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Abstract
Strict frequentism defines probability as the limiting
relative frequency in an infinite sequence. What if the
limit does not exist?We present a broader theory, which
is applicable also to statistical phenomena that exhibit
diverging relative frequencies. In doing so, we develop
a close connection with imprecise probability: the clus-
ter points of relative frequencies yield a coherent upper
prevision. We show that a natural frequentist defini-
tion of conditional probability recovers the generalized
Bayes rule. We prove constructively that, for a finite set
of elementary events, there exists a sequence for which
the cluster points of relative frequencies coincide with
a prespecified set, thereby providing strictly frequentist
semantics for coherent upper previsions.
Keywords: imprecise probability, strict frequentism,
divergent relative frequencies, von Mises, Ivanenko

1. Introduction
It is now almost universally acknowledged that probability
theory ought to be based on Kolmogorov’s [31] mathe-
matical axiomatization (translated in [32]).1 However, if
probability is defined in this purely measure-theoretic fash-
ion, what warrants its application to real-world problems
of decision making under uncertainty? To those in the so-
called frequentist camp, the justification is essentially due to
the law of large numbers, which comes in both an empirical
and a theoretical flavour. In this paper we question both of
these presumptions.
By the empirical version of the law of large numbers

(LLN), we mean not a “law” which can be proven to hold,
but the following hypothesis, which seems to guidemany sci-
entific endeavours. Assume we have obtained data 𝑥1, .., 𝑥𝑛
as the outcomes of some experiment, which has been per-
formed 𝑛 times under “statistically identical” conditions.
Of course, conditions in the real-world can never truly be
identical — otherwise the outcomes would be constant, at
least under the assumption of a deterministic universe. Thus,

1An important exception is quantum probability [20, 30].

“identical” in this context must be a weaker notion, that all
factors which we have judged as relevant to the problem at
hand have been kept constant over the repetitions.2 The em-
pirical “law” of large numbers, which Gorban [18] calls the
hypothesis of (perfect) statistical stability then asserts that
in the long-run, relative frequencies of events and sample
averages converge. These limits are then conceived of as
the probability of an event and the expectation, respectively.
Thus, even if relative frequencies can fluctuate in the finite
data setting, we presume that they stabilize as more and
more data is acquired. Crucially, this hypothesis of perfect
statistical stability is not amenable to falsification, since we
can never refute it in the finite data setting. It is a matter
of faith to assume convergence of relative frequencies. On
the other hand, there is now ample experimental evidence
that relative frequencies can fail to stabilize even under very
long observation intervals [18, Part II]. We say that such
phenomena display unstable (diverging) relative frequen-
cies. Rather than refuting the stability hypothesis, which is
impossible, we question its adequateness as an idealized
modeling assumption: we view convergence as the ideal-
ization of approximate stability in the finite case, whereas
divergence idealizes instability. Thus, if probability is under-
stood as limiting relative frequency, then the applicability
of Kolmogorov’s theory to empirical phenomena is limited
to those which are statistically stable; the founder himself
remarked:

Generally speaking there is no ground to believe
that a random phenomenon should possess any
definite probability [33].

Building on the works of von Mises and Geiringer [46],
Walley and Fine [48] and Ivanenko [22], our goal is to
establish a broader theory that is also applicable to statistical
phenomena which are outside of the scope of Kolmogorov’s
theory by exhibiting unstable relative frequencies.

2In fact, we do not need that conditions stay exactly constant, but that
they change merely in a way that is so benign that the relative frequencies
converge. That is, in the limit we should obtain a stable statistical aggregate.
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One attempt to “prove” (or justify) the empirical law of
large numbers, which in our view is doomed to fail, is to
invoke the theoretical law of large numbers, which is a purely
formal, mathematical statement. The strong law of large
numbers states that if 𝑋1, 𝑋2, .. is a sequence of independent
and identically distributed (i.i.d.) random variables with
finite expectation 𝔼[𝑋] B 𝔼[𝑋1] = 𝔼[𝑋2] = · · ·, then the
sample average �̄�𝑛 B

1
𝑛

∑𝑛
𝑖=1 𝑋𝑖 converges almost surely to

the expectation:

𝑃

(
lim
𝑛→∞

�̄�𝑛 = 𝔼[𝑋]
)
= 1,

where 𝑃 is the underlying probability measure in the sense
of Kolmogorov. To interpret this statement correctly, some
care is needed. It asserts that 𝑃 assigns measure 1 to the
set of sequences for which the sample mean converges, but
not that this happens for all sequences. Thus one would
need justification for identifying “set of measure 0” with
“is negligible” (“certainly does not happen”), which in
particular requires a justification for 𝑃. With respect to a
different measure, this set might not be negligible at all
[41, p. 8]; see also [3, 42] for critical arguments. Moreover,
the examples in [18, Part II] show that sequences with
seemingly non-converging relative frequencies (fluctuating
substantially even for long observation intervals) are not
“rare” in practice.
Given these complications, we opt for a different ap-

proach, namely a strictly frequentist one. Reaching back
to Richard von Mises’ [45] foundational work, a strictly
frequentist theory explicitly defines probability in terms
of limiting relative frequencies in a sequence. Importantly,
we here do not assume that the elements of the sequence
are random variables with respect to an abstract, countably
additive probability measure. Instead, like von Mises, we
take the notion of a sequence as the primitive entity in the
theory. As a consequence, countable additivity does not
naturally arise in this setting, and hence we do not subscribe
to the frequentist interpretation of the classical strong LLN.
The core motivation for our work is to drop the assump-

tion of perfect statistical stability and instead to explicitly
model the possibility of unstable (diverging) relative fre-
quencies. Rather than merely conceding that the “prob-
ability” might vary over time [2, pp. 27ff.] (which begs
the question what such “probabilities” mean) we follow
the approach of Ivanenko [22], reformulate his construc-
tion of a statistical regularity of a sequence, and discover
that it is closely connected to imprecise probability, more
specifically, to the subjectivist theory of lower and upper
previsions [47]. In essence, to each infinite sequence we
can naturally associate a set of probability measures, which
constitute the statistical regularity that describes the cluster
points of relative frequencies and consequently also those of
sample averages. Since this works for any sequence and any
event, we have thus countered a typical argument against

frequentism, namely that the limit may not exist and hence
probability is undefined [21]. On an arbitrary (possibly
infinite) set of outcomes, the limiting relative frequencies
induce a coherent upper probability and the limiting sample
averages induce a coherent upper prevision in the sense of
Walley [47]. In the convergent case, this reduces to a precise,
finitely additive probability and a linear prevision, respec-
tively. We demonstrate that (for a finite set of outcomes)
the converse direction works, too: any coherent upper pre-
vision can be induced in a strictly frequentist way from a
sequence, which we can explicitly construct. Furthermore,
we derive in a natural way a conditional upper prevision;
remarkably, this approach recovers the generalized Bayes
rule, the arguably most important updating principle in
imprecise probability.
This paper is accompanied by an extended preprint [17],

which contains all of the proofs that were not included in
this paper, as well as additional discussions.

1.1. Von Mises - The Frequentist Perspective

Our approach is inspired by, and generalizes, Richard von
Mises [45] (refined and summarized in [46]) axiomatization
of probability theory. In contrast to the subjectivist camp,
von Mises’ concern was to develop a theory for repetitive
events, which gives rise to a theory of probability that is
mathematical, but which can also be used to reason about
the physical world. Hence, von Mises is not concerned
with the probability of single events, which he deems
meaningless, but instead always views an event as part of
a larger reference class. Such a reference class is captured
by what he terms a collective, a disorderly sequence which
exhibits both global regularity and local irregularity. For
the definition of a collective, we need a possibility set 𝛺 of
elementary outcomes 𝜔 ∈ 𝛺, together with a set system of
events A ⊆ 2𝛺 .

Definition 1 Consider a tuple
(
𝛺,

#–
𝛺,A,S

)
with the fol-

lowing data:
1. a sequence #–

𝛺 : ℕ → 𝛺;
2. a set of selection rules S B { #–

𝑆 𝑗 : 𝑗 ∈ J}, where for
each 𝑗 in a countable index set J , #–

𝑆 𝑗 : ℕ → {0, 1}
and #–

𝑆 𝑗 (𝑖) = 1 for infinitely many 𝑖 ∈ ℕ;
3. a non-empty set system A ⊆ 2𝛺 , where for simplicity

we assume |A| < ∞.3
This tuple forms a collective if the following two axioms

hold.

3In fact, A does not necessarily have to be finite. Since an infinite
domain of probabilities does not contribute a lot to a better understanding
of the frequentist definition at this point, we restrict ourselves to the finite
case here. The reader can find details in [46].
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vM1. The limiting relative frequency for 𝐴 ∈ A ⊆ 2𝛺
exists:

𝑃(𝐴) B lim
𝑛→∞

1
𝑛

𝑛∑︁
𝑖=1

𝜒𝐴

(
#–
𝛺 (𝑖)

)
.4

We call this limit the probability of 𝐴.
vM2. For each 𝑗 ∈ J , the selection rule #–

𝑆 𝑗 does not
change limiting relative frequencies:5

lim
𝑛→∞

∑𝑛
𝑖=1 𝜒𝐴

(
#–
𝛺 (𝑖)

)
· #–
𝑆 𝑗 (𝑖)∑𝑛

𝑖=1
#–
𝑆 𝑗 (𝑖)

= 𝑃(𝐴) ∀𝐴 ∈ A.

Axiom vM1 explicitly defines the probability of an event in
terms of the limit of its relative frequency. Demanding that
this limit exists is non-trivial, since this need not be the case
for an arbitrary sequence. Intuitively, vM1 expresses the
hypothesis of statistical stability, which captures a global
regularity of the sequence.
In contrast, vM2 captures a sense of randomness or local

irregularity. It is best understood by viewing a selection rule
#–
𝑆 𝑗 as selecting a subsequence of the original sequence

#–
𝛺

and then demanding that the limiting relative frequencies
thereof coincide with those of the original sequence. Why
do we need axiom vM2? Von Mises calls this the “law of
the excluded gambling system” and it is the key to capture
the notion of randomness in his framework. Intuitively, if
a selection rule were to change relative frequencies, an
adversary could exploit this selection rule to strategically
offer a bet on the next outcome and thereby make long-
run profit, at the expense of a fictional decision maker. A
random sequence, however, is one for which there does not
exist such a betting strategy. It turns out that this statement
cannot hold in its totality. A sequence cannot be random
with respect to all selection rules except in trivial cases
(cf. Kamke’s critique of von Mises’ notion of randomness,
nicely summarized in [44]). Thus, von Mises explicitly
relativizes randomness with respect to a problem-specific
set of selection rules [46, p. 12].6
In our view, the role of the randomness axiom vM2 is

similar to the role of more familiar randomness assumptions
like the standard i.i.d. assumption: to empower inference
fromfinite data. In this work, however, wewill be exclusively

4The function 𝜒𝐴 denotes the indicator gamble for a set 𝐴 ⊆ 𝛺, i.e.
𝜒𝐴 (𝜔) B 1 if 𝜔 ∈ 𝐴 and 𝜒𝐴 (𝜔) B 0 otherwise.

5To be precise, a selection rule in the sense of von Mises is a map
from the set of finite𝛺-valued strings to {0, 1}, i.e. a selection rule is able
to “see” all previous elements when deciding whether or not to select the
next one. Our formulation is more restrictive to avoid notational overhead,
but when a sequence is fixed, the two formulations are equivalent.

6This class of selection rules necessarily must be specified in advance;
confer [43]. A prominent line of work aspires to fix the set of selection rules
as all partially computable selection rules [5], but there is no compelling
reason to elevate this to a universal choice; cf. [9] for an elaborated critique.

concerned with the idealized case of infinite data, disregard-
ing vM2, since our focus is the axiom (or hypothesis) of
statistical stability (cf. the discussion in Section 5).
We are motivated by the following question. What is the

suitable generalization of von Mises approach when axiom
vM1 breaks down? That is, when relative frequencies of at
least some events do not converge. Our answer leads to a
confluence with a theory that is thoroughly grounded in the
subjectivist camp: the theory of lower and upper previsions.

1.2. Imprecise Probability - The Subjectivist
Perspective

We briefly introduce the prima facie unrelated, subjectivist
theory of imprecise probability, or more specifically, the
theory of lower and upper previsions as put forward by
Walley [47]. Orthodox Bayesianism models belief via the
assignment of precise probabilities to propositions, or equiv-
alently, via a linear expectation functional. In contrast, in
Walley’s theory, belief is interval-valued and the linear
expectation is replaced by a pair of lower and upper expec-
tations. Hence, the theory is strictly more expressive than
orthodox Bayesianism, which can be recovered as a special
case.
We assume an underlying possibility set 𝛺, where𝜔 ∈ 𝛺

is an elementary event, which includes all relevant infor-
mation. We call a function 𝑋 : 𝛺 → ℝ, which is bounded,
i.e. sup𝜔∈𝛺 |𝑋 (𝜔) | < ∞, a gamble and collect all such
functions in the set 𝐿∞. The set of gambles 𝐿∞ carries a
vector space structure with scalar multiplication (𝜆𝑋) (𝜔) =
𝜆𝑋 (𝜔), 𝜆 ∈ ℝ, and addition (𝑋 + 𝑌 ) (𝜔) = 𝑋 (𝜔) + 𝑌 (𝜔).
For a constant gamble 𝑐(𝜔) = 𝑐 ∀𝜔 we write simply 𝑐. Note
that Walley’s theory in the general case does not require
that a vector space of gambles is given, but definitions and
results simplify significantly in this case.
We interpret a gamble as assigning an uncertain loss

𝑋 (𝜔) to each elementary event, that is, in line with the
convention in insurance and machine learning, we take
positive values to represent loss and negative values to
represent reward, with zero being neutral.7 We imagine
a decision maker who is faced with the question of how
to value a gamble 𝑋; the orthodox answer would be the
expectation 𝔼[𝑋] with respect to a subjective probability
measure.
Walley [47] proposed a betting interpretation of imprecise

probability, which is inspired by de Finetti [8], who identifies
probability with fair betting rates. The goal is to axiomatize
a functional 𝑅 : 𝐿∞ → ℝ, which assigns to a gamble the
infimum number 𝑅(𝑋) so that 𝑋 − 𝑅(𝑋) is a desirable
transaction to our decision maker, where she incurs the
uncertain loss 𝑋 but in exchange gets the reward −𝑅(𝑋).

7Unfortunately, this introduces tedious sign flips when comparing
results to Walley [47].
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Formally:

𝑅(𝑋) B inf{𝛼 ∈ ℝ : 𝑋 − 𝛼 ∈ D},

where D is a set of desirable gambles. Walley [47, Section
2.5] argued for a criterion of coherence, which any reason-
able functional 𝑅 should satisfy, and consequently obtained
the following characterization [47, Theorem 2.5.5], which
we shall take here as an axiomatic definition instead.8

Definition 2 A functional 𝑅 : 𝐿∞ → ℝ is a coherent upper
prevision if ∀𝑋,𝑌 ∈ 𝐿∞:

UP1. 𝑅(𝑋) ≤ sup(𝑋)
UP2. 𝑅(𝜆𝑋) = 𝜆𝑅(𝑋), ∀𝜆 ∈ ℝ+

UP3. 𝑅(𝑋 + 𝑌 ) ≤ 𝑅(𝑋) + 𝑅(𝑌 )

These properties also imply ∀𝑋,𝑌 ∈ 𝐿∞ [47, p. 76]:
UP4. 𝑅(𝑋 + 𝑐) = 𝑅(𝑋) + 𝑐, ∀𝑐 ∈ ℝ

UP5. 𝑋 (𝜔) ≤ 𝑌 (𝜔) ∀𝜔 ∈ 𝛺 ⇒ 𝑅(𝑋) ≤ 𝑅(𝑌 )
To a coherent upper prevision, we can define its conjugate
lower prevision by:

𝑅(𝑋) B −𝑅(−𝑋) = − inf{𝛼 ∈ ℝ : − 𝑋 − 𝛼 ∈ D}
= sup{𝛼 ∈ ℝ : 𝛼 − 𝑋 ∈ D},

which specifies the supremumcertain loss𝛼 that the decision
maker is willing to shoulder in exchange for giving away
the uncertain loss 𝑋 . Due to the conjugacy, it suffices to
focus on the upper prevision throughout. In general, we
have that 𝑅(𝑋) ≤ 𝑅(𝑋) for any 𝑋 ∈ 𝐿∞. If 𝑅(𝑋) = 𝑅(𝑋)
∀𝑋 ∈ 𝐿∞, we say that 𝑅 B 𝑅 = 𝑅 is a linear prevision, a
definition which is then in line with de Finetti [8].
By applying an upper prevision to indicator gam-

bles, we obtain an upper probability 𝑃(𝐴) B 𝑅(𝜒𝐴),
where 𝐴 ⊆ 𝛺. Correspondingly, the lower probability
is 𝑃(𝐴) B 1 − 𝑃(𝐴C) = 𝑅(𝜒𝐴). In the precise case, there
is a unique relationship between (finitely) additive prob-
abilities and linear previsions; however, upper previsions
are more expressive than upper probabilities. Finally, we
remark that via the so-called natural extension, a coher-
ent upper probability which is defined on some subsets
of events A ⊆ 2𝛺 can be extended to a coherent upper
prevision NatExt(𝑃) on 𝐿∞, which is compatible with 𝑃
in the sense that NatExt(𝑃) (𝜒𝐴) = 𝑃(𝐴) ∀𝐴 ∈ A (cf. [47,
Section 3.1]).

2. Unstable Relative Frequencies
Assume that we have some fixed sequence #–

𝛺 : ℕ → 𝛺

on a possibility set 𝛺 of elementary events, but that for

8Here, we need the vector space assumption on the set of gambles.
We also note that Walley [47, pp. 64–65] himself made a similar definition,
but then proposed the more general coherence concept.

some events 𝐴 ∈ A, where A ⊆ 2𝛺 , the limiting relative
frequencies do not exist. What can we do then?
In a series of papers [23, 24, 25, 26, 27, 28, 29] and a

monograph [22], Ivanenko and collaborators have developed
a strictly frequentist theory of “hyper-random phenomena”
based on “statistical regularities”. In essence, they tackle
mass decision making in the context of sequences with
possibly divergent relative frequencies. Like vonMises, they
take the notion of a sequence as the primitive, that is, without
assuming an a priori probability and then invoking the law
of large numbers. The presentation of Ivanenko’s theory is
obscured somewhat by the great generality with which it
is presented (they work with general nets, rather than just
sequences). We build heavily upon their work but entirely
restrict ourselves to working with sequences. While in some
sense this is a weakening, our converse result (see Section 3)
is actually stronger as we show that one can achieve any
“statistical regularity” by taking relative frequencies of only
sequences. For simplicity, we will dispense with integrals
with respect to finitely additive measures in our presentation,
so that there are less mathematical dependencies involved;9
instead, we work with linear previsions. Moreover, we
establish10 the connection to imprecise probability. The
contribution in this section may be viewed as unifying ideas
from Ivanenko with Walley’s framework.

2.1. Ivanenko’s Argument — Informally

We begin by providing an informal summary of Ivanenko’s
construction of statistical regularities on sequences. As-
sume we are given a fixed sequence #–

𝛺 of elementary events
#–
𝛺 (1), #–

𝛺 (2), . . ., where we may intuitively think of ℕ as
representing time. In contrast to von Mises, who demands
the existence of relative frequency limits to define prob-
abilities, we ask for something like a probability for all
events 𝐴 ⊆ 𝛺, even when the relative frequencies have
no limit. To this end, we exploit that sequences of relative
frequencies always have a non-empty set of cluster points,
each of which is a finitely additive probability. Hence, a
decision maker can use this set of probabilities to represent
the global statistical properties of the sequence. Also, a
decision maker may want to assess a value for each gamble
𝑋 : 𝛺 → ℝ, which is evaluated infinitely often over time.
Here, the sequence of averages 𝑛 ↦→ 1

𝑛

∑𝑛
𝑖=1 𝑋 (

#–
𝛺 (𝑖)) is

the object of interest. In the case of convergent relative
frequencies, a decision maker would use the expectation
to assess the risk in the limit, whereas in the general case
of possible non-convergence, a different object is needed.
This object turns out to be a coherent upper prevision.

9Compared to integrals with finitely additive measures, working with
linear previsions as in [47] appears to be an easier approach for our
purposes and aids the unification with the imprecise probability literature.

10Ivanenko and Labkovskii [27] mention in passing that sets of proba-
bilities also appear in [47].
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2.2. Ivanenko’s Argument — Formally

Let 𝛺 be an arbitrary (finite, countably infinite or un-
countably infinite) set of outcomes and fix #–

𝛺 : ℕ → 𝛺, an
𝛺-valued sequence. We define a gamble 𝑋 : 𝛺 → ℝ as a
bounded function from 𝛺 to ℝ, i.e. ∃𝐾 ∈ ℝ : |𝑋 (𝜔) | ≤ 𝐾

∀𝜔 ∈ 𝛺 and collect all such gambles in the set 𝐿∞. We
assume the vector space structure on 𝐿∞ as in Section 1.2.
The set 𝐿∞ becomes a Banach space, i.e. a com-

plete normed vector space, under the supremum norm
‖𝑋 ‖𝐿∞ B sup𝜔∈𝛺 |𝑋 (𝜔) |. We denote the topological dual
space of 𝐿∞ by (𝐿∞)∗. Recall that it consists exactly of
the continuous linear functionals 𝜙 : 𝐿∞ → ℝ. We endow
(𝐿∞)∗ with the weak*-topology, which is the weakest topol-
ogy (i.e. with the fewest open sets) that makes all evaluation
functionals of the form 𝑋∗ : (𝐿∞)∗ → ℝ, 𝑋∗ (𝐸) B 𝐸 (𝑋)
for any 𝑋 ∈ 𝐿∞ and 𝐸 ∈ (𝐿∞)∗ continuous. Consider the
following subset of (𝐿∞)∗:

PF(𝛺) B {𝐸 ∈ (𝐿∞)∗ : 𝐸 (𝑋) ≥ 0 if 𝑋 ≥ 0, 𝐸 (𝜒𝛺 ) = 1} .

Due to the Alaoglu-Bourbaki theorem, this set is compact
under the weak* topology.11
A finitely additive probability 𝑃 : A → [0, 1] on some

set system A ⊆ 2𝛺 , where 𝛺 ∈ A, is a function such that:
PF1. 𝑃(𝛺) = 1.
PF2. 𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) whenever 𝐴 ∩ 𝐵 = ∅

and 𝐴, 𝐵 ∈ A.
From the sequence #–

𝛺 we induce a sequence of
finitely additive probabilities #–

𝑃 , where for each 𝑛 ∈ ℕ,
#–
𝑃 (𝑛) B 𝐴 ↦→ 1

𝑛

∑𝑛
𝑖=1 𝜒𝐴(

#–
𝛺 (𝑖)). It is easy to check that

indeed #–
𝑃 (𝑛) is a finitely additive probability on the whole

powerset 2𝛺 for any 𝑛 ∈ ℕ. We shall call #–
𝑃 the sequence

of empirical probabilities. Recall that due to [47, Corollary
3.2.3], a finitely additive probability defined on 2𝛺 can
be uniquely extended (via natural extension) to a linear
prevision 𝐸𝑃 : 𝐿∞ → ℝ, so that 𝐸𝑃 (𝜒𝐴) = 𝑃(𝐴) ∀𝐴 ⊆ 𝛺.
Furthermore, we know from [47, Corollary 2.8.5], that
there is a one-to-one correspondence between elements
of PF(𝛺) and linear previsions 𝐸𝑃 : 𝐿∞ → ℝ. Hence, we
associate to each empirical probability #–

𝑃 (𝑛) an empirical
linear prevision #–

𝐸 (𝑛) B 𝑋 ↦→ NatExt( #–
𝑃 (𝑛)) (𝑋), where

𝑋 ∈ 𝐿∞ and we denote the natural extension byNatExt. We
thus obtain a sequence #–

𝐸 : ℕ → PF(𝛺).
On the other hand, each gamble 𝑋 ∈ 𝐿∞ in-

duces a sequence of evaluations as #–
𝑋 : ℕ → ℝ, where

#–
𝑋 (𝑛) B 𝑋

(
#–
𝛺 (𝑛)

)
. For 𝑋 ∈ 𝐿∞, we define the sequence

of averages of the gamble over time as #   –
𝛴𝑋 : ℕ → ℝ,

where #   –
𝛴𝑋 (𝑛) B 1

𝑛

∑𝑛
𝑖=1 𝑋

(
#–
𝛺 (𝑖)

)
. For each fixed 𝑛, we

can also view the average as a function in 𝑋 , i.e. 𝑋 ↦→
1
𝑛

∑𝑛
𝑖=1 𝑋

(
#–
𝛺 (𝑖)

)
. Observe that this is a coherent linear pre-

vision and by applying it to indicator gambles 𝜒𝐴, we obtain
11We refer the reader to the preprint [17] for an explication of this.

#–
𝑃 (𝑛). Hence, we know from [47, Corollary 3.2.3] that this
linear prevision is in fact the natural extension of #–

𝑃 (𝑛), i.e.
#–
𝐸 (𝑛) = 𝑋 ↦→ #   –

𝛴𝑋 (𝑛)∀𝑛 ∈ ℕ. This concludes the technical
setup; we now begin reproducing Ivanenko’s argument.
Since PF(𝛺) is a compact topological space under the

subspace topology induced by the weak*-topology on
(𝐿∞)∗, we know that any sequence #–

𝐸 : ℕ → (𝐿∞)∗ has a
non-empty closed set of cluster points. Recall that a point 𝑧
is a cluster point of a sequence #–

𝑆 : ℕ → T , where T is any
topological space, if for any neighbourhood 𝑁 of 𝑧 w.r.t. T :

∀𝑛0 ∈ ℕ : ∃𝑛 ≥ 𝑛0 :
#–
𝑆 (𝑛) ∈ 𝑁.

We remark that this does not imply that those cluster points
are limits of convergent subsequences.12Wedenote the set of
cluster points asCP( #–

𝐸 ). By applying these linear previsions
to indicator gambles, we obtain the set of finitely additive
probabilitiesP B

{
𝐴 ↦→ 𝐸 (𝜒𝐴) : 𝐸 ∈ CP( #–

𝐸 )
}
. Due to the

one-to-one relationship, we might work with either CP( #–
𝐸 )

or P. Following Ivanenko, we call P the statistical reg-
ularity of the sequence #–

𝛺; in the language of imprecise
probability, we would call it a credal set. We further define

𝑅(𝑋) B sup
{
𝐸 (𝑋) : 𝐸 ∈ CP( #–

𝐸 )
}
, ∀𝑋 ∈ 𝐿∞,

𝑃(𝐴) B sup {𝑃(𝐴) : 𝑃 ∈ P} , ∀𝐴 ⊆ 𝛺.

Observe that 𝑅 is defined on all 𝑋 ∈ 𝐿∞ and 𝑃 is defined
on all subsets of 𝛺, even if 𝛺 is uncountably infinite, since
each 𝑃 ∈ P is a finitely additive probability on 2𝛺 . We
further observe that 𝑅 is a coherent upper prevision on 𝐿∞.
Correspondingly, 𝑃 is a coherent upper probability on 2𝛺 ,
which is obtained by applying 𝑅 to indicator functions. This
follows directly from the envelope theorem in [47, Theorem
3.3.3].
So far, the definition of 𝑅 and 𝑃 may seem unmotivated.

Yet they play a special role, as we now show.

Proposition 3 The sequence of averages #   –
𝛴𝑋 has the set of

cluster points

CP
(

#   –
𝛴𝑋

)
=
{
𝐸 (𝑋) : 𝐸 ∈ CP( #–

𝐸 )
}
,

and therefore

𝑅(𝑋) = supCP
(

#   –
𝛴𝑋

)
= lim sup

𝑛→∞

#   –
𝛴𝑋 (𝑛).

Proof First observe that
#–
𝐸 (𝑛) (𝑋) = #   –

𝛴𝑋 (𝑛).

We use the following result from [29, Lemma 3].13
12This would hold under sequential compactness, which is not fulfilled

here in general, but it is for finite 𝛺.
13A subtle point in the argument, which Ivanenko and Pasichnichenko

[29] do not make visible, is the sequential compactness of ℝ, which
means that for any cluster point of an ℝ-valued sequence we can find a
subsequence converging to it.
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Lemma 4 Let 𝑓 : 𝑌 → ℝ be a continuous function on
a compact space 𝑌 and #–𝑦 a 𝑌 -valued sequence. Then
CP (𝑛 ↦→ 𝑓 ( #–𝑦 (𝑛))) = 𝑓 (CP ( #–𝑦 )).
On the right side, the application of 𝑓 is to be understood
as applying 𝑓 to each element in the set CP ( #–𝑦 ). Consider
now the evaluation functional 𝑋∗ : PF(𝛺) → ℝ, which is
continuous under the weak*-topology. The application of
the lemma with 𝑓 = 𝑋∗, 𝑌 = PF(𝛺), #–𝑦 =

#–
𝐸 gives:

CP
(
𝑛 ↦→ 𝑋∗

(
#–
𝐸 (𝑛)

))
= 𝑋∗

(
CP

(
#–
𝐸

))
.

But since 𝑋∗
(

#–
𝐸 (𝑛)

)
=

#   –
𝛴𝑋 (𝑛), we obtain that CP

(
#   –
𝛴𝑋

)
=

𝑋∗
(
CP

(
#–
𝐸

))
=

{
𝐸 (𝑋) : 𝐸 ∈ CP

(
#–
𝐸

)}
.

A similar statement holds for the coherent upper proba-
bility.

Corollary 5 For any 𝐴 ⊆ 𝛺, the upper probability is given
by

𝑃(𝐴) = lim sup
𝑛→∞

(
#–
𝑃 (𝑛) (𝐴)

)
= lim sup

𝑛→∞

1
𝑛

𝑛∑︁
𝑖=1

𝜒𝐴

(
#–
𝛺 (𝑖)

)
.

Proof Just observe that #–
𝑃 (𝑛) (𝐴) = #      –

𝛴 𝜒𝐴(𝑛) and apply the
previous result.

Thus the limes superior of the sequence of relative fre-
quencies induces a coherent upper probability on 2𝛺 ; sim-
ilarly, the limes superior of the sequence of a gamble’s
averages induces a coherent upper prevision on 𝐿∞. By
conjugacy, we have that the lower prevision and lower
probability are (∀𝑋 ∈ 𝐿∞, ∀𝐴 ⊆ 𝛺):

𝑅(𝑋) = inf
{
𝐸 (𝑋) : 𝐸 ∈ CP

(
#–
𝐸

)}
= lim inf

𝑛→∞
#   –
𝛴𝑋 (𝑛).

𝑃(𝐴) = inf {𝑃(𝐴) : 𝑃 ∈ P} = lim inf
𝑛→∞

1
𝑛

𝑛∑︁
𝑖=1

𝜒𝐴

(
#–
𝛺 (𝑖)

)
,

which are obtained in a similar way using the limes inferior.
Finally, when an event is precise in the sense that 𝑃(𝐴) =
𝑃(𝐴) (and thus the lim inf equals the lim sup and hence
the limit exists), we denote the upper (lower) probability as
𝑃(𝐴) and say that the precise probability of 𝐴 exists.

3. From Cluster Points to Sequence
In the previous section, we have shown how from a given
sequence we can construct a coherent upper prevision from
the set of cluster points CP( #–

𝐸 ). Here we show the converse,
thus “closing the loop”: given an arbitrary coherent upper
prevision, we construct a sequence #–

𝛺 such that the induced
upper prevision is just the specified one. We take this to
be an argument for the well-groundedness of our approach.
For simplicity, we assume a finite possibility set 𝛺.

Theorem 6 Let |𝛺 | < ∞. Let 𝑅 be a coherent upper
prevision on 𝐿∞. There exists a sequence #–

𝛺 such that we
can write 𝑅 as (∀𝑋 ∈ 𝐿∞):

𝑅(𝑋) = sup
{
𝐸 (𝑋) : 𝐸 ∈ E #–

𝛺

}
, E #–

𝛺 B CP
(

#–
𝐸 #–

𝛺

)
,

where #–
𝐸 #–

𝛺 (𝑛) = 𝑋 ↦→ 1
𝑛

∑𝑛
𝑖=1 𝑋

(
#–
𝛺 (𝑖)

)
, ∀𝑋 ∈ 𝐿∞.

For the constructive proof and two examples, one of
which corresponds to the vacuous upper prevision, see the
extended preprint [17].
The significance of this result is that it establishes strictly

frequentist semantics for coherent upper previsions. It shows
that to any decision maker who, in the subjectivist fashion,
uses a coherent upper prevision, we can associate a sequence,
which would yield the same upper prevision in a strictly
frequentist way. We interpret this result as evidence for the
naturalness, and arguably completeness, of our theory.
Ivanenko [22] offers a somewhat similar result to The-

orem 6 by generalizing from sequences to sampling nets.
Ivanenko’s [2010] main result states that “any sampling
directedness has a regularity, and any regularity is the regu-
larity of some sampling directedness.” [22, Theorem 4.2].
We provide a brief introduction to these sampling nets in
the extended preprint [17]. Our result is more parsimonious
in the sense that it relies only on sequences, which are
arguably more intuitive objects than such sampling nets.
Our result should also be compared to Theorem 4.2 in

[48] and Theorem 2.2 in [38]. On the one hand, our result
is stronger since it holds for upper previsions, whereas
Theorem 4.2 in [48] and Theorem 2.2 in [38] hold for
upper probabilities only; note that upper previsions are
more expressive than upper probabilities.14 On the other
hand, Theorem 2.2 in [38] is stronger in the sense that it
guarantees that the same upper probability is induced when
applying selection rules.

4. Unstable Conditional Probability
Now consider again a fixed sequence #–

𝛺 on an arbitrary pos-
sibility set 𝛺. An interesting aspect of the strictly frequentist
approach is that there is a natural way of introducing condi-
tional probabilities for events 𝐴, 𝐵 ⊆ 𝛺, which is the same
for the case of converging or diverging relative frequencies.
Furthermore, this approach generalizes directly to gambles.
We will observe that this, perhaps surprisingly, yields the
generalized Bayes rule. In the precise case, the standard
Bayes rule is recovered.

14Indeed, the proof of Theorem 4.2 in [48] exploits this simplification
by assuming that the credal set has a finite number of extreme points.
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Recall that for a countably or finitely additive probability
𝑄 on 2𝛺 , we can define conditional probability as:

𝑄(𝐴|𝐵) B 𝑄(𝐴 ∩ 𝐵)
𝑄(𝐵) , 𝐴, 𝐵 ⊆ 𝛺, if 𝑄(𝐵) > 0. (1)

Important here is the condition that𝑄(𝐵) > 0. Conditioning
on events of measure zero may create trouble. Kolmogorov
then allows the conditional probability to be arbitrary. This
is rather unfortunate, as there arguably are settings where
one would like to condition on events of measure zero.
As a prerequisite, given a linear prevision 𝐸 ∈ PF(𝛺),

we define the conditional linear prevision as:

𝐸 (𝑋 |𝐵) B 𝐸 (𝜒𝐵𝑋)
𝐸 (𝜒𝐵)

, if 𝐸 (𝜒𝐵) > 0. (2)

The application to indicator gambles then recovers condi-
tional probability. As long as 𝐸 (𝜒𝐵) > 0, it is insignificant
whether we condition the linear prevision, or instead con-
dition on the level of its underlying probability and then
naturally extend it; confer [47, Corollary 3.2.3].
Nearly in line with Kolmogorov’s conditional probability,

von Mises started from the following intuitive, frequentist
view: the probability of an event 𝐴 conditioned on an event
𝐵 is the frequency of the occurence of the event 𝐴 given that
𝐵 happens. In what follows, we build upon this idea, which
von Mises called “partition operation” [46, p. 22]. Walley
and Fine [48, Section 4.3] have extended this definition
to the divergent case of conditional probability on a finite
possibility space; we further extend it to conditional upper
previsions on arbitrary possