme of online testing.

Keywords: conformal testing, conformal test martingales, natural test martingales, online
compression models, pivotal models

1. Introduction

Conformal testing is an interesting application of conformal prediction. It turns the p-values
output by conformal prediction into dynamic procedures for testing statistical hypotheses.
This paper is a high-level discussion of dynamic testing of statistical hypotheses, in an
attempt to place conformal testing in the general theory of statistical hypothesis testing.

In conformal testing, we are usually interested in testing the exchangeability model,
because of its importance in machine learning. In this paper, however, we will often consider
testing other statistical models, which will shed new light on the relation of conformal testing
to alternative approaches.

Section 2 briefly reviews the history of the online approach to hypothesis testing. Formal
exposition starts in Sect. 3, which is a summary of three approaches to online testing,
including, in Sect. 3.3, a summary of conformal testing. Section 4 introduces a general
scheme covering all three approaches. Section 5 points out a seemingly unnatural feature
of conformal testing, which is forgetting some of the data (see Remark 8 at the end of
Sect. 3). Section 6 explains that the extent to which we need forgetting is limited (albeit
under strong assumptions). Section 7 illustrates some of the points discussed in the earlier
sections using computer simulations, and Sect. 8 concludes.
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2. From batch to online hypothesis testing

The classical theory of statistical hypothesis testing, as created by Student (1908), Fisher
(1925a), Egon Pearson, and Neyman (Neyman and Pearson, 1933), was developed in
the batch setting (in the terminology of modern machine learning). Given a batch of
data z1, . . . , zN , we would like to test the hypothesis (known as the null hypothesis) that
z1, . . . , zN were generated from a given probability measure (in which case the null hypothe-
sis is called simple) or a probability measure from a given family of probability measures (in
which case the null hypothesis is called composite). The number of observations N (sample
size) is chosen in advance. The classical theory is still dominant in statistical hypothesis
testing.

Remark 1 I do not list Karl Pearson because he was interested in statistical tests, such as
his famous χ2 test (Pearson, 1900), that only have an asymptotic (“large-sample”) justifica-
tion. The first exact (“small-sample”) test for an interesting composite null hypothesis was
developed by Student (1908), whose results were rigorously proved and greatly developed
by Fisher (1925a; 1925b; 1935).

The assumption that N is chosen in advance was removed during World War II by Wald
(1945, 1947) in the US, with research along similar lines going on in the UK (Barnard,
1946). However, Wald’s picture was not fully dynamic: he just made N a stopping time
when the decision (rejection or acceptance of the null hypothesis) is announced. The dy-
namic interpretation in which the likelihood ratio is interpreted directly as the evidence
in favour/against the null/alternative hypothesis was given by Barnard (1947, pp. 459–460
and the last paragraph). More recently, this interpretation has been widely discussed under
the name of the law of likelihood (Bandyopadhyay and Forster, 2011). (The term “law of
likelihood” was coined by Hacking 1965, Chap. 5, but Hacking was only interested in its
special case, namely in comparison of the likelihood ratio with 1.)

The dynamic way of testing a simple null hypothesis has its origin in Ville’s (1939) notion
of a martingale. The value of a test martingale (i.e., a nonnegative martingale with initial
value 1) can be interpreted as the amount of evidence found against the null hypothesis.
Ville did not have this interpretation in his book (infinite sequences were his main object of
interest), but it formed gradually in the algorithmic theory of randomness; e.g., it is stated
explicitly in Vovk and V’yugin (1994). This interpretation is the basis of Shafer and Vovk
(2001, 2019). It is closely related to Barnard’s 1947 paper mentioned earlier, since a test
martingale can often be represented in the form of a likelihood ratio.

Remark 2 In particular, for simple null hypotheses, a test martingale is a likelihood ratio.
Therefore, it has a very convincing Bayesian interpretation: if a priori we regard the null
and the alternative (the numerator of the likelihood ratio) as equally probable, the posterior
probability of the null will be 1/(L+ 1), where L is the likelihood ratio.

How do test martingales work for composite hypotheses? The standard way of testing
a composite null hypothesis in the algorithmic theory of randomness is to test against
each element of the composite null and then take the infimum of the resulting randomness
deficiencies. See, e.g., Vovk (1986), Vovk and V’yugin (1993, Theorem 2), Bienvenu et al.
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(2011, Sect. 4), and Gács (2021, Theorem 4.2.1). This suggests gambling against all values
of the parameter θ (indexing the null hypothesis) obtaining a test martingale Sθ for each θ
and then taking the infimum over θ. We will do this in Sect. 5.

3. Three modern ways of dynamic hypothesis testing

In this section we will discuss three approaches, by now standard, to dynamic hypothesis
testing. Only one of them, conformal testing, can be, and has been, used for testing the
exchangeability model (the standard statistical model in machine learning) in non-trivial
cases.

First we introduce our framework and notation. Let (Ω,F) be a measurable space
equipped with a family Pθ, θ ∈ Θ, of probability measures on (Ω,F). We refer to (Ω,F) as
our sample space and to (Pθ | θ ∈ Θ) as our statistical model. We are not assuming that the
model is parametric (i.e., that Θ is a subset of a finite-dimensional Euclidean space Rn);
e.g., (Pθ | θ ∈ Θ) may be the set of all exchangeable probability measures on R∞.

Our random observations are Z1, Z2, . . . ; these are random elements on (Ω,F) taking
values in a measurable space Z, which is our observation space. Let z1, z2, . . . be the
realizations of Z1, Z2, . . . .

Set Fn := σ(Z1, . . . , Zn) for n = 0, 1, . . . , i.e., Fn is the σ-algebra generated by the first
n observations. The interpretation of Fn is the full information available by time n. The
sequence (Fn) of σ-algebras is called the natural filtration. In general, a filtration is an
increasing sequence of σ-algebras, and we will often be interested in filtrations (F ′

n) that
are poorer than the natural filtration (Fn) in the sense that F ′

n ⊂ Fn for some n (typically,
for all n ≥ 1).

Remark 3 It is more customary to start from a filtration (Fn) and require that each Zn

be measurable w.r. to Fn for each n. This is a more general setting allowing further sources
of information apart from the observations Z1, Z2, . . . . We will, however, assume that the
observations are the only source of information (and will even allow forgetting some aspects
of the observations).

We regard (Pθ | θ ∈ Θ) as our null hypothesis, and we would like to test whether
z1, z2, . . . were really generated from one of the Pθ.

If the statistical model contains only one probability measure P , online testing consists
in choosing a test martingale Sn, n = 0, 1, . . . , i.e., a sequence of random variables such
that Sn is Fn-measurable, S0 = 1, and, for each n = 0, 1, . . . ,

E(Sn+1 | Fn) = Sn.

We regard Sn as the capital at time n of a gambler betting against the null hypothesis
P . Next we will discuss three known ways of generalizing this definition to composite null
hypotheses.

3.1. Element-wise testing

The most basic and standard generalization is to gamble against each Pθ separately and to
regard the null hypothesis falsified to the degree that all of Pθ have been falsified. Formally,
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for each θ ∈ Θ, we fix a test martingale Sθ, and we then define

Sn := inf
θ∈Θ

Sθ
n. (1)

Any process S that can be obtained in this way will be referred to as an element-wise test,
and I will sometimes refer to this procedure of testing as element-wise testing.

Remark 4 The function Sθ
n(ω) of θ ∈ Θ, n, and ω ∈ Ω is not assumed to be measurable

in θ, and so Sn is not a random variable in general. (And even if Sθ
n(ω) were assumed

measurable in θ, taking an infimum over an uncountable set may destroy measurability.)

A special case of element-wise testing (1) is used in Ramdas et al. (2022), where each
Sθ is defined as the likelihood ratio dQ/dPθ and Q is a probability measure that does not
depend on θ (while dependence on θ is allowed in element-wise testing in general). We will
refer to this special case as simple element-wise testing.

Remark 5 Ramdas et al. (2022) apply their simple element-wise testing scheme to testing
exchangeability, but, as we explain in Vovk et al. (2022, Sect. 9.2.1) (see, especially, Re-
marks 9.7 and 9.8), this scheme (based on the maximum likelihood estimate) is applicable
to testing exchangeability only in toy situations.

3.2. Pivotal testing

The second approach goes back to Fisher’s fiducial statistics and was widely promoted
by, e.g., George Barnard and Donald Fraser. Recent work includes Peter McCullagh’s
(see McCullagh et al. 2009) and the work on confidence distributions, including confidence
predictive distributions (Schweder and Hjort, 2016; Shen et al., 2018).

An online pivotal model is a pair (N,Q), where N is a measurable mapping (normalizing
transformation) N : Z∗ → Z′ to some measurable space Z′ and Q is a probability measure
on (Z′)∞. We say that it agrees with our statistical model (Pθ | θ ∈ Θ) if the distribution
of the random sequence

(Z ′
1, Z

′
2, . . . ) := (N(Z1), N(Z1, Z2), N(Z1, Z2, Z3), . . . ), (2)

where (Z1, Z2, . . . ) ∼ Pθ, is Q (in particular, it does not depend on the parameter θ). We
might say that it strongly agrees with our statistical model if {Pθ | θ ∈ Θ} contains all
probability measures on (Ω,F) for which (2) is distributed as Q; however, we will not use
this stronger notion.

Remark 6 The definition of an online pivotal model can be trivially extended by allowing
N to depend on the parameter value θ ∈ Θ. Such an extension would even better agree with
the term “pivot”, since in statistics pivotal quantities are allowed to depend on θ (those
that do not depend on θ are usually called “ancillary statistics”, but a disadvantage of the
term “ancillary statistic” is that it is usually associated with conditional inference). In this
paper we will only be interested in examples where the normalizing transformation N does
not depend on θ.
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Let me give three simple examples of online pivotal models. The full Gaussian pivotal
model is (N,Q) where

N(z1) := 0,

N(z1, . . . , zn) := (zn − z1)/(z2 − z1) for n ≥ 2,

and Q is the push-forward of the standard Gaussian measure N∞
0,1 on R∞ under the mapping

(Z1, Z2, . . . ) 7→ (Z ′
1, Z

′
2, . . . ) defined by (2). (Let us set, e.g., 0/0 := 0, here and below.)

This online pivotal model agrees with the 2-parameter Gaussian statistical model (N∞
µ,σ2 |

µ ∈ R, σ > 0) (where Nµ,σ2 is parametrized by the mean µ and variance σ2). The other
two example are, in some sense, submodels of this model.

The Gaussian pivotal model with variance 1 is (N,Q) where

N(z1, . . . , zn) := zn − z1 for n ≥ 1, (3)

and Q is the push-forward of N∞
0,1 under (2). This online pivotal model agrees with the

1-parameter Gaussian statistical model (N∞
µ,1 | µ ∈ R) with the variance fixed to 1. The

Gaussian pivotal model with mean 0 is (N,Q) where

N(z1, . . . , zn) := zn/z1 for n ≥ 1,

and Q is the push-forward of N∞
0,1 under (2). This online pivotal model agrees with another

1-parameter Gaussian statistical model, (N∞
0,σ2 | σ > 0), with the mean fixed to 0.

For further examples, see McCullagh et al. (2009) (Gauss linear model) and Ramdas
et al. (2023, Sect. 4.1).

An online pivotal model reduces (perhaps not perfectly) a composite null hypothesis to
a simple one, and gambling against a simple null hypothesis is unproblematic. Formally,
set

F ′
n := σ(Z ′

1, . . . , Z
′
n) (4)

for n = 0, 1, . . . , so that the filtration (F ′
n) is typically poorer than the natural filtration

(Fn). Choose a test martingale S w.r. to the filtration (F ′
n) and probability measure Q.

We will then refer to S as a pivotal test martingale.
Standard uses of online pivotal models are for producing prediction sets (McCullagh

et al., 2009), confidence predictive distributions (Schweder and Hjort, 2016, Sect. 12.4;
Shen et al., 2018), and confidence distributions (Cox, 1958; Xie and Singh, 2013; Schweder
and Hjort, 2016). However, their adaptation to testing is straightforward, and is analogous
to the step from conformal prediction to conformal testing.

3.3. Conformal testing

The exposition in this paper is intended to be self-contained (apart from the definition of
Bayes–Kelly test martingales in Sect. 7), but for further details about online compression
models, see Vovk et al. (2022, Part IV).

An online compression model is a quadruple (Σ,□, F,B), where

� Σ is a measurable space, which is called the summary space and whose elements are
called summaries;
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� □ ∈ Σ is a fixed summary called the empty summary ;

� F : Σ× Z → Σ is a measurable function called the forward function;

� B is a Markov kernel mapping Σ to the probability measures on Σ× Z such that

B(F−1(σ) | σ) = 1

for each σ ∈ F (Σ× Z).

An alternative, often more convenient (especially for defining specific examples) represen-
tation of online compression models is in terms of the corresponding repetitive structures.
Namely, the repetitive structure corresponding to an online compression model (Σ,□, F,B)
consists of the summarising statistic t : Z∗ → Σ defined by

t() := □,

t(z1, . . . , zn) := F (t(z1, . . . , zn−1), zn) n = 1, 2, . . . ,

and the inverse transformation mapping each σ ∈ t(Zn) for each n ∈ {1, 2, . . . } to the
probability measure Pn(σ) on Zn defined by

Pn(dz1, . . . ,dzn | σn) := B(dσ0,dz1 | σ1)B(dσ1,dz2 | σ2) . . .
B(dσn−2,dzn−1 | σn−1)B(dσn−1, dzn | σn).

We say that a probability measure P on the sample space agrees with the online compression
model if, for each n, Pn is a version of the conditional probability, under P , of the first n
observations given their summary. And we say that a statistical model (Pθ | θ ∈ Θ) agrees
with the online compression model if each Pθ does. (As in the case of online pivotal models,
we do not require that (Pθ | θ ∈ Θ) contain every probability measure that agrees with the
online compression model.)

A conformity measure in an online compression model (Σ,□, F,B) is a measurable
function A : Σ× Z → R. The p-value generated by the corresponding conformal predictor
after observing (z1, . . . , zn) ∈ Zn is

pn := BZ ({z ∈ Z | A(σn, z) < A(σn, zn)} | σn)
+ τnBZ ({z ∈ Z | A(σn, z) = A(σn, zn)} | σn) , (5)

where BZ is the marginal distribution

BZ(E | σ) := B(Σ× E | σ)

and τn ∈ [0, 1] (in applications, τn is a number produced by a random number generator).
The main property of validity of conformal prediction is that the p-values p1, p2, . . .

output according to (5) are independent and distributed uniformly on [0, 1] provided the
observations are generated from a probability measure that agrees with the online com-
pression model and the random numbers τ1, τ2, . . . are distributed uniformly on [0, 1] and
independent of the observations and between themselves. Let F ′

n be the σ-algebra generated
by p1, . . . , pn,

F ′
n := σ(p1, . . . , pn). (6)
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A conformal test martingale is a test martingale w.r. to the filtration (F ′
n) and the uniform

probability measure on (p1, p2, . . . ) ∈ [0, 1]∞ (the latter determining the probability measure
on σ(∪nF ′

n) underlying the martingale).
Now we can give four standard examples of online compression models, which we do

in terms of the corresponding repetitive structures. The exchangeability model has σn =
*z1, . . . , zn+ as the summary of a data sequence (z1, . . . , zn), and Pn(σn) is the uniform
distribution on all orderings of σn (a fuller definition, dealing carefully with the possibility
of repetitions among the elements of σn, is that Pn(σn) is the push-forward of the uniform
probability measure on the n! permutations π : {1, . . . , n} → {1, . . . , n} under the mapping
π 7→ (zπ(1), . . . , zπ(n))). In fact, in all but one of our four examples, Pn(σn) will be the
uniform probability measure on t−1

n (σn), where tn is the restriction of t to Zn.
In the remaining three examples, the observation space is the real numbers, Z := R.

The full Gaussian compression model has the summarizing statistic

σn = tn(z1, . . . , zn) :=

(
n∑

i=1

zi,

n∑
i=1

z2i

)

(equivalently, the summary of a data sequence z1, . . . , zn consists of its empirical mean and
standard deviation). The summarizing statistic for the Gaussian compression model with
variance 1 is

σn = tn(z1, . . . , zn) :=

n∑
i=1

zi, (7)

and for the Gaussian compression model with mean 0 it is

σn = tn(z1, . . . , zn) :=

n∑
i=1

z2i .

The conditional distribution Pn(σn) on t−1
n (σn) is defined to be the uniform distribution in

the case of the full Gaussian compression model and Gaussian compression model with mean
0; in both of these cases t−1

n (σn) is a sphere, and the notion of the uniform distribution is
meaningful and unambiguous. For the Gaussian model with variance 1, whose summarizing
statistic is given by (7), t−1

n (σn) is not compact for n > 1, and the uniform distribution on
it does not even exist; we define Pn(σn) as the probability measure on t−1

n (σn) with density
proportional to

exp

(
−1

2

n∑
i=1

z2i

)
. (8)

Remark 7 The full Gaussian compression model (usually referred to simply as the Gaus-
sian compression model) is the most general of our three Gaussian compression models, but
it is easy to extend to a standard model of linear regression, the Gauss linear model, both
in the pivotal (McCullagh et al., 2009) and conformal (Vovk et al., 2022, Sect. 11.4.2) cases.

It is interesting that the p-values p3, p4, . . . output by any of these three Gaussian
compression models are almost surely deterministic (do not depend on the random numbers
τ), while p1 has the uniform distribution on [0, 1]. The second p-value p2 behaves like p1
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in the case of the full Gaussian compression model and like p3, p4, . . . for the other two
models.

Each Gaussian probability measure N∞
µ,σ2 agrees with the full Gaussian compression

model, each N∞
µ,1 agrees with the Gaussian compression model with variance 1, and each

N∞
0,σ2 agrees with the Gaussian compression model with mean 0. The density (8) and the

uniform density in the other two cases can be obtained from this agreement.
The example of the Gaussian model with variance 1 will be most useful for us in this

paper (see Sect. 5 below). In the case of pivotal models it is clearly the simplest one among
those that we discussed. In the case of online compression modelling, the summarizing
statistic (7) is also the simplest one, but, unusually, the conditional distributions Pn(σn)
are not uniform (another such example is discussed in Vovk et al. 2022, Sect. 11.3.7).

Conformal testing is able to produce non-trivial conformal test martingales under the
standard assumption of exchangeability for two reasons (Vovk et al., 2022, Sect. 8.6.1):

� these conformal test martingales use a filtration that is poorer than the natural filtra-
tion generated by the observations Z1, Z2, . . . (we are forgetting some information);

� the martingales are randomized, in the sense of depending on the random numbers τn.

In this paper I will concentrate on the first reason (which appears to be more important).
To get rid of the second reason, we will consider an online compression model that does
not require it (in the sense that the p-values do not depend on the τs apart from the first
one, p1).

Remark 8 The expression “unnatural feature” used in Sect. 1 referred to the underlying
filtration (F ′

n) defined by (6) being different from the natural filtration. (Of course, the
filtration (F ′

n) defined by (4) also involves forgetting.)

4. General scheme of online testing

In this section we sketch (somewhat informally) a general testing scheme covering conformal
testing and the other two approaches considered in the previous section. When processing
the random observations Z1, Z2, . . . while testing (Pθ | θ ∈ Θ) as our null hypothesis, we
proceed as follows.

1. We use a random number generator producing independent τ1, τ2, . . . that are uni-
formly distributed on [0, 1]; the sequence of τ is required to be independent of
Z1, Z2, . . . for each θ ∈ Θ.

2. We then transform the sequence of observations z1, z2, . . . and each parameter value
θ ∈ Θ to zθ1 , z

θ
2 , . . . : each zθn is a function of θ and z1, . . . , zn that is measurable for

each fixed value of θ (no measurability in θ is required). Typically this step reduces
the information contained in z1, z2, . . . (for each θ).

3. Next, for each θ ∈ Θ, we gamble against the reduced sequence zθ1 , z
θ
2 , . . . and τ1, τ2, . . .

obtaining a test martingale Sθ (w.r. to the reduced filtration extended by the τ) under
Pθ. Equivalently, we gamble against the extended observations (zθn, τn). Our capital
Sθ
n at time n is a function of (zθ1 , τ1), . . . , (z

θ
n, τn).
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4. Finally, we use (1) as the amount of evidence found against (Pθ) at time n.

A natural question is whether this scheme is really general, but it does cover the three
methods described in the previous section. These are special cases:

� In the simple element-wise testing scheme of Ramdas et al. (2022) (see Sect. 3.1),
item 1 is not needed, the transformation in item 2 is identical (i.e., there is no trans-
formation), and the gambling method in item 3 is to use likelihood ratios with Pθ in the
denominator and the same probability measure (a mixture of Pθs) in the numerator.

� In the neo-fiducial testing of Sect 3.2, item 1 is not needed. The transformation in
item 2 and gambling in item 3 do not depend on θ, and item 4 is not needed.

� In conformal testing, the transformation in item 2 and gambling in item 3 do not
depend on θ. Therefore, item 4 is not needed. For some online compression models,
such as the Gaussian models discussed earlier, item 1 is also not needed (apart from
the first few p-values).

5. Need for forgetting

Conformal testing often works well for testing the exchangeability model (Vovk et al., 2022,
Part III). On the other hand, it is obvious that, without forgetting, no successful gambling is
possible against the null hypothesis of exchangeability, or even against the stronger model
of randomness (Vovk et al., 2022, Sect. 2.1.1): if under the null hypothesis there are no
restrictions on the probability distribution of one observation, our capital can only go down
(or stay at the same level). This is discussed in detail in Vovk et al. (2022, Sect. 8.6.1) and
stated in Ramdas et al. (2022) as Theorem 17.

Therefore, it is essential to allow the test martingales in the element-wise scheme to
depend on the value of the parameter θ if we want to avoid forgetting. In this section
we will give an example where even such dependence does not allow us to recover results
attainable by pivotal and conformal methods.

As before, we observe a sequence Z1, Z2, · · · ∈ Z generated by a probability measure
in a family (Pθ | θ ∈ Θ), and we would like to have an online measure of evidence found
against (Pθ | θ ∈ Θ) as null hypothesis. For each θ, we take a test martingale Sθ w.r. to Pθ

and the natural filtration F = (Fn) (i.e., Fn is generated by Z1, . . . , Zn), and consider the
element-wise test (1) as the amount of evidence found against (Pθ | θ ∈ Θ) at time n.

5.1. An example for pivotal testing

The following simple example shows the inadequacy of element-wise tests. We are testing
the Gaussian pivotal model with variance 1, or the statistical model (N∞

µ,1 | µ ∈ R). The
normalizing transformation (3) acts on the random observations as

Z1, Z2, . . . 7→ Z ′
1, Z

′
2, . . . ,
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where Z ′
n := Zn − Z1, so that Z ′

n ∼ N0,2 for n ≥ 2. Consider the process

Sn :=


1 if n ≤ 1

1/N0,2([−1, 1]) if n ≥ 2 and Z ′
2 ∈ [−1, 1]

0 if n ≥ 2 and Z ′
2 /∈ [−1, 1].

It can be considered both as a function of Z1, Z2, . . . and as a function of Z ′
1, Z

′
2, . . . , but

it is a martingale only as a function of Z ′
1, Z

′
2, . . . (i.e., w.r. to the reduced filtration (F ′

n),
where F ′

n is generated by Z ′
1, . . . , Z

′
n). If we express it as a function of Z1, Z2, . . . , it becomes

Sn =


1 if n ≤ 1

1/N0,2([−1, 1]) if n ≥ 2 and Z2 − Z1 ∈ [−1, 1]

0 if n ≥ 2 and Z2 − Z1 /∈ [−1, 1].

(9)

Let us check that S is not covered by element-wise testing, i.e., Sn ≤ infµ S
µ
n is violated

for some n, Sµ being a natural test martingale (i.e., a test martingale w.r. to the natural
filtration) under N∞

µ,1. In fact, we will see that Sn is not dominated by any natural test
martingale Sµ

n at times n = 1 and n = 2. Indeed, if it is, we must have

Sµ
1 (z1) ≥ max

(
Nµ,1([z1 − 1, z1 + 1])

N0,2([−1, 1])
, 1

)
for any z1 ∈ R. Notice that

Nµ,1([z1 − 1, z1 + 1])

N0,2([−1, 1])
> 1

holds for a nontrivial range of z1: for example,

Nµ,1([µ− 1, µ+ 1])

N0,2([−1, 1])
=

N0,1([−1, 1])

N0,2([−1, 1])
≈ 1.31 > 1.

Therefore, the expectation of Sµ
1 (z1) under z1 ∼ Nµ,1 must exceed 1, which contradicts Sµ

being a test martingale.

5.2. An example for conformal testing

Our example for conformal testing will be a simple modification of the example for pivotal
models given in the previous subsection. We again consider the Gaussian model with
variance 1, but now it is the online compression model with summarizing statistic (7) and
conditional density (8). The equality

z21 + z22 =
(z1 + z2)

2

2
+

(z1 − z2)
2

2

shows that P2(σ2) generates (Z1, Z2) with Z2 − Z1 ∼ N0,2, and so

p2 = Φ((Z2 − Z1)/
√
2) (10)
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(Φ standing for the standard Gaussian cumulative distribution function) if we choose
A(σ, z) := z as conformity measure.

Now we have a conformal test martingale

Sn :=


1 if n ≤ 1

1/N0,2([−1, 1]) if n ≥ 2 and p2 ∈ [Φ(−1/
√
2),Φ(1/

√
2)]

0 if n ≥ 2 and p2 /∈ [Φ(−1/
√
2),Φ(1/

√
2)]

in analogy with (9); in fact, as function of Z1, Z2, . . . it is identical to (9). As before, it is
not dominated by any natural martingale Sµ w.r. to any N∞

µ,1.

5.3. Another way of forgetting

The main concept of forgetting studied in this paper is replacing the natural filtration (Fn)
by poorer filtration (F ′

n). In the case of the pivotal models, this is the only natural kind of
forgetting. For the Gaussian model with variance 1, we forget the first observation z1, and
it leads to forgetting in the sense of reducing the filtration, (4).

However, in the case of online compression models, the very definition of such models
is sometimes explained in terms of forgetting: the summary t(z1, . . . , zn) represents all
useful information contained in the data sequence z1, . . . , zn; the rest is noise and can be
forgotten. In statistical terminology, the summary is a sufficient statistic. Let me call this
“forgetting2”. This is very different from forgetting (“forgetting1”) in the sense of reducing
the filtration, (6). (This terminology is used only in this subsection; elsewhere, “forgetting”
always means “forgetting1”.)

The main difference between forgetting1 and forgetting2 is that the latter is justified
when we fully trust the model, while the former is used when we are testing the model.
The information in z1, . . . , zn that is not contained already in the summary is noise only
under the model, but has great diagnostic value for testing the model; on the other hand,
the summary is of limited use for testing (or even completely useless, as when testing
exchangeability for a finite time horizon).

6. Element-wise testing partially works for a fixed horizon

In this section we give theoretical results showing that the power of forgetting is limited,
unfortunately in a very weak sense.

6.1. Finite horizon

We start from a simple result for a finite horizon N (i.e., we have only N observations, or
are only interested in the first N observations).

Proposition 9 Let N ∈ {1, 2, . . . }, and let (Sθ) be a family of test martingales w.r. to
the same filtration (perhaps not natural) and a statistical model (Pθ). Then there exists a
family of natural test martingales (S̃θ) such that

inf
θ∈Θ

S̃θ
N = inf

θ∈Θ
Sθ
N .

11



Vovk

Of course, (Sθ) being a family of test martingales w.r. to (Pθ) means that Sθ is a test
martingale w.r. to Pθ for each θ. For example, (Sθ) may be a family of test martingales
from the scheme of Sect. 4. The natural element-wise test infθ S̃

θ
n in Proposition 9 can

sometimes be less than the original element-wise test infθ S
θ
n at some time n < N , but it

will eventually catch up (always, not just almost surely).

Proof (of Proposition 9) Let us fix a family of test martingales (Sθ). The expectation
of our capital Sθ

N at step N is 1, and for each θ we get a natural test martingale S̃θ
n,

n ∈ {0, 1, . . . , N}, by setting S̃θ
N := Sθ

N and averaging backwards:

S̃θ
n := Eθ(S̃θ

n+1 | Fn), n = N − 1, . . . , 0, (11)

where Eθ stands for the expectation w.r. to Pθ.

Suppose we are given a test martingale S that is not natural, such as the ones used
in our examples in Sect. 5.1 and Sect. 5.2. A disadvantage of Proposition 9 is that for
steps before N the backward averaging (11) may give a result different from (and therefore
not dominating) Sn, n < N . Another disadvantage of Proposition 9 is that it ignores the
complexity, in any sense (computational, descriptional, etc.), of the natural test martingale
S̃. While S may be very easy to define and independent of θ, such as a Composite Jumper
conformal test martingale (Vovk et al., 2022), S̃ will depend on θ and may be much more
complicated.

The right-hand side of the definition (1) of element-wise testing involves infθ and so
does not even have to be measurable, as we already mentioned, and in some sense it is not
even well-defined when Θ is uncountable: for each θ ∈ Θ the corresponding test martingale
is defined to within a Pθ-null set, which makes the definition of infθ non-invariant w.r. to
the choice of versions of conditional distributions. (For rich spaces Θ and Ω, we can even
make infθ S̃

θ
n = 0, n < N , by an awkward choice of versions of the conditional expectations

in (11).)
The idea in the proof of Proposition 9 can also be applied to randomized test martingales

(such as conformal test martingales under the exchangeability model). Suppose Sn = Sθ
n

does not depend on θ (as conformal test martingales). We can then average SN w.r. to the
random numbers τ1, . . . , τN and after that apply averaging w.r. to the σ-algebras Fn:

S̃θ
N := Eτ (SN ), S̃θ

n := Eθ
(
S̃θ
N | Fn

)
, n = N − 1, . . . , 0, (12)

where, of course, Eτ refers to averaging over the random numbers (produced independently
from the uniform distribution on [0, 1]); of course, there is no actual dependence of S̃θ

n on θ
for n := N . We will then have

inf
θ∈Θ

S̃θ
N = Eτ (SN ).

6.2. Infinite horizon

One more disadvantage of Proposition 9 is that it is only applicable to a finite horizon.
We can generalize it by allowing N to be, e.g., a bounded stopping time, but a natural
question is whether it holds asymptotically at infinity for the infinite horizon N := ∞. The
next proposition is a step in this direction, but it is very restrictive (as we will discuss
momentarily).

12
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Proposition 10 Suppose that the parameter set Θ is finite and that different Pθ in the
statistical model (our null hypothesis) (Pθ) are mutually singular. Let (Sθ) be a family of
test martingales w.r. to the same filtration and (Pθ), and let ϵ > 0 (be arbitrarily small).
Then there exists a family of natural test martingales (S̃θ) such that

lim inf
n→∞

inf
θ
S̃θ
n ≥ (1− ϵ) lim sup

n→∞
inf
θ
Sθ
n (13)

a.s. under any probability measure Pθ from the null hypothesis.

As in the case of Proposition 9, Proposition 10 says that, even when a natural test
martingale S̃θ falls below the original test martingale Sθ, it will eventually catch up (or at
least almost catch up, to within any ϵ on the relative scale). The most restrictive condition
in Proposition 10 is that Θ is finite (although it can be as dense as we wish).

Another restrictive condition in Proposition 10 is that different Pθ are required to be
mutually singular. This condition often holds for interesting statistical models; for example,
in the IID case it follows from Kakutani’s theorem (Kakutani, 1948) that Pθ corresponding
to different θ are either identical or mutually singular. Moreover, we can often even identify
θ in the limit almost surely given a sequence observations generated from Pθ (formally, there
exists a strongly consistent estimator for θ).

In (13) we have lim inf and lim sup instead of just lim. For the lim inf it is not essential,
and we can replace it by lim, meaning that the limit will exist almost surely (although it
can be ∞). Having lim sup is essential, but let me discuss it at the end of the proof.

Proof (of Proposition 10) By Doob’s convergence theorem (Shiryaev, 2019, Corollary 7.4.3),

Sθ
∞ := lim

n→∞
Sθ
n (14)

exists almost surely under Pθ. Without loss of generality we assume that its Eθ-expectation
is 1 (its expectation is at most 1 by Fatou’s lemma, and we can scale it up if the expectation
is below 1). For each θ ∈ Θ let us define the natural test martingale

S̃θ
n := Eθ(Sθ

∞ | Fn), n = 0, 1, 2, . . . ; (15)

remember that this process is a test martingale only under Pθ. By Lévy’s theorem (Shiryaev,
2019, Theorem 7.4.3) we have

S̃θ
n → Sθ

∞

a.s. under Pθ. Since this convergence holds only Pθ-almost surely, we need to “regularize”
S̃θ to ensure its desired behaviour under Pθ′ for θ

′ ̸= θ.
For each pair θ, θ′ ∈ Θ with θ ̸= θ′, fix a natural test martingale Sθ,θ′ w.r. to Pθ such

that
lim inf
n→∞

Sθ,θ′ = ∞ Pθ′-a.s.

Such a test martingale can be defined as the likelihood ratio dPθ′/dPθ if Pθ′ is locally
absolutely continuous w.r. to Pθ (see Shiryaev 2019, Theorem 7.6.2) and as an obvious
modification of the likelihood ratio otherwise. Now we can redefine

S̃θ
n := (1− ϵ)S̃θ

n +
ϵ

|Θ| − 1

∑
θ′∈Θ\{θ}

Sθ,θ′
n (16)

13
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(assuming, without loss of generality, that |Θ| > 1).
Under Pθ, we have, a.s.,

lim
n→∞

S̃θ
n ≥ (1− ϵ)Sθ

∞ = (1− ϵ) lim
n→∞

Sθ
n, (17)

and under Pθ′ , θ
′ ̸= θ, we have, a.s.,

lim inf
n→∞

S̃θ
n ≥ ϵ

|Θ| − 1
lim inf
n→∞

Sθ,θ′
n = ∞. (18)

Combining (17) and (18), we obtain, almost surely under any element of the statistical
model,

lim inf
n→∞

min
θ∈Θ

S̃θ
n = min

θ∈Θ
lim inf
n→∞

S̃θ
n ≥ (1− ϵ)min

θ∈Θ
lim sup
n→∞

Sθ
n.

Now we can discuss in detail the role of the lim inf and lim sup in (13). The lim inf can
be replaced by lim since limn→∞ S̃θ

n exists (and is finite, almost surely) under Pθ by Doob’s
convergence theorem and exists (and is ∞, almost surely) under Pθ′ for θ′ ̸= θ because of

the components Sθ,θ′
n in (16). As for the lim sup, limn→∞ Sθ

n exists almost surely under Pθ,
but there are no constraints on Sθ

n’s behaviour under Pθ′ for θ
′ ̸= θ; therefore, it is essential

to have lim sup (unless we are willing to weaken (13)).

6.3. Creating natural test martingales out of likelihood ratios

So far in this section we were discussing creating natural test martingales out of other test
martingales (those w.r. to a reduced filtration). But the process has a bottleneck: first we
define an e-variable (i.e., a nonnegative random variable with expectation 1, such as (14))
and then average it w.r. to a filtration (as in (15)). An easier option is to start directly
from an e-variable over the first N observations, in the case of a finite horizon N .

When testing an online compression model (such as exchangeability), this model serves
as our null hypothesis. We also fix an alternative hypothesis, which, in the simplest case, is
a probability measure Q on the sample space. (It can be the mixture of a Bayesian model,
as in Vovk et al. 2022, Sect. 9.2.)

What is really important for us is not Q itself, but a regular conditional probability
generated from Q, which in fact carries less information than Q does. (See, e.g., Rogers
and Williams 2000, Sect. II.89, for a standard theorem about the existence of a suitable
regular conditional probability.) As a replacement for Q in the context of testing an online
compression model with a summary statistic t, we let q to be a Markov kernel mapping
each σ ∈ t(ZN ) to a probability measure q(σ) on the set t−1

N (σ). To obtain a family of
martingales (Sθ) from an alternative hypothesis, in the case of a finite horizon N , we can
proceed as in Proposition 9, namely we set

Sθ
N :=

dq(σN )

dPN (σN )
, Sθ

n := Eθ
(
Sθ
N | Fn

)
, θ ∈ Θ, n = 0, . . . , N − 1, (19)

where PN (σN ) is the probability measure (on t−1
N (σ)) in the corresponding repetitive struc-

ture. We will see some experimental results for the final value

dq(σN )

dPN (σN )
(20)
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(which we call the batch benchmark) of these test martingales in the next section.
In the case of an infinite horizon and in the spirit of Proposition 10, we have an open

problem. Consider the sequence of the summaries σ1, σ2, . . . generated from the alternative
hypothesis Q. For each of them (and for each value of θ) define the likelihood ratio martin-
gale (19). Under what conditions do these test martingales converge? And if they do, can
the limit be used for hypothesis testing?

7. Illustration: the problem of change detection

In this section I will illustrate several points raised in the previous sections using a simple
setting of changepoint detection with a finite horizon. Chapter 9 of Vovk et al. (2022) shows
numerous examples where conformal testing (usually implemented as the Bayes–Kelly, or
BK, conformal test martingale) is very close to natural benchmarks. In the setting of
this section the difference is deliberately made more pronounced. Namely, the observation
space is Z := {0, 1}, the null hypothesis is the randomness model (B20

θ | θ ∈ [0, 1]), Bθ

being the Bernoulli distribution on {0, 1} with parameter θ (which is the probability of 1,
Bθ({1}) = θ), the alternative hypothesis Q is that N0 := 10 observations are generated
from the Bernoulli distribution Bπ0 = B0.1 with parameter π0 := 0.1, and another N1 := 10
observations are generated from the Bernoulli distribution Bπ1 = B0.9 with parameter
π1 := 0.9. (Notice that both π0 and π1 are probabilities of 1, pre-change and post-change.)
All 20 observations are generated independently. In this setting the time horizon is finite
and very short, N := 20.

We will only be interested in the final values of our martingales and related processes;
for some of these processes the intermediate values are easily computable, but for others
this is tricky (and requires further research). The final values are shown in Fig. 1, which
will be explained in the rest of this section.

The boxplots in Fig. 1 represent results of 103 independent simulations of the final
values (at time horizon 20) of five processes, including the Bayes–Kelly martingale (BK).

BK mean BK batch LB UB

102.6

102.8

103.0

103.2

103.4

BK mean BK batch LB UB

101

102

103

104

105

Figure 1: Left panel: Five final values as described in text for a fixed dataset (for a change-
point detection problem). Right panel: Five final values as described in text for
random datasets.
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Each boxplot shows the median as the horizontal orange line in the middle of a box, with
notches representing a confidence interval around the median, the mean as a green triangle,
the interquartile range as a box, and the 5% and 95% quantiles as whiskers.

The second process, “mean BK”, is an approximation to the expectation (cf. (12)) of
the BK test martingale Sn. To compute its final value, we compute the final values of 103

independent simulations of the BK test martingale and then average them. If we average
Sn for each n = 0, . . . , N , the resulting process will no longer be a martingale, as discussed
in Vovk et al. (2022, Sect. 9.3). However, the final value will have expected value 1 under
the null hypothesis (and so will be a valid measure of evidence collected against the null
hypothesis).

The last two processes in Fig. 1 are the lower benchmark (LB) and the upper benchmark
(UB). The former is

LBn := inf
θ

Q(Z1 = z1, . . . , Zn = zn)

Bθ({z1}) . . .Bθ({zn})
,

where z1, . . . , zn are the realized values of the random observations Z1, . . . , Zn, respectively,
and the latter is

UBn :=
Q(Z1 = z1, . . . , Zn = zn)

B0.5({z1}) . . .B0.5({zn})
.

The lower benchmark is not a martingale under any B20
θ , but it is a valid measure of

evidence against the null since for each θ it is dominated by the likelihood ratio Q(Z1 =
z1, . . . , Zn = zn)/(Bθ({z1}) . . .Bθ({zn})). On the other hand, the upper benchmark is only
valid underB20

0.5 (which is, in a sense, the mid-point between the pre-change and post-change
distributions), and not valid under the other elements of the null hypothesis.

The middle process, the one labelled “batch”, is a new benchmark (which we called the
“batch benchmark” earlier), and we will discuss it at the end of this section.

The left panel of Fig. 1 shows the final values of the BK martingale, mean BK martin-
gale, batch benchmark, and upper and lower benchmarks for a specific randomly generated
dataset (using our default seed 42 for the random number generator). With a large prob-
ability, the number of 1s in the dataset will be 10, in which case the upper and lower
benchmarks will in fact coincide, as they do in Fig. 1.

The final value of the mean BK martingale is higher than that of the BK martingale in
the left panel of Fig. 1, and it is less volatile. It is higher because averaging on the log scale
is akin to taking maximum, as we pointed out in Vovk et al. (2022, Sect. 9.3). It is clear
that the genuine average (expectation) of the BK martingale over the random numbers τ is
even higher (with zero volatility), but it is only marginally higher (as our other experiments
show).

If the dataset is randomized, the difference is much less noticeable: see the right panel of
Fig. 1. In particular, the difference between BK and mean BK is swamped by the variability
due to the random choice of a dataset. The three benchmarks, however, are still significantly
higher in mean and median.

Now let us spell out the batch benchmark (20), shown in the middle boxplots of both
panels of Fig. 1, for this case. Suppose the observed data sequence is z1, . . . , zN and let

K :=

N∑
n=1

zn, k0 :=

N0∑
n=1

zn, k1 :=

N∑
n=N0+1

zn
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be the numbers of 1s among all observations, among the pre-change observations, and
among the post-change observations, respectively. The probability of z1, . . . , zN under the
alternative is

πk0
0 (1− π0)

N0−k0πk1
1 (1− π1)

N1−k1

and the number of data sequences leading to the same k0 and k1 is(
N0

k0

)(
N1

k1

)
.

The exchangeability summary (i.e., the summary under the exchangeability compression
model) of z1, . . . , zN is K, and so the conditional probability of z1, . . . , zN given its ex-
changeability summary under the alternative hypothesis is

πk0
0 (1− π0)

N0−k0πk1
1 (1− π1)

N1−k1∑K∧N1

k=(K−N0)+

(
N0

K−k

)(
N1

k

)
πK−k
0 (1− π0)N0−K+kπk

1 (1− π1)N1−k

=
1∑K∧N1

k=(K−N0)+

(
N0

K−k

)(
N1

k

) ( (1−π0)π1

π0(1−π1)

)k−k1
.

In this formula, k is the analogue of k1 for the generic element of t−1
N (σN ) (where tN and

σN refer to the exchangeability model), and K − k is the analogue of k0. It is clear that k
ranges from (K−N0)

+ (where u+ := max(u, 0)) and K∧N1 (where u∧v := min(u, v)); it is
easy to check directly that (K −N0)

+ ≤ K ∧N1. The conditional probability of z1, . . . , zN
given its exchangeability summary under the null hypothesis is

1/

(
N

K

)
,

which gives the explicit expression (
N
K

)
∑K∧N1

k=(K−N0)+

(
N0

K−k

)(
N1

k

) ( (1−π0)π1

π0(1−π1)

)k−k1

for the batch benchmark (20) that we use in our experiments.
The right panel of Fig. 1 shows that the batch benchmark is competitive with the

lower and upper benchmarks. It looks a promising option. Its advantage over the upper
benchmark is obvious: it is valid under any power probability measure, not just under BN

0.5.
One advantage over the lower benchmark is that it is admissible for each parameter value
θ, whereas the inadmissibility of the lower benchmark for some θ is obvious.

8. Conclusion

I have mentioned several directions of further research in the previous sections, but these
are a few more:

� In Sect. 5.2 we saw that for the model (N∞
µ,1) the element-wise tests are not fully

adequate. It would be interesting to quantify this observation and to extend it to
other online compression models.
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� In the examples of Sect. 5 we used the fact (see (10)) that the reduced σ-algebras F ′
2

coincide for the pivotal and online compression methods in the case of the Gaussian
model with variance 1. It can be shown that the other non-trivial reduced σ-algebras
F ′
n, n > 2, also coincide for that model. In general, however, the two methods may

involve very different degrees of forgetting, which would be interesting to formalize
and quantify for different models.

� Can we apply Proposition 9 and (12) (or their elaborations) to get explicit expressions
for the natural modifications (i.e., modifications that are test martingales w.r. to the
natural filtration) of the numerous conformal test martingales described in Vovk et al.
(2022, Part III)?

� Relaxing the assumptions of Proposition 10 (such as Θ being finite) or showing that
it is impossible.

� In Sect. 7 we only studied the final values of various test martingales. Their interme-
diate values deserve to be studied both theoretically and experimentally.

A characteristic feature of conformal testing is that part of the data is forgotten in
the process of gambling against the null hypothesis (such as exchangeability). On the
other hand, the same test martingale works against every probability measure in the null
hypothesis. We have seen that forgetting is essential, even if our gambling strategy is
allowed to depend on a probability measure in the null hypothesis.

We have also seen that we can get rid of forgetting, but to a very limited extent. It is
not clear at all how the power and versatility of conformal testing can be achieved without
forgetting, and it appears that, at least for the time being, we should embrace the need for
forgetting and live with it.
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