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Abstract

In this paper, we consider high dimensional con-
textual bandit problems. Within this setting,
Thompson Sampling and its variants have been
proposed and successfully applied to multiple
machine learning problems. Existing theory on
Thompson Sampling shows that it has subop-
timal dimension dependency in contrast to up-
per confidence bound (UCB) algorithms. To
circumvent this issue and obtain optimal regret
bounds, (Zhang 2021) recently proposed to mod-
ify Thompson Sampling by enforcing more explo-
ration and hence is able to attain optimal regret
bounds. Nonetheless, this analysis does not per-
mit tractable implementation in high dimensions.
The main challenge therein is the simulation of
the posterior samples at each step given the avail-
able observations. To overcome this, we propose
and analyze the use of Markov Chain Monte Carlo
methods. As a corollary, we show that for contex-
tual linear bandits, using Langevin Monte Carlo
(LMC) or Metropolis Adjusted Langevin Algo-
rithm (MALA), our algorithm attains optimal re-
gret bounds of Õ(d

√
T ). Furthermore, we show

that this is obtained with Õ(dT 4), Õ(dT 2) data
evaluations respectively for LMC and MALA. Fi-
nally, we validate our findings through numerical
simulations and show that we outperform vanilla
Thompson sampling in high dimensions.

1 Introduction

Bandit models have proven to be one of the most success-
ful paradigms for decision making in random environments
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(Robbins 1952; Katehakis and Veinott 1987; Berry and Frist-
edt 1985; Auer, Cesa-Bianchi, and Fischer 2002; Lattimore
and Szepesvári 2020). Formally, it models an agent which
for some rounds has to choose between several potential
actions. The agent selects each action according to its cur-
rent policy and receives a reward once this action is made.
In this paper, we are especially interested in the contextual
bandit problem (Langford and Zhang 2007) which supposes
that the set of actions at each round and the corresponding
reward mean function depend on a context vector which
is specified by the environment under consideration. This
setting has been developed and studied intensively over the
past decade (Langford and Zhang 2007; Filippi et al. 2010;
Abbasi-Yadkori, Pál, and Szepesvári 2011; Chu et al. 2011;
Agrawal and Goyal 2013; Li, Lu, and Zhou 2017; Lale et al.
2019; Kveton et al. 2020a) and has been successfully applied
in various fields; see e.g. for applications in content recom-
mendation, mobile health and finance (Li, Chu, et al. 2010;
Agarwal, Bird, et al. 2016; Tewari and Murphy 2017; Boun-
effouf, Rish, and Aggarwal 2020). To address this problem,
bandits algorithms deal with the research and design of effi-
cient algorithms that seek to optimize the cumulative reward.
To this end, they recursively define a sequence of policies
which is adjusted at each round given the previous historical
state-action-reward tuples. The main challenge towards the
adaptation and implementation of these policies is to find a
compromise between (1) exploitation of the arms with good
empirical expected rewards and (2) exploration of the worse
arms with under-sampled rewards.

The approaches to maximizing cumulative reward (alterna-
tively, minimizing cumulative regret) can be broadly divided
into two categories. Maximum likelihood methods with op-
timistic adjustment (UCB) follow the principle of optimism
in the face of uncertainty and were adopted in (Auer, Cesa-
Bianchi, and Fischer 2002; Ménard and Garivier 2017; Chu
et al. 2011; Abbasi-Yadkori, Pál, and Szepesvári 2011; Li,
Lu, and Zhou 2017; Zhou, Li, and Gu 2020; Zenati et al.
2022; Foster and Rakhlin 2020). The second approach is
based on the Bayesian paradigm, and involves the sampling
of a sequence of posterior distributions associated with a
statistical model for the reward function; see e.g. , (Thomp-
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son 1933; Agrawal and Goyal 2012; Kaufmann, Cappé,
and Garivier 2012; Russo and Van Roy 2016; Russo and
Van Roy 2014; Jin et al. 2021). This is called Thomp-
son sampling (TS). Both of these aim to inject uncertainty
into the model in order to encourage ”exploration”-type be-
haviour, and have demonstrated their efficiency and robust-
ness in a wide range of applications. In addition, they come
with important theoretical guarantees, complementing each
other while providing comparable results empirically; see
(Chapelle and Li 2011). However, existing regret bounds for
TS are often sub-optimal when compared to analogous rates
for UCB. In particular, the bounds established in (Agrawal
and Goyal 2012) for Thompson Sampling (TS) applied to
linear models are of order Õ(d3/2

√
T ) where d is the di-

mension and T the time horizon. These bounds are worse by
a factor d than the ones proved in (Dani, Hayes, and Kakade
2008; Abbasi-Yadkori, Pál, and Szepesvári 2011) for Linear
UCB type algortihms. In fact (Zhang 2021) showed that this
discrepancy between usual TS and UCB cannot be reduced,
providing an instance where regret bounds for usual TS can
be lower bounded by Õ(T ) whereas results on UCB from
(Foster and Rakhlin 2020) achieve a cumulative regret of
order Õ(

√
KT ), where K is the number of possible ac-

tions. To circumvent this issue, (Zhang 2021) proposed to
modify the likelihood function in TS by adding a penalty
term to enforce more optimistic exploration. In addition,
the author was able to show that this version of TS, coined
Feel-Good Thompson sampling (FG-TS), comes with an
upper bound for the cumulative regret which is of order
Õ(d

√
T ). This matches the minimax regret lower bound

established in (Agarwal, Dudik, et al. 2012).

One defect in the methodology and the analysis of (Zhang
2021) is that they do not take into account that the se-
quence of posterior distributions associated with FG-TS
is intractable to sample from in practice, even for linear
contextual bandits. This is in contrast to the standard TS
algorithm. The objective of the present paper is precisely to
fill this gap. To address this problem, we propose the use of
Markov Chain Monte Carlo methods at each round to obtain
approximate samples from the target posterior distribution.

Organization of the paper and contributions. We sum-
marize our contributions as follows:

• We first introduce sFG-TS, a version of FG-TS where
in comparison to (Zhang 2021), the likelihood is a smooth
function of the parameter. This results in posteriors which
are also smooth under a smooth prior distribution, which is
beneficial since targeting smooth distributions is generally
easier for MCMC algorithms. This is especially true for
MCMC methods which are based on gradient information
(Durmus, Moulines, and Pereyra 2018).
• We propose MCMC-sFG-TS, in which the posteriors
at each round are approximately sampled from a generic
MCMC algorithm.
• We adapt and extend the analysis of (Zhang 2021) to the

setting where only approximate samples from the posteriors
are used in our TS algorithm.
• We apply our result to linear contextual bandit problems
and show that our method achieves optimal regret bounds
of order Õ(d

√
T ) when using the Langevin Monte Carlo

(LMC) or its metropolized version (MALA) at each round.
• In addition, we validate our results through some practical
examples: firstly, with a toy Gaussian problem and secondly
with the Yahoo! Front Page Today Module dataset Li, Chu,
et al. 2010. Our algorithms consistently outperform the
vanilla Thompson sampling benchmarks in both settings.

Notation For any two probability measures on a mea-
surable space (X,X ), we denote by ||µ − ν||TV =
sup |

∫
fdµ−

∫
fdν| where the supremum is taken over the

set of measurable and bounded (by one) functions from X to
R. For n ≥ 1, we refer to the set of integers between 1 and
n with the notation [n]. The d-multidimensional Gaussian
probability distribution with mean µ ∈ Rd and covariance
matrix Σ ∈ Rd×d is denoted by N(µ,Σ). The norm ∥·∥ will
refer to the 2-norm for vectors, and the operator norm for
matrices. By abuse of notation we will use the same symbol
for both a measure and its density.

2 Contextual bandit and Thompson
sampling methods

We describe the contextual Bandit framework below. Let X
be a contextual set and A : X → 2A be a set-valued action
map, where 2A denotes the power set of the action space
A. While we do not assume that A is finite, we suppose
supx∈X Card(A(x)) <∞. In the sequel, we consider poli-
cies π : X → A such that for any x ∈ X, π(x) ∈ A(x),
and π can be either deterministic or random. Given a hori-
zon T ∈ N∗ let the following procedure define the bandit
framework:

Contextual bandit process. At each iteration t ∈ [T ] and
given the past observations Dt−1 = {(xs, as, rs)}s<t:

• The agent observes a contextual vector xt ∈ X;
• The agent chooses a policy πt from some conditional
distribution Qt(·|Dt−1) and sets its action to at = πt(xt);
• The agent receives a reward rt with conditional distribu-
tion R(·|xt, at) given Dt−1 (where R is a Markov kernel on
(A× X)× R, where R is some subset of R).

Given a sequence of conditionals Q1:T = {Qt}t≤T , this
process defines a distribution on the sequence of policies
π1:T = {πt}t≤T still denoted by Q1:T by abuse of notation.
The bandit problem then consists in finding the conditional
{Qt}t≤T that minimizes the cumulative regret that we will
define below. However, as the reward distribution R is
unknown, the agent has to simultaneously learn this dis-
tribution and choose the best policy. This is a classical
exploitation/exploration problem. First, define the expected
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reward under the optimal action and the expected reward
under any particular action as the following respectively:

f∗(x) = max
a∈A(x)

∫
rR(dr|x, a) , (2.1)

f(x, a) =

∫
rR(dr|x, a) .

We define then the regret at time s with respect to a policy
πs and a context xs as

REGπs
s = f⋆(xs)− f(xs, πs(xs)) , (2.2)

and finally, we seek to find Q1:T such that the cumulative
regret is minimized

CREG(Q1:T ) = Eπ1:T∼Q1:T
[
∑

s≤T REGπs
s ] . (2.3)

Thompson sampling (TS) algorithm is a well known algo-
rithm which achieves this goal, with strong performance in
practice. First we present the standard Thompson sampling
framework to highlight its limitations. Firstly, consider the
Gaussian parametric model {R(TS)

θ : θ ∈ Rd} based on
g : Rd × X × A → R, where R

(TS)
θ (·|x, a) is the Gaus-

sian distribution with mean = g(θ, x, a) and variance 1/(2η)
for some η > 0. For example, in linear contextual ban-
dits (Chu et al. 2011; Abbasi-Yadkori, Pál, and Szepesvári
2011), g(θ, x, a) = ⟨a, θ⟩ assuming that A(x) ⊂ Rd for
any x ∈ X. Under the same condition, generalized linear
bandits (Filippi et al. 2010; Kveton et al. 2020a) consist
of g(θ, x, a) = σ(⟨a, θ⟩) for some link function σ. Finally,
in neural contextual bandits (Riquelme, Tucker, and Snoek
2018; Zhou, Li, and Gu 2020; Xu, Wen, et al. 2020), g is a
neural network taking as input a pair (x, a) and θ stands for
the weights of g. Then, the likelihood function associated
with the observations Dt at step t is given by

L
(TS)
t (θ|Dt) ∝ exp

(
−

t∑
s=1

ℓ(TS)(θ|xs, as, rs)

)
, (2.4)

where the negative log-likelihood ℓ(TS) is given by

ℓ(TS)(θ|x, a, r) = η(g(θ, x, a)− r)2 .

Then, at each iteration t ∈ [T ], TS considers the policy πt
determined, for any x, by

π
(TS)
t (x) = aθt(x) (2.5)

where aθ(x) = argmaxa g(θ, x, a). Here θt is a sam-
ple from the posterior distribution µ

(TS)
t (θ|Dt−1) ∝

L
(TS)
t (θ|Dt−1)p0(θ), where p0 is the prior on θ. However,

as mentioned in (Zhang 2021), the classic TS algorithm
may yield to sub-optimal cumulative regret. They described
a simple example where the cumulative regret defined in
(2.3) is linear (O(T )), which is sub-optimal compared to

the regret bound of O(
√
T log T ) achieved in (Foster and

Rakhlin 2020) for UCB models. This behavior comes from
the choice of Gaussians as the model, which leads to sub-
exploration of the action space.

To overcome this difficulty, (Zhang 2021) proposes a new
model where the classic negative log-likelihood is replaced
by the Feel-Good negative log-likelihood, defined by

ℓ(FG)(θ|x, a, r) = η(g(θ, x, a)−r)2−λmin(b, g⋆(θ, x)) ,

where λ, η and b are hyperparameters in R+ and g⋆(θ, x) =
maxa∈A(x) g(θ, x, a). Then the Feel-Good Thompson sam-
pling algorithm analysed in (Zhang 2021) considers the
resulting sequence of likelihoods {L(FG)

t }t≤T and sequence
of posteriors {µ(FG)

t }t≤T defined similarly to the classic TS
method, and defines the sequence of policies {π(FG)

t }t≤T as
in (2.5) where this time θt is a sample from µ

(FG)
t (·|Dt−1).

However, exact sampling from µ
(FG)
t (·|Dt−1) is usually not

tractable, and MCMC algorithms have to be used in their
place. This difficulty is not tackled in (Zhang 2021). Conse-
quently, the main objective and contribution of the present
paper to extend the analysis by considering the additional
complexity from using approximate samples of the poste-
riors. More precisely, we consider using gradient-based
MCMC schemes to generate these approximate samples.
The non-smoothness of the prior definition raises a chal-
lenge to this end. While gradient-based MCMC has been
developed to sample from such non-smooth densities, they
do not enjoy the same theoretical guarantees as smooth den-
sities. For that reason, we propose to consider a smoothed
posterior (sFG-TS) with the negative log-likelihood

ℓ(sFG)(θ|x, a, r) = η(g(θ, x, a)− r)2

− λ[b− ϕς(b− g⋆(θ, x))] ,

with ϕς(u) = log(1 + exp(ςu))/ς for u ∈ R and ς > 0 is
a hyperparameter which controls the regularity of ℓ(sFG).
Through an application of the Bayes theorem, assuming
that the prior distribution p0 is correctly specified, then the
posterior distribution at time t ≤ T can be defined as

µ
(sFG)
t (θ|Dt−1) ∝ e−

∑t−1
s=1 ℓ(sFG)(θ|xs,as,rs)p0(θ) . (2.6)

For simplicity, we denote µ(sFG)
t−1 (θ|Dt−1) by µ

(sFG)
t−1 (θ).

With this notation, we present the MCMC-sFG-TS method
in Algorithm 1. In this algorithm, the choice of the se-
quence of initial distributions {pt,0}t≥T and the sequence
of Markov kernels {Kt}t≤T is left arbitrary. Indeed, we
first extend the analysis provided in (Zhang 2021) to this
setting and derive general bounds depending on quantities
related to the convergence of Markov chains with Markov
kernels {Kt}t≤T and initialized with {pt,0}t≥T . We then il-
lustrate our results by considering two examples of MCMC
algorithms in particular, which we provide below.
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(1) Langevin Monte Carlo: For a fixed step t ∈ [T ], given
the target µ(sFG)

t and an initial distribution pt,0, Langevin
Monte Carlo (LMC) follows the Markov chain {θLt,k}

Nt

k=0

initialized θLt,0 ∼ pt,0, defined through the recursion:

θLt,k+1=θ
L
t,k+γt∇ logµ

(sFG)
t (θLt,k)+

√
2γtZt,k , (2.7)

where Nt ∈ N∗ is a number of iterations, γt a step size,
and {Zt,k}k∈[Nt] are i.i.d. samples from the d-dimensional
standard Gaussian. It amounts to choosing the Markov
kernel KL

t with transition density given for θ0, θ1 ∈ Rd by

kLt (θ0, θ1)∝exp
[
−∥θ1−θ0+γt∇ logµ

(sFG)
t (θ0)∥2/(4γt)

]
.

For better rates (Durmus, Majewski, and Miasojedow 2019),
in our analysis we consider the final parameter to be
the ergodic average after some burn-in time, i.e. θLt =

2/Nt

∑Nt

k=Nt/2
θt,k for some even Nt.

LMC is the Euler discretization of the overdamped Langevin
diffusion (Roberts and Tweedie 1996) and is a popular way
to sample approximately from a smooth positive target den-
sity. The Langevin diffusion is a Markov process associated
with solutions to the stochastic differential equation (SDE)
dθt,s = ∇ logµ

(sFG)
t (θt,s)ds +

√
2dBs, where (Bs)s≥0

is a d-dimensional standard Brownian motion. However,
while {θt,s}s≥0 admits µ(sFG)

t as its stationary distribution,
this is not the case for the Markov kernel associated with
(2.7). Therefore, LMC comes with a bias which is the same
order as the stepsize γt under appropriate conditions (Talay
and Tubaro 1990; Durmus and Eberle 2021).

(2) Metropolis Adjusted Langevin Algorithm: To correct
the discretization bias of the Langevin SDE, a Metropolis
filter can be applied at each iteration as suggested for ex-
ample in (Roberts and Tweedie 1996). This corresponds to
the Metropolis Adjusted Langevin Algorithm (MALA). For
technical reasons, we study the 1/2-lazy version of this algo-
rithm, which defines the Markov chain {θMt,k}

Nt

k=0 initialized
with θMt,0 ∼ pt,0 following the recursion:

• generate a proposal θ̃Mt,k+1 ∼ KL
t (θ

M
t,k, ·);

• with probability 1/αM
t (θMt,k, θ̃

M
t,k+1) set θMt,k+1 = θ̃Mt,k+1,

otherwise set θMt,k+1 = θMt,k, where

αM
t (θ0, θ1) = 1 ∧ µ

(sFG)
t (θ1)k

L
t (θ1, θ0)

µ
(sFG)
t (θ0)kLt (θ0, θ1)

.

For MALA, we take θt = θt,Nt
to be the last iterate.

We refer to the resulting methods as LMC-sFG-TS (resp.
MALA-sFG-TS) in the sequel.
Related Works Appoximate sampling in TS algorithms
is in general based on Laplace approximation (Chapelle and

Li 2011), which fits the mean and the covariance matrix of
a Gaussian distribution based on the target. This is then
used to approximately sample from the posterior. However,
high-dimensional Gaussian distribution with general covari-
ance matrices may be expensive to compute. Further, in
non-linear models such as generalized linear bandits and
neural contextual bandits, the sequence of posteriors may
be far from Gaussian distributions and Laplace approxima-
tion may fail in capturing their complex properties. Finally,
Laplace approximation does not come with any theoretical
guarantees on the quality of the resulting approximation.

The use of LMC or Stochastic Gradient Langevin Dynamics
in Thompson Sampling for non-contextual bandits has been
proposed in (Mazumdar et al. 2020). This idea has been
recently been extended to contextual bandits in (Xu, Zheng,
et al. 2022), which introduced LMC-TS. Algorithm 1 ex-
tends this method in two ways: (1) by considering the more
complex likelihood (2.4), (2) taking as an input the MCMC
algorithms which are used to sample in sFG-TS. Finally,
(Xu, Zheng, et al. 2022) is only applicable for linear ban-
dits, where the TS posteriors are Gaussian distributions. In
contrast, we are able to establish very generic bounds for
MCMC-sFG-TS by adapting and extending the FG-TS the-
ory in (Zhang 2021). We specify these results in Section 3.3
to the particular instance of linear bandits, when the MCMC
method used in MCMC-sFG-TS is LMC or MALA.

In Algorithm 1, the function F selects an appropriate
sample θt from the MCMC algorithm. Usually, we take
F ({θt,k}k≤Nt) = θt,Nt .

Algorithm 1 MCMC-sFG-TS

Initialize:
D0 = ∅

for t = 1, . . . T do
receive xt ∈ X
initialize the Markov chain θt,0|Dt−1 ∼ pt,0 where

pt,0 may depend on Dt−1;
for k = 0, . . . Nt − 1 do

θt,k+1|Dt−1 ∼ Kt(θt,k, ·) where Kt is a Markov
kernel which targets µ

(sFG)
t (·|Dt−1), e.g., LMC or

MALA
end for
choose θt = F ({θt,k}k≤Nt)
choose at = argmaxa∈A(xt) g(θt, xt, a)
receive the reward rt ∼ R(·|xt, at)

end for

3 Main results

3.1 Analysis of MCMC-sFG-TS

We make these assumptions on the reward distribution.

H 1. (Sub-Gaussian Reward Distribution) There exists c >
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0 such that for any x ∈ X, a ∈ A(x), ρ > 0,

log

∫
exp{ρ(r − f(x, a))}R(dr|x, a) ≤ cρ2 ,

where f is defined in (2.1). Furthermore, assume
supx∈X , a∈A(x) |f(x, a)| ≤ bf .

Note that Assumption 1 is automatically satisfied if the
rewards are bounded almost surely, i.e, for any x and a,
R(·|x, a) has a bounded support.

We state our main result regarding the cumulative regret
for MCMC-FG-TS. First recall that we have assumed a
finite action set A and therefore we can define K =
maxx∈X Card(A(x)). Second, we denote by µ̂

(sFG)
t the

distribution of θt given Dt−1, as defined in Algorithm 1,
and define for t ∈ [T ], δt = ||µ̂(sFG)

t − µ
(sFG)
t ||TV. Note

that the sequence (xt, at, rt, θt)
T
t=0, defined in Algorithm

1, is a Markov chain, possibly inhomogeneous, and we
define by ET

ν0
and PT

ν0
the canonical expectation and prob-

ability respectively associated with this process and with
initial distribution ν0. Define the filtration (Ft)t∈[T ] by
Ft = σ{{xs, as, rs}s∈[t]}. With this notation, the cu-
mulative regret associated with the distribution Q(sFG)

1:T de-
fined by Algorithm 1 can be written as CREG(Q(sFG)

1:T ) =

ET
ν0
[
∑

s≤T f⋆(xs)− rs] .

Theorem 1. Assume that H 1 holds and let ς > 0. If η is
chosen according to (A.3) with ϵ ∈]0, 1[, then there exists
C1, C1, C2 and C3, independent of ϵ, η, λ, d, T,K such that

CREG(Q(sFG)
1:T ) ≤ λ

ηϵ
KT +C1λT − ZT

λ

+ (C2 +
C3

λ
)

T∑
t=0

ET
ν0
[δt] ,

where

ZT = ET
ν0

log
∫
exp
(
−
∑T

s=1 ∆ℓ
(sFG)(θ̃, xs, as, rs)

)
dp0(θ̃) ,

and

∆ℓ(sFG)(θ, x, a) = η
{
(g(θ, x, a)− r)2−(f(x, a)− r)2

}
−λ{b−ϕς(b−g⋆(θ, x))−f⋆(x)} . (3.1)

Proof. We provide here the main steps leading to Theo-
rem 1 based on Lemmas which are stated and proved in
Section A.1 of the supplement.

(A) Regret decomposition. The first step of the proof is to
decompose the expected regret at time s into two terms
as follows

ET
ν0
[REGπs

s ] = ET
ν [Bxs

(θs, a
θs(xs))]

− ET
ν [FGxs

(θs, a
θs(xs)] (3.2)

where

Bx : (θ, a) → gb(θ, x, a)− f(x, a) ,

gb(θ, x) = max{−b, min(b, g⋆(θ, x))} ,
FGx : (θ, a) 7→ gb(θ, x, a)− f∗(x) .

On the right hand side, the first term is referred to as the
Bellman error in the reinforcement learning literature
(Bellman 1966), and the second one as the Feel-Good
exploration term. The proof of the decomposition is
provided in Lemma 6.

(B) Bellman error. By using Lemma 7 we can bound the
Bellman error by

ET
ν0
[Bxs

(θs, a
θs(xs))|xs,Fs−1]

≤ inf
γ>0

(
K

4γ
+ γ ET

ν0
[ψ(xs, a

θs(xs))|xs,Fs−1]

)
,

where ψ(xs, a) = ET
ν0
[LSbxs

(θs, a)|xs,Fs−1], and

LSbx : (θ, a) 7→ (gb(θ, x, a)− f(x, a))2 . (3.3)

This step allows us to decouple the contribution of the
random parameter θs and its associated action aθs(xs)
to the Bellman error. In the right hand side, we first
take the expectation with respect to the parameter for
a fixed action, and then with respect to the random
action aθs(xs). This inequality holds for any γ > 0, in
particular for γ = 2Cη/(3λ), with

Cη = 1.5η(1− 4cη)[1 − 0.75η(1− 4cη)(b+ bf )
2] ,

(3.4)
where c is the sub-Gaussian coefficient and bf is the
supremum of the true reward function, both defined
in H 1. Lemma 12 shows that 2Cη/(3λ) is strictly
positive. Hence, the Bellman error bound becomes

ET
ν0
[Bxs

(θs, a
θs(xs))|xs,Fs−1] (3.5)

≤ 3Kλ

8Cη
+

2Cη

3λ
ET
ν0
[ψ(xs, a

θs(xs))|xs,Fs−1] .

In the next step of the proof, we focus on bounding the
resulting error ET

ν0
[ψ(xs, a

θs
s (xs))|xs,Fs−1]. More

precisely, given Ds−1, x ∈ X, a ∈ A(x), Lemma 8
with τ = 3η(1− 4cη)/2 (which is positive according
to Lemma 12) gives

Cη E
θ∼µ̂

(sFG)
s

[LSbx(θ, a)] (3.6)

≤ − logE
θ∼µ

(sFG)
s

[e−3η(1−4cη)LSx(θ,a)/2]

+ Cη(b+ bf )
2δs ,

where LSx is defined in (3.3), and

LSx : (θ, a) 7→ (g(θ, x, a)− f(x, a))2 .

Next, we will focus on the second term in the regret
decomposition (3.2), the Feel-Good exploration term.



Tight Regret and Complexity Bounds for Thompson Sampling via Langevin Monte Carlo

(C) Feel Good exploration term. Similarly, given Ds−1,
for any x ∈ X, Lemma 9 with τ = 3λ gives

− E
θ∼µ̂

(sFG)
s

[FGx(θ, a
θ(x))] (3.7)

≤ − 1

3λ
logE

θ∼µ
(sFG)
s

[e3λFGx(θ,a
θ(x))]

+
3λ(b+ bf )

2

2
+ (b+ bf )δs .

Now, the Bellman error bound (3.5) and the Feel-Good
bound (3.7) can be merged.

(D) Combining the bounds. The combination of (3.6) and
(3.7) gives

E
θ∼µ̂

(sFG)
s

[
2Cη

3λ
LSbx(θ, a)− FGx(θ, a

θ(x))

]
≤ − 2

3λ
logE

θ∼µ̂
(sFG)
s

[e−3η(1−4cη)LSx(θ,a)/2]

− 1

3λ
logE

θ∼µ
(sFG)
s

[e3λFGx(θ,a
θ(x))]

+

[
2Cη(b+ bf )

2

3λ
+ (b+ bf )

]
δs +

3λ

2
(b+ bf )

2 .

Moreover, given Ds−1, we can use Lemma 10 to get
for any x ∈ X and a ∈ A(x),

E
θ∼µ̂

(sFG)
s

[
2Cη

3λ
LSbx(θ, a)− FGx(θ, a

θ(x))

]
≤ − 1

λ
logE

θ∼µ
(sFG)
s

[Γ(a, x)]

+

[
2Cη(b+ bf )

2

3λ
+ (b+ bf )

]
δs

+
3λ

2
(b+ bf )

2 , (3.8)

setting Γ(a, x) = Er∼R(·|x,a)[e
−∆ℓ(sFG)(θ,x,a,r)]. We

now have all tools to bound the cumulative regret and
conclude the proof.

(E) Cumulative Regret Bound. Using the regret decom-
position (3.2) and the Bellman error bound (3.5), we
have

ET
ν0
[REGπs

s ]

≤ 3Kλ

8Cη
+

2Cη

3λ
ET
ν0

[
E
θ∼µ̂

(sFG)
s

[LSbxs
(θ, as)]

]
− ET

ν0

[
E
θ∼µ̂

(sFG)
s

[FGxs
(θ, aθ(xs)]

]
.

Then Eq. (3.8) gives

ET
ν0
[REGπs

s ]

≤ 3λK

8Cη
− 1

λ
ET
ν0

[
logE

θ∼µ
(sFG)
s

[Γ(as, xs)]
]

+

[
2Cη(b+ bf )

2

3λ
+ (b+ bf )

]
ET
ν0
[δs]

+
3λ

2
(b+ bf )

2 .

Finally, we can use Lemma 11 to get,

Zt − Zt−1 ≤ ET
ν0

[
logE

θ∼µ
(sFG)
s

[Γ(as, xs)]
]
.

We conclude the proof by summing over t to get,

CREG(Q1:T ) =
∑
s≤T

ET
ν0
[REGπs

s ]

≤
[
3λK

8Cη
+

3λ

2
(b+ bf )

2

]
T − ZT

λ

+

[
2Cη(b+ bf )

2

3λ
+ (b+ bf )

]∑
s≤T

ET
ν0
[δs]

≤ λKT

ϵη
+C1λT + (C2 +

C3

λ
)
∑
s≤T

ET
η0
[δs]−

ZT

λ
,

where C1 = 3(b + bf )
2/2, C2 = (b + bf ) and C3 =

(b+ bf )
2/4, these constants do not depend neither on

η nor in λ. The last inequality uses Lemmas 13-14.

3.2 Regret Bounds for Bandits

We now specify the bounds provided by Theorem 1 assum-
ing the following condition on the prior distribution p0 and
the family of models {(x, a) 7→ g(θ, x, a) : θ ∈ Rd}.
H 2. Assume that log p0 is continuously differentiable, L0-
smooth and m0-strongly concave for some L0 ≥ m0 ≥ 0.
This implies that the following holds for all θ1, θ2 ∈ Rd:

∥∇ log p0(θ2)−∇ log p0(θ1)∥ ≤ L0∥θ1 − θ2∥

⟨∇ log p0(θ2)−∇ log p0(θ1), θ1 − θ2⟩ ≥
m0

2
∥θ1 − θ2∥2 .

In addition, we assume that the family of models {(x, a) 7→
g(θ, x, a) : θ ∈ Rd} is regular enough and close to the true
model, in the following senses.
H 3. (Uniform Smoothness) Suppose that for all θ1, θ2 ∈
Rd, x ∈ X, a ∈ A(x), the following bound holds for some
Lg ∈ R+:

|g(θ1, x, a)− g(θ2, x, a)| ≤ Lg∥θ1 − θ2∥ .

H 4. (Well Specified Model) Suppose that there exist θ∗ ∈
Rd and ξ ∈ R+ such that for all x ∈ X, a ∈ A(x):

|g(θ∗, x, a)− f(x, a)| ≤ ξ .

Corollary 2. Let Assumptions H 1-4 hold. For ω, η, λ spec-
ified in (A.4), and T large enough (specified in (A.6)), and
for constants C4,C5,C6 not dependent on ω, ϵ, d,K, T

CREG(Q(sFG)
1:T )

≤ C4

ϵ

√
ωdKT log(dT ) +

(
4ξ + ϕς(

Lg

T
+ ξ + bf − b)

)
T

+C5

√
ωKT

d log(dT )

(
− log p0(θ∗) + Lg + ξT + ξ2T

)
+C6

(
1 +

√
ωKT

d log(dT )

)
T∑

t=0

ET
ν0
[δt] + 4Lg.
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Here θ∗ is the parameter in Assumption 4.

The proof of this result along with explicit bounds are given
in Section A.2 of the supplement.

3.3 Linear Bandits

A concrete example where H 2-4 hold is the linear contex-
tual bandits framework:

Example 3. (Linear Gaussian Function Class) Consider
the function class with f(x, a) = ⟨φ(x, a), θ∗⟩, with
θ∗ ∈ Rd and x ∈ X, a ∈ A(x), with φ : X × A →
Rd being some feature map. Let the reward be abso-
lutely bounded by some constant br almost surely, and let
sup(x,a)∈X×A(x)∥φ(x, a)∥ ≤

√
M with 0 < M < ∞. Fi-

nally, let |A(x)| ≤ d for all x ∈ X.

Remark: The absolute bound on the reward is only needed
to guarantee the almost sure complexity bounds on the gra-
dient descent step.

We now define an appropriate notion of complexity, which is
different from the typical definition seen in bandit literature.

Definition 4. (Data Complexity) The agent has access to
both the value g(θ, x, a) and the gradient ∇g(θ, x, a) for
any θ ∈ Rd, x ∈ X, a ∈ A(x). Then, if g is evaluated at
times and ∇g is evaluated bt times at any timestep t, then
we define Gt = at + bt as the data complexity at time t,
and CG =

∑
t≤T Gt be the cumulative data complexity.

Theorem 5. Consider Example 3 with the linear func-
tion class g(θ, x, a) = ⟨φ(x, a), θ⟩ and a Gaussian prior
N(0, m−1

0 Id), with m0 > 0. Assume H 1 holds, let
ς, ωLG, λ, η, b be as specified in (A.7), and let T be large
enough (specified in (A.8)). Assume in addition let there
exist κ > 0 such that almost surely, for any t ∈ [T ] the
Hessian matrix of − logµ

(sFG)
t (θ) (2.6) satisfies for some

mt, Lt > 0:

LtId ⪰ −∇2 logµ
(sFG)
t (θ) ⪰ mtId , Lt/mt ≤ κ .

(a) Then, starting from an initial point θ̂∗0 = θ0, we can
find at each round recursively θ̂∗t satisfying ∥θ̂∗t − θ∗t ∥ ≤√
d/(2Lt) using the gradient descent algorithm to maximize

logµ
(sFG)
t (θ) and initialized with θ̂∗t−1. Here θ∗t is the max-

imizer of logµ(sFG)
t (θ). The cumulative data complexity

of this procedure is of order CGDκT
2 log(brLt

√
MT/m0),

for some absolute constant CGD, and the step size is
2/(Lt + mt).

(b) In addition setting pt,0 = N(θ̂∗t , (Lt)
−1Id), for any of

the following standard choices of Markov kernel, we attain
the regret bound for some constant C7 not dependent on

ωLG, ϵ, d,K, T,M

CREG(Q(sFG)
1:T )

≤C7

√
ωLGT log3(dT )

(
d(ϵ ∧ m0)

−1
+
√
M+m0∥θ∗∥2

)
,

with the number of oracle calls stated below:

• KL (Langevin Monte Carlo): has CGLMC ≤
CLCκdT

4 log(4
√
dκ/m0) cumulative data complex-

ity, with step-size γLt = AL/(max(κ, Lt)dT
2), Cκ =

max(LT /m
2
0, LT ).

• KM (Metropolis Adjusted Langevin Monte Carlo):
has CGMALA ≤ CMκdT

2(1 ∨
√
κd−1) log(dT 2)

cumulative data complexity, with step-size γMt =

AM/(Ltdmax(1,
√
κd−1))

Here CL, CM, AL,AM are absolute constants depending
on which MCMC algorithm was chosen.

The proof of this result along with explicit bounds are given
in Section A.3 of the supplement.

Remarks: We note that the Gaussian prior can be replaced
with an arbitrary prior satisfying Assumption 2, so long as
a good bound on p0(θ∗) exists. The Lipschitz constant can
be bounded by Lt ≤ 2(m0 + tλς

√
M + tη

√
M).

We can compare Theorem 5 with (Xu, Zheng, et al. 2022,
Theorem 4.2). (Xu, Zheng, et al. 2022, Theorem 4.2) has a
bound on the cumulative data complexity for LMC-TS of
order κT 2, which is used to obtain a cumulative regret of or-
der d3/2T 1/2. In contrast, for our results under MALA, we
pay an extra factor of d in the cumulative data complexity in
order to remove the suboptimal factor of d1/2 in the result-
ing cumulative regret. We see this increased complexity as
a necessary cost in order to obtain our tighter regret bounds.
It may be possible to more finely balance this trade-off by
e.g. annealing the Feel-Good parameter, but we defer this
investigation to subsequent work.

4 Experiments

In this section, we illustrate the benefits of our methodology
on several contextual bandit benchmarks associated with
both synthetic and real data. In our comparisons, we first
perform grid searches for the hyperparameters, and then fix
the best ones. Additional details about experimental design
are provided in Section B of the supplement.

4.1 Toy example

We first illustrate our approaches on a synthetic contextual
bandit problem. At each round t ∈ [T ], the agent observes
a contextual vector sampled from a 4 dimensional Gaussian
distribution, i.e., xt ∼ N(04, I4). Then, the agent has to
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choose an action at between K = 5 arms, and finally, re-
ceives a reward rt = φ(xt, at)

⊤θ⋆ + ϵ where ϵ ∼ N(0, σ2),
θ⋆ ∈ R20 is the true parameter of the model, σ is the
noise level of the problem. Here φ allows us to transform
the context vector and the arm index into a vector v such
as, φ(x, 0) = (x, 0, . . . , 0), φ(x, 1) = (0, x, 0, . . . ) and
φ(x, d − 1) = (0, . . . , 0, x). We consider the correspond-
ing model defined as g(θ, x, a) = φ(x, a)⊤θ. Under these
settings, note that posterior distributions associated with TS
are Gaussian distributions and are therefore tractable.

In Figure 1, we compare our methodology MCMC-sFG-
TS using LMC and MALA with Linear TS, along with
LMC-TS. For completeness, we also consider TS where at
each iteration, we approximate the TS posterior (2.4) with
MALA. This simply corresponds to MCMC-sFG-TS but
choosing λ = 0. For these results, we only display the best
combination of hyperparameters for each algorithm. More
details for the experiment settings are provided in Section B.
Note that for MALA-sFG-TS and MALA-TS, we initial-
ize MALA with the output of a gradient descent scheme
using full-batch gradient. Moreover, we also consider Lin-
ear UCB for which results can be found in Section B in
the supplement. We observe that adding the Feel-Good
framework allow us to converge to a better regret. Similarly,
approximating the posterior using MALA seems to improve
the algorithmic performance by converging faster to the tar-
get. Finally, by combining the Feel-Good adjustment with
MALA, we obtain MALA-sFG-TS which provides the best
cumulative regret.

Similar conclusions are drawn on different bandit settings,
including logistic and quadratic bandits trained with bench-
mark algorithms; see Section B in the supplementary.

4.2 Real-World dataset

In this subsection, we compare the algorithms on the Yahoo!
Front Page Today Module dataset, which is a standard bench-
mark for contextual bandits (Li, Chu, et al. 2010; Mellor
and Shapiro 2013; Liu, Lee, and Shroff 2018). This seeks to
model a user’s interest in a specified news article using the
contextual bandit framework. At each round, we consider a
user and a pool of articles. Here, the context is composed by
a user-features vector and user-article interaction informa-
tion. In addition, the set of arms is the pool of articles. Then,
given a current bandit model, we choose an article and check
if it is clicked. If so, a reward of 1 is incurred; otherwise,
the reward is 0. With this definition and our bandit formu-
lation, we seek here to maximize the average expected cu-
mulative reward T−1EΠ∼Q1:T

[
∑T

t=1 f(xt, πs(xt))], which
is precisely the click-through rate (CTR) in (Li, Chu, et al.
2010). A more detailed description on the implementation
can be found in (Li, Chu, et al. 2010). In our experiments,
we consider just a subset of 500 thousand recommendations
made the 3th of May 2009, with the statistics reported over
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Figure 1: Cumulative regret for the toy example. Whole
curve (Top) and its zoomed version (Bottom) are repre-
sented. Statistics are reported over 50 runs.
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Figure 2: Relative CTR for the Yahoo recommendation task

10 trials. For each run the dataset is shuffled.

In Figure 2 we compare the different approaches using their
relative CTR, which is the algorithm’s CTR divided by that
of a baseline random policy. It can be seen that LMC-sFG-
TS and MALA-sFG-TS deliver the best recommendations
amongst their competitors.

5 Conclusion

In this work we proposed and analyzed the MCMC-sFG-
TS algorithm for contextual bandits, which is a tractable
implementation of Thompson sampling with an optimistic
Feel-Good adjustment term. We showed that this obtains
the optimal regret bound of Õ(d

√
T ) in high dimensions, in

contrast to the Õ(d3/2
√
T ) that was previously known for

MCMC algorithms in the Thompson sampling setting. We
also validated the superior performance of this algorithm in
practice, relative to the standard Thompson sampling.
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Further extensions to our approach include non-quadratic
log-likelihoods, which would extend our results to classes
such as logistic bandits and bandits with generalized linear
models. Finally, applying our framework to some classes
of reinforcement learning problems would be an important
step towards a general understanding of Thompson sampling
algorithms in that setting.
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A Postponed Proofs

A.1 Proof of Theorem 1

Lemma 6. (Regret decomposition) The regret at time s can be decomposed into two terms as follows

ET
ν0
[REGπs

s ] = ET
ν0
[gb(θ, xs, a

θ
s(xs))− f⋆(xs, a

θ
s(xs))]

− ET
ν0
[gb(θ, xs, a

θ
s(xs))− f⋆(xs)] .

Proof. Using the definition of REGπs
s in (2.2) and the definition of policy πs in (2.5), we have

ET
ν0
[REGπs

s ] = ET
ν0
[f⋆(xs)− f(xs, πs(xs))]

= ET
ν0
[f⋆(xs)− f(xs, a

θ
s(xs))]

= ET
ν0
[gb(θ, xs, a

θ
s(xs))− f(xs, a

θ
s(xs))]− ET

ν0
[gb(θ, xs, a

θ
s(xs))− f⋆(xs)] .

Lemma 7. Let b > 0. Then, we have the following decoupling bound

ET
ν0
[gb(θs, xs, a

θs(xs))− f(xs, a
θs(xs))|xs,Fs−1]

≤ inf
γ>0

(
K/(4γ) + γ ET

ν0
[ψxs

(aθss (xs))|xs,Fs−1]
)
,

where ψxs
(a) = ET

ν0
[LSbxs

(θs, a)|xs,Fs−1].

Proof. Note first that

ET
ν0
[gb(θs, xs, a

θs(xs))− f(xs, a
θs(xs))|xs,Fs−1] ≤ ET

ν0
[|gb(θs, xs, aθs(xs))− f(xs, a

θs(xs))||Fs−1, xs]

=
∑

a∈A(xs)

ET
ν0
[1{aθs(xs) = a}|gb(θs, xs, a)− f(xs, a)||Fs−1, xs] .

(A.1)

Consider for any ã ∈ A(xs), q(ã|xs) = ET
ν0
[1{aθs(xs) = ã}|Fs−1, xs]. Then for any γ > 0, we have

Eν0 [1{aθs(xs) = a}|gb(θs, xs, a)− f(xs, a)||Fs−1, xs]

≤ ET
ν0
[
1{aθs(xs) = a}

4γq(a|xs)
+ γq(a|xs)(gb(θs, xs, a)− f(xs, a))

2|Fs−1, xs]

= 1/(4γ) + γq(a|xs)ET
ν0
[(gb(θs, xs, a)− f(xs, a))

2|Fs−1, xs]

where the inequality comes from the algebraic inequality z1 · z2 ≤ z21/2 + z22/2 and the last equality from the definition of
the distribution q. Plugging the previous inequality in (A.1), and using that for any x ∈ X,Card(A(x)) ≤ K, then we have

ET
ν0
[gb(θs, xs, a

θs(xs))− f(xs, a
θs(xs))|Fs−1, xs]

≤ K/(4γ) + γ
∑

a∈A(xs)

q(a|xs)ET
ν0
[(gb(θs, xs, a)− f(xs, as))

2|Fs−1, xs]

= K/(4γ) + γ ET
ν0
[ψ(xs, a

θs
s (xs))|xs,Fs−1] .

Lemma 8. Assume H 1. Given Ds−1, for any x ∈ X, a ∈ A(x) and τ > 0, it holds

Cτ E
θ∼µ̂

(sFG)
s

[LSbx(θ, a)] ≤ − logE
θ∼µ

(sFG)
s

[exp{−τLSx(θ, a)}] + Cτ (b+ bf )
2δs ,

where
Cτ = τ [1− τ(b+ bf )

2/2] .
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Proof. Since for any z ≤ 0, we have exp z ≤ z2/2 + z + 1, we obtain for any τ > 0,

E
θ∼µ

(sFG)
s

[exp{−τLSx(θ, a)}] ≤ E
θ∼µ

(sFG)
s

[exp{−τLSbx(θ, a)}]

≤ −τ E
θ∼µ

(sFG)
s

[LSbx(θ, a)] +
τ2

2
E
θ∼µ

(sFG)
s

[LSbx(θ, a)
2] + 1

≤ −τ [1− τ(b+ bf )
2

2
]E

θ∼µ
(sFG)
s

[LSbx(θ, a)] + 1

≤ −Cτ E
θ∼µ̂

(sFG)
s

[LSbx(θ, a)] + 1 + Cτ (b+ bf )
2δs ,

where the first inequality uses LSx(θ, a) ≥ LSbx(θ, a), third inequality LSbx ≤ (b+ bf )
2 and the last inequality the definition

of the total variation distance. Moreover, using log z ≤ z − 1 for z ≤ 1, we have,

logE
θ∼µ

(sFG)
s

[exp{−τLSx(θ, a)}] ≤ E
θ∼µ

(sFG)
s

[exp{−τLSx(θ, a)}]− 1

≤ −Cτ E
θ∼µ̂

(sFG)
s

[LSbx(θ, a)] + Cτ (b+ bf )
2δs .

Lemma 9. Assume H 1. Given Ds−1, for any x ∈ X, a ∈ A(x) and τ > 0, the Feel-Good exploration term is bounded as
follows

− E
θ∼µ̂

(sFG)
s

[FGx(θ, a
θ(x))] ≤ −1

τ
logE

θ∼µ
(sFG)
s

[exp(τFGx(θ, a
θ(x)))] +

τ

2
(b+ bf )

2 + (b+ bf )δs .

Proof. Using Hoeffding’s lemma since FGx(θ, a
θ(x)) ∈ [−(b+ bf ), (b+ bf )], for any τ > 0, we have

logE
θ∼µ

(sFG)
s

[exp{τFGx(θ, a
θ(x))}] ≤ τ E

θ∼µ
(sFG)
s

[FGx(θ, a
θ(x))] +

τ2

2
(b+ bf )

2

≤ τ E
θ∼µ̂

(sFG)
s

[FGx(θ, a
θ(x))] +

τ2

2
(b+ bf )

2 + τ(b+ bf )δs ,

where the second line uses the definition of the total variation distance.

Lemma 10. Assume H 1. Given Ds−1, for any x ∈ X, and a ∈ A(x),

− 2

3
log
(

Eθ∼µs(sFG)[e
−3η(1−4cη)LSx(θ,a)/2]

)
− 1

3
log
(

E
θ∼µ

(sFG)
s

[e3λFGx(θ,a
θ(x))]

)
≤ − logE

θ∼µ
(sFG)
s , r∼R(·|x,a)[e

−∆ℓ(sFG)(θ,x,a,r)] ,

where ∆ℓ(sFG)(θ, x, a, r) is defined in (3.1).

Proof. Firstly, we can apply the Hölder’s inequality with p = 3/2 and q = 3:

logE
θ∼µ

(sFG)
s

[e−η(1−4cη)LSx(θ,a)+λFGx(θ,a
θ(x))] (A.2)

≤ 2

3
logE

θ∼µ
(sFG)
s

[e−3η(1−4cη)LSx(θ,a)/2] +
1

3
logE

θ∼µ
(sFG)
s

[e3λFGx(θ,a
θ(x))] .

Subsequently, by Assumption 1 with ρ = 2η(f(x, a)− g(θ, x, a)), if we denote ϵ = r− f(x, a), we find that: ∃ c > 0 such
that ∫

exp{−2η(f(x, a)− g(θ, x, a))ϵ}R(dr|x, a) ≤ exp{4cη2(f(x, a)− g(θ, x, a))2}

= exp{4cη2LSx(θ, a)} .

Recall the definition of ∆ℓ(sFG) in (3.1). Then,

−∆ℓ(sFG)(θ, x, a, r) = −η(ϵ+ f(x, a)− g(θ, x, a))2 + ηϵ2 + λ(b− ϕς(b, g⋆(θ, x))− f⋆(x))

= −2ηϵ(f(x, a)− g(θ, x, a))− η(f(x, a)− g(θ, x, a))2 + λ(b− ϕς(b, g⋆(θ, x))− f⋆(x))

≤ −2ηϵ(f(x, a)− g(θ, x, a))− η(f(x, as)− g(θ, x, a))2 + λ(gb(θ, x)− f⋆(x))

= −2ηϵ(f(x, a)− g(θ, x, a))− ηLSx(θ, a) + λFGx(θ, a
θ(x)) .



Tom Huix, Matthew Zhang, Alain Durmus

Combining the sub-Gaussian equation with (A.2) and the bound of −∆ℓ(sFG), we find

≤ −2

3
logE

θ∼µ
(sFG)
s

[e−3η(1−4cη)LSx(θ,as)/2]− 1

3
logE

θ∼µ
(sFG)
s

[e3λFGx(θ,a
θ(x))]

≤ − logE
θ∼µ

(sFG)
s , r∼R(·|x,a)[e

−2η(f(x,a)−g(θ,x,a))ϵ−ηLSx(θ,a)+λFGx(θ,a
θ(x))]

≤ − logE
θ∼µ

(sFG)
s , r∼R(·|x,a)[e

−∆ℓ(sFG)(θ,x,a,r)] .

Lemma 11.
Zt − Zt−1 ≤ ET

ν0

[
logE

θ∼µ
(sFG)
s

[Er∼R(·|xs,as)[e
−∆ℓ(sFG)(θ,xs,as,r)]]

]
where

Zt = ET
ν0

log

∫
exp

(
−

t∑
s=1

∆ℓ(sFG)(θ̃, xs, as, rs)

)
dp0(θ̃) ,

Proof. The proof is provided in (Zhang 2021) but has been rewritten for completeness.

For ease of notation, let define Kt(θ|Dt) = exp{−
∑t

s=1 ∆ℓ
(sFG)(θ, xs, as, rs)} such that Zt = ET

ν0
[logEθ∼p0

[Kt(θ|Dt)].
Then we have

Zt − Zt−1 = ET
ν0

log
Eθ∼p0

[Kt(θ|Dt)]

Eθ∼p0
[Kt−1(θ|Dt−1)]

= ET
ν0

logEθ∼p0

[
Kt(θ|Dt)

Eθ̃∼p0
[Kt−1(θ̃|Dt−1)]

]

= ET
ν0

logEθ∼p0

[
Kt−1(θ|Dt−1)e

−∆ℓ(sFG)(θ,xt,at,rt)

Eθ̃∼p0
[Kt−1(θ̃|Dt−1)]

]
= ET

ν0
logE

θ∼µ
(sFG)
t

[e−∆ℓ(sFG)(θ,xt,at,rt)]

≤ ET
ν0

[
logE

θ∼µ
(sFG)
s

[Er∼R(·|xs,as)[e
−∆ℓ(sFG)(θ,xs,as,r)]]

]
,

where the last line uses Jensen’s inequality.

A.1.1 Technical Lemmas

Lemma 12. Let c > 0 be given in H 1. If η is chosen according to the following strategy,

for any ϵ ∈]0, 1[,

0 < η ≤

{
3/(16c) if 1

16c2 ≤ 1−ϵ
3c(b+bf )2

min
(

3
16c ,

1
8c −

√
1

64c2 − 1−ϵ
3c(b+bf )2

)
otherwise.

(A.3)

Then we have these useful properties

(i) η > 0 ,

(ii) η ≤ 3/(16c) < 1/(4c) ,

(iii) 1− (3η(1− 4cη)(b+ bf )
2)/4 ≥ ϵ ,

(iv) Cη > 0 where Cη is defined in (3.4).

Proof. The results for (i) and (ii) are obvious regarding the definition of η in (A.3).

Moreover, P(η) = η2 − η/(4c)+ (1− ϵ)/(3c(b+ bf )
2s) is a second order polynomial with determinant ∆P = 1/(16c2)−

4(1− ϵ)/(3c(b+ bf )
2).
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If ∆P ≤ 0 ⇔ (b+ bf )
2 ≤ 64(1− ϵ)c/3, then P is always positive on its domain.

However, if ∆P > 0 ⇔ (b+ bf )
2 > 64(1− ϵ)c/3 then P admits two zeros

x1 =
1

8c
−

√
1

64c2
− 1− ϵ

3c(b+ bf )2
≥ 0

x2 =
1

8c
+

√
1

64c2
− 1− ϵ

3c(b+ bf )2
≥ 0

As x1 is obviously positive, by taking η ≤ x1 we have P(η) positive and then (iii) is true.

Finally, given (i), (ii) and (iii), Cη is obvisouly strictly positive.

Lemma 13. If η is chosen according to A.3, then we have,

3λKT

8Cη
≤ λKT

ϵη
.

Proof. By definition of Cη in (3.4) and using the property (iii) of Lemma 12, then we have

Cη = 1.5η(1− 4cη)[1− 3η(1− 4cη)(b+ bf )
2/4]

≥ 1.5η(1− 4cη)ϵ

Moreover η ≤ 3/(16c) we have 1− 4cη ≥ 1/4. Hence,

Cη ≥ 3ϵ

8
η .

This last inequality concludes the proof.

Lemma 14. If η is chosen according to (A.3), then

2Cη(b+ bf )
2

3λ
≤ (b+ bf )

2

4λ
,

Proof. By definition of Cη in (3.4),

Cη = 1.5η(1− 4cη)[1− 3η(1− 4cη)(b+ bf )
2/4]

≤ 1.5η ≤ 3

8
,

where the last inequality comes from (A.3).

A.2 Proof of Corollary 2

Proof. Hereafter we specify the choice of

ω = D−1
η ∨ Lg ∨ 1, η =

1

ω
, λ =

√
d log(dT )

ωKT
, (A.4)

where Dη is the RHS of equation (A.3).

Consider the compact set Bγ = {θ ∈ Rd : ∥θ − θ∗∥ ≤ 1
γ } for some γ ≥ 1. By H 2, we know that for any θ ∈ Bγ , if

θ̃s = (1− s)θ + sθ∗,

log p0(θ)− log p0(θ∗) ≥ −
∫ 1

0

〈
∇ log p0(θ̃s), θ∗ − θ

〉
ds

≥ −
∫ 1

0

⟨∇ log p0(θ∗), θ∗ − θ⟩ds− L0

∫ 1

0

∥θ − θ∗∥2 ds

≥ −∥∇ log p0(θ∗)∥
γ

− L0

2γ2
.
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From H 3-4, we get for any θ ∈ Bγ ,

sup
x∈X,a∈A(x)

|g(θ, x, a)− f(x, a)| ≤ Lg

γ
+ ξ . (A.5)

Consequently for θ ∈ Bγ , if we let a∗(x) = argmaxa∈A(x) f(x, a),

−∆ℓ(sFG)(θ, xs, as, rs) ≥ −η(g(θ, xs, as)− f(xs, as))
2 − 2η|g(θ, xs, as)− f(xs, as)||rs − f(xs, as)|

− λ(f∗(xs)− b+ ϕς(b− g∗(θ, xs)))

≥ −
(ηLg

γ
+ ηξ + 2η|rs − f(xs, as)|

)
(ξ +

Lg

γ
)− λ

(
f∗(xs)− b+ ϕς(b− g(θ, xs, a

θ(xs)))
)

In the last line, we used (A.5). Now, let’s focus on the last term of the previous inequality

f⋆(xs)− b+ ϕς
(
b− g(θ, xs, a

θ(xs))
)
= f⋆(xs)− g(θ, xs, a

θ(xs)) + ϕς
(
g(θ, xs, a

θ(xs))− b
)

≤ Lg

γ
+ ξ + ϕς(g(θ, xs, a

θ(xs))− b) ,

In the first line, we used that ϕς(x) = x + ϕς(−x). The second line comes from A.5 and that for any a ∈ A(x),
f⋆(x)− f⋆(x, a) ≤ 0. Moreover, as ϕς is a growing function, we just have to found an upper bound of g(θ, xs, aθ(xs))− b
to bound the previous term.

g(θ, xs, a
θ(xs))− b = g(θ, xs, a

θ(xs))− f⋆(xs, a
θ(xs)) + f⋆(xs, a

θ(xs))− b

≤ Lg

γ
+ ξ + bf − b .

Consequently,

−∆ℓ(sFG)(θ, xs, as, rs) ≥ −
(ηLg

γ
+ ηξ + λ+ 2η|rs − f(xs, as)|

)
(ξ +

Lg

γ
)− λϕς(

Lg

γ
+ ξ + bf − b) .

Then, taking expectation and using H 1 to control Eν0 [|rs − f(xs, as)|] ≤
√
2c (see e.g. (Wainwright 2019), Theorem 2.6),

E[ inf
θ∈Bγ

−∆ℓ(sFG)(θ, xs, as, rs)] ≥ −
(
η

(
Lg

γ
+ ξ

)
+ λ+ 2

√
2cη

)
(ξ +

Lg

γ
)− λϕς(

Lg

γ
+ ξ + bf − b)

≥ −4(1 + ξ + λ)(ξ +
Lg

γ
)− λϕς(

Lg

γ
+ ξ + bf − b).

The last line follows from our choice of η, and γ ≥ 1. Finally, noting that the volume of a d-dimensional ball can be lower
bounded by exp(−10d log d), we can estimate the probability of Bγ under p0 with the following

log p0(Bγ) ≥ inf
θ∈Bγ

log p0(θ)− 10d log γd

≥ log p0(θ∗)−
L0

2γ2
− 10d log(γd)

Then we can bound as follows:

ZT = E

[
logEθ∼p0

[
exp

(
−

T∑
s=1

∆ℓ(sFG)(θ, xs, as, rs)

)]]

≥ E log

(
p0(Bγ) inf

θ∈Bγ

exp

(
−

T∑
s=1

∆ℓ(sFG)(θ, xs, as, rs)

))

≥ log p0(θ∗)−
L0

2γ2
− 10d log(γd)−

(
4(1 + ξ + λ)(ξ +

Lg

γ
) + λϕς(

Lg

γ
+ ξ + bf − b)

)
T,
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where in the last step we used our bound on p0(Bγ).

Finally, substituting ZT , λ, η, γ = T into Theorem 1, and expanding the product:

CREG(Q(sFG)
1:T ) ≤ λ

ηϵ
KT +C1λT − ZT

λ
+

(
C2 +

C3

λ

) T∑
t=0

ET
ν0
[δt]

≤
√
ωdKT log(dT )

ϵ
+C1

√
dT log(dT )

ωK
+

(
C2 +C3

√
ωKT

d log(dT )

)
T∑

t=0

ET
ν0
[δt]

+

√
ωKT

d log(dT )

(
− log p0(θ∗) +

L0

2T 2
+ 10d log(dT ) + 4Lg

)

+ 4ξ

√
ωKT

d log(dT )
(T + ξT + Lg) + 4(ξT + Lg) + ϕς(

Lg

T
+ ξ + bf − b)T.

When T satisfies

T ≥
√
L0

2d
∨ Lg ∨ e, (A.6)

then the following inequalities hold:

L0

2T 2
≤ d, Lg ≤ T, log T ≥ 1.

This is a mild assumption and does not impact the viability of the result; the second term is only needed to absorb ξLg into
ξT , and is not necessary when ξ is small.

Consequently, we can make some simplifications to find

CREG(Q(sFG)
1:T ) ≤

C4

√
ωdKT log(dT )

ϵ
+C6

(
1 +

√
ωKT

d log(dT )

)
T∑

t=0

ET
ν0
[δt]

+ C5

√
ωKT

d log(dT )

(
− log p0(θ∗) + Lg + ξT + ξ2T

)
+
(
4ξ + ϕς(

Lg

T
+ ξ + bf − b)

)
T + 4Lg,

where here we define C4 = 1 + 11ϵ+ ϵC1/(ωK) ≤ 14 + C1, C6 = C2 +C3,C5 = 8, such that they can be loosely upper
bounded by constants not depending on ϵ, ω, d,K, T . Note that this restriction on T is dimension-free and quite mild.

A.3 Proof of Theorem 5

Let Dη again be the RHS of (A.3). Hereafter we specify the choice of

ωLG = D−1
η ∨

√
M ∨ 1, η =

1

ωLG
, λ =

√
log(dT )

ωLGT
, ς =

√
T , b ≥ bf . (A.7)

Secondly, the condition on T is now

T ≥ e ∨
√

m0

2d
, (A.8)

since as ξ is zero, the second condition in (A.6) is not necessary. Note that this assumption is not very restrictive on T ,
especially when the dimension is large.
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Lemma 15. If the MCMC method can output pt,Nt such that δt ≤ 1
T , then we obtain the bound for C7 = (C4 +C5) ∨ C6

when the parameters satisfy (A.7), (A.8):

CREG(Q(sFG)
1:T ) ≤ C7

√
ωLGT log3(dT )

(
d(

1

ϵ
+

1

m0
) +

√
M + m0∥θ∗∥2

)
.

Proof.

The setting of Theorem 5 satisfies all the assumptions of Proposition 2 with ξ = 0, Lg =
√
M , ω = ωLG.

Let us first examine the term ϕς(
√
M/T + bf − b)T for our choice of ς, b. In this case,

ϕς(
Lg

T
+ bf − b)T =

log(1 + exp(
√
M/

√
T +

√
T (bf − b)))√

T
× T

≤
√
T log(1 + exp(

√
M

T
))

≤
√
M +

√
T .

In the second line we use that b ≥ bf , and in the third line we use that log(1 + exp(x)) ≤ 1 + x for x ≥ 0.

Subsequently, we get the following bound immediately, using that K/d ≤ 1:

CREG(Q(sFG)
1:T ) ≤

√
ωLGT log(dT )

(
2C4

d

ϵ
+ 3C5

√
M − C5 log p0(θ∗) + C6

T∑
t=0

ET
ν0
[δt]

)

≤
√
ωLGT log(dT )

(
2C4

d

ϵ
+ 3C5

√
M +

C5m0∥θ∗∥2

2
+

C5d log 2π

2m0
+C6

T∑
t=0

ET
ν0
[δt]

)
,

where in the second line we substitute the density of the Gaussian prior. We absorb the
√
M ,

√
T tersm from ϕς into

C4,C5. Since 4 ≤ 2
√
wT log(dT )C5, the 4Lg term in Corollary 2 is absorbed into the C5

√
M seen above. If we

substitute δt ≤ 1/T , this last part of the sum can be absorbed as a factor of log(T ) ≤ log(dT ), and then we choose
C7 = (2C4 + 3C5) ∨ C6 to complete the proof.

Remark: We can assume instead K ≤ CKd for some absolute constant CK , with this constant subsequently appearing at
multiple places in the proof. For ease of presentation, we do not do this.

Consequently, this allows us to use gradient descent to estimate the modes of the successive posteriors with negligible cost
(with the previous mode for bootstrapping). We state a theorem for gradient descent which makes this rate rigorous:
Lemma 16 (Adapted from (Nesterov et al. 2018), Theorem 2.1.15). Given a µ-strongly convex, λ-smooth function g with
condition number κ and an initial point θ0, gradient descent with step-size 2/(µ+ λ) can find the mode θ∗ = argminθ g(θ)
with rate

N ≥ 2κ log

(
∥θ0 − θ∥

ϵ

)
=⇒ ∥θN − θ∗∥ ≤ ϵ.

We will not discuss this result extensively as it is only necessary to furnish a modal estimate for MCMC methods. The use
of gradient descent is standard and has been well-studied, e.g. in the aforementioned (Nesterov et al. 2018).

We show a polynomial in time bound on the norms of the iterates, which is crude but sufficient for our purposes.

Lemma 17. Let θ∗t be the mode of the posterior µ(sFG)
t . Then the following holds, where br is the a.s. bound on the reward:

∥θ∗t ∥ ≤ 2t
√
Mt

m0
(
br
ωLG

+ λ)

In particular, we immediately get the crude bound∥∥θ∗t − θ∗t−1

∥∥ ≤ 4t
√
Mt

m0
(
br
ωLG

+ λ). (A.9)
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Proof. First consider the minimizer of the posterior for Thompson sampling without feel-good adjustment (µ(TS)
t ), and

denote it by ζ∗t . Then, since ζ∗t is just the solution of a regularized least squares problem, we know the following bound on
ζ∗t :

ζ∗t = (Φ⊤
t Φt +

m0

η
Id)

−1Φ⊤
t rt, Φt =


φ(x1, a1)
φ(x2, a2)

. . .
φ(xt, at)

, rt =


r1
r2
. . .
rt

.
Here Φt is the data matrix which has φ(xi, ai) in its i-th row. In particular, since the matrix Φ⊤

t Φt +
m0
η Id ⪰ ωLGm0Id,

∥Φt∥ ≤ t
√
M and ∥rt∥2 ≤

√
tbr, we obtain

∥ζ∗t ∥ ≤ 1

ωLGm0
∥Φt∥∥rt∥ ≤ brt

√
Mt

ωLGm0
. (A.10)

Secondly, writing the difference in negative log-likelihoods as:

− logµ
(TS)
t (θ) = − logµ

(sFG)
t (θ) + λ

t∑
s=1

[
b− ϕς(b−

〈
θ, φ(xs, a

θ(xs))
〉
))
]

︸ ︷︷ ︸
Jt(θ)

.

We now seek to estimate ∥θ∗t − ζ∗t ∥, using that ζ∗t , θ
∗
t minimize their respective posteriors:

0 =
∥∥∥∇ logµ

(sFG)
t (θ∗t )−∇ logµ

(TS)
t (ζ∗t )

∥∥∥2
=
∥∥∥∇ logµ

(sFG)
t (θ∗t )−∇ logµ

(sFG)
t (ζ∗t ) +∇Jt(ζ

∗
t )
∥∥∥2

=
∥∥∥∇ logµ

(sFG)
t (θ∗t )−∇ logµ

(sFG)
t (ζ∗t )

∥∥∥2 + ∥∇Jt(ζ
∗
t )∥

2
+ 2
〈
∇ logµ

(sFG)
t (θ∗t ) +∇ logµ

(sFG)
t (ζ∗t ),∇Jt(ζ

∗
t )
〉

≥
∥∥∥∇ logµ

(sFG)
t (θ∗t )−∇ logµ

(sFG)
t (ζ∗t )

∥∥∥2 + ∥∇Jt(ζ
∗
t )∥

2 − 2
∣∣∣〈∇ logµ

(sFG)
t (θ∗t )−∇ logµ

(sFG)
t (ζ∗t ),∇Jt(ζ

∗
t )
〉∣∣∣.

Let us proceed to use Young’s inequality |⟨a, b⟩| ≤ 1/4∥a∥2 + ∥b∥2, to find∥∥∥∇ logµ
(sFG)
t (θ∗t )−∇ logµ

(sFG)
t (ζ∗t )

∥∥∥2 + ∥∇Jt(ζ
∗
t )∥

2

≤ 2
∣∣∣〈∇ logµ

(sFG)
t (θ∗t )−∇ logµ

(sFG)
t (ζ∗t ),∇Jt(ζ

∗
t )
〉∣∣∣

≤ 1

2

∥∥∥∇ logµ
(sFG)
t (θ∗t )−∇ logµ

(sFG)
t (ζ∗t )

∥∥∥2 + 2∥∇Jt(ζ
∗
t )∥

2
.

After some rearranging, we get ∥∥∥∇ logµ
(sFG)
t (θ∗t )−∇ logµ

(sFG)
t (ζ∗t )

∥∥∥2 ≤ 2∥∇Jt(ζ
∗
t )∥

2
.

We use triangle inequality and the boundedness of φ to get for all θ ∈ Rd

∥∇Jt(θ)∥ =

∥∥∥∥∥λ
t∑

s=1

exp(ς(b−
〈
θ, φ(xs, a

θ(xs))
〉
))

exp(ς(b− ⟨θ, φ(xs, aθ(xs))⟩)) + 1
φ(xs, a

θ(xs))

∥∥∥∥∥
≤ λt

√
M.

From the strong convexity of − logµ
(sFG)
t , we get

∥∥∥∇ logµ
(sFG)
t (θ∗t )−∇ logµ

(sFG)
t (ζ∗t )

∥∥∥2 ≥ m2t∥θ∗t − ζ∗t ∥
2 ≥

m20∥θ∗t − ζ∗t ∥
2. Finally, this implies

∥θ∗t − ζ∗t ∥ ≤
√
2Mλt

m0
.
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Substituting (A.10) completes the proof.

Remarks: Much better bounds are possible through more careful analysis, but since it is only necessary to provide very
rough bounds (as gradient descent is a fast algorithm), this will suffice for our purposes.

First we formally state the warm-start condition:

Definition 18. (Warm-Start Condition) Let µ, ν be two distributions on Rd. We say that a distribution µ is a cW (µ, ν)
warm-start for another distribution ν if

sup
A∈B(Rd)

µ(A)

ν(A)
≤ cW (µ, ν) ,

where B(Rd) is the Borel σ-field of Rd.

Finally, we state the consequences of gradient descent for finding appropriate warm-starts for our MCMC methods.

Corollary 19. Using gradient descent methods, at time t, we can find an approximate mode θ̂∗t , so that when we construct
the prior pt,0 = N(θ̂∗t , (2L

(sFG)
t )−1Id) (with Id the d-dimensional identity matrix), then

log cW (pt,0, µ
(sFG)
t ) ≤ d log 2κ, KL(pt,0 ∥ µ(sFG)

t ) ≤ d log 2κ.

is satisfied with only 2κ log2(8bL
(sFG)
t

√
MT/m0) iterations of gradient descent.

Proof. For each time t, we can first estimate θ̂∗t using gradient descent from θ̂∗t−1. We choose the desired accuracy

to be ϵ =

√
d/(2L

(sFG)
t ) at each time t. Using Lemmas 16 and (A.9), this can be done with number of iterations

4κ log(8bL
(sFG)
t

√
MT/m0).

Then, Section 3.2.1 of (Dwivedi et al. 2018) shows that pt,0 chosen here attains a warm-start with cW (pt,0, µ
(sFG)
t ) ≤

exp(d log(2κ)). Finally, for the KL bound, we need only note that

KL(p ∥ q) =
∫

log
p

q
dp ≤ log cW (p ∥ q).

Remark: Summing the number of iterations over t ∈ [T ], and noting that each iteration of gradient descent is equal to a full
pass through the data, this yields 4κT 2 log(8bL

(sFG)
t

√
MT/m0) data complexity. This is dominated by the data complexity

due to sampling in all cases.

A.3.1 Langevin Monte Carlo

For the result under LMC, we can give the following state-of-the-art rate, following the result of (Durmus, Majewski, and
Miasojedow 2019).

Lemma 20 (Adapted from (Durmus, Majewski, and Miasojedow 2019), Corollary 11). For targets with condition number
κ = L/m, ambient dimension d and error tolerance ϵ, if we take the ergodic distribution of the N/2 to N LMC iterates, for
some N even, 2/N

∑N
k=N/2 θk with the law of θk denoted pk and the stationary distribution µ, we get

NL =
CLC̃κd

δ2
log

2W2(p0 ∥ µ)
δ2

=⇒ || 2
N

N∑
k=N/2

pk − µ||TV ≤ δ,

for some absolute constant CL, with C̃κ = max(L/m2, L) and W2 is the 2-Wasserstein distance between measures. Here
the step size is chosen as

γL = AL
δ2t

(κ ∨ L)d
.

where AL > 0 is an absolute constant.
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Secondly, we state a lemma:

Lemma 21 (Talagrand’s Inequality, (Bakry, Gentil, Ledoux, et al. 2014) Corollary 9.3.2). If p is strongly convex with
constant α, then W2

2 (q ∥ p) ≤ 2/αKL(q ∥ p).

Finally, we are ready to show the complexity for LMC.

Proof of Proposition 5, LMC: To show the MCMC complexity, it remains only to combine Lemma 21 with Corollary 19.
This shows that the Wasserstein term can be bounded

log(2W2(pt,0 ∥ µ(sFG)
t )) ≤ log

(
2

mt

√
d log 2κ

)
.

Consequently, we apply with the choice δt ≤ 1
T . which yieldsNL

t ≤ CLCκdT
2 log(4

√
dκ/m0), and γLt = AL/((κ∨L)dT 2).

This implies that at time t, the data complexity is Gt ≤ CLCκdT
3 log(4

√
dκ/m0), and that cumulative data complexity is

T∑
t=1

Gt ≤ CLCκdT
4 log(4

√
dκ/m0)

A.3.2 Metropolis Algorithm

Let us state the conditions required for MALA to obtain a fast rate, seen e.g. in (Chen et al. 2020).

Proposition 22. (One-Step Convergence of Bandit MALA (Chen et al. 2020), Theorem 5) Assume that the initial distribution
p0 satisfies Definition 18 with log cW (p0, µ) ≤ d log(2κ), where µ is the stationary distribution of the chain. Assume further
that the potential has condition number κ. Then the MALA algorithm converges to the true posterior with the following rate:

N ≥ CMκd log

(
d

δ2

)(
1 ∨

√
κ

d

)
=⇒ ||pN − µ||TV ≤ δ,

when we take the step size to be

γM =
AM

Ldmax
(
1,
√
κ/d

) ,
with AM again an absolute constant.

Immediately, we can see that the critically dependency on the error tolerance ϵ are significantly better when contrasted with
the unadjusted Langevin algorithm.

Proof of Proposition 5, MALA: The warm-start condition for all t ≤ T is immediately implied by Corollary 19.
Consequently, recalling that we pick δt ≤ 1

T at each iteration t, we only need to perform Nt = CMκd log(dT
2)(1 ∨ κ/d)

MALA iterations at each time t. Since each MALA iteration contains t gradients, this has data complexity Gt ≤
CMκdT log(dT 2)(1 ∨ κ/d). Finally,

T∑
t=1

Gt ≤ CMκdT
2 log(dT 2)(1 ∨ κ/d).

B Numerical experiments

B.1 Toy Example

In this section, we give additional details about the Toy example settings. As presented in the section 4.1, the reward
distribution considered in this toy example is Gaussian and all parameters used to describe the problem are provided in
Table 1.

For each algorithm, we studied a pool of hyperparameters, and Figure 1 represents the best combination of hyperparameter
for each approach. Table 2 summarizes the pool of hyperparameters studied during the experiment. Notice that the step size,
parameter λ, and the standard deviation of the prior depend on the parameter η. This choice is subjective but seems to be
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Parameter dimension (d) 20
Context dimension (dx) 4

Number of arms (K) 5
Noise level (σ) 1

Time horizon (T) 1000

Table 1: Environment hyperparameters

η [1, 5, 10, 50, 100, 500, 1000]
Step Size [1/(tη), 0.5/(ηt), 0.1/(ηt), 0.05/(ηt), 0.01/(ηt)]

λ [0.5η, 0.1η, 0.05η]
Gaussian Prior Std 0.01η

Number of gradient updates [25, 50, 100]
b 1000

Gradient descent steps for MALA / FG-MALA 20

Table 2: Algorithm hyperparameters

quite logical. The step size is also depending on the time step t. For MALA-TS and FG-MALA-TS, we initialize MALA
with the output of a full-batch gradient descent during 20 steps.

The baseline algorithm LinUCB has been studied for different values of α. However, for clarity, figure 1 shows only the
performance of LinTS, LMC-TS, MALA-TS, FG-LMC-TS and FG-MALA-TS. The study of LinUCb is provided in figure
3. Notice that the best α among the pool studied is 0.1 and with this setting LinUCB outperforms all algorithms except
FG-MALA-TS.
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Figure 3: Linear UCB study

B.2 Real World Dataset

Table 3 summarizes the main parameters used for the Yahoo! Front Page Today Module Dataset. A more detailed description
of the problem can be found in (Li, Chu, et al. 2010). Our implementation of this task is based on the git repository:
https://github.com/antonismand/Personalized-News-Recommendation.

Parameter dimension (d) 12
Context dimension (dx) 12

Number of arms (K) 22
Time horizon (T) 25000

Table 3: Environment hyperparameters

Similarly, Table 4 describes the pool of hyperparameters studied during this experiment. Therefore, Figure 2 shows only the
best comparison among this pool.

https://github.com/antonismand/Personalized-News-Recommendation
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η [1, 3, 5, 10, 20, 30, 40, 50]
Step size 0.1/(tη)

λ [0.1η, 0.3η, 0.5η]
Gaussian Prior std 0.01η

Number of gradient updates 100
b 1000

Gradient Descent steps for MALA/FG-MALA 20

Table 4: Algorithm hyperparameters

B.3 Logistic bandit

In this section we investigate the behavior of Feel-Good Thompson Sampling on a more complex setting: the logistic
bandit. We follow the setting of Kveton et al. 2020b and Xu, Zheng, et al. 2022. We consider a contextual vector x ∈ R20

sampled from N(020, I20) and scaled to unit norm. A fixed set of 50 arms. And a Bernoulli reward distribution such
that r ∼ B(ϕ(θ⋆Tx)) where θ⋆ is the true parameter, sampled from N(020, I20) and scaled to unit norm. The function
ϕ(u) = 1/(1 + e−u) is the logistic function.

Figure 4 shows the cumulative regret, ie, EΠ∼Q1:T
[
∑T

t=1 1− f(xt, πs(xt))] for LMC-TS and FG-LMC-TS. For the later,
we consider four different values of λ. We observe that for small λ (≤ 0.01) FG-LMC-TS outperforms LMC-TS. However,
when λ is too high, FG-LMC-TS becomes unstable and linear. It means that in this setting, the parameter λ has to be
carefully determined. The implementation is based on the repository git: https://github.com/devzhk/LMCTS.
The hyperparameters used for this experiment are provided in Table 5
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Figure 4: Comulative regret for logistic bandit over 10 runs

Time horizon (T) 10000
Number of LMC steps 500

Step size 0.001
Inverse temperature (β−1) 0.001

Table 5: Hyperparameters for logistic bandit

https://github.com/devzhk/LMCTS
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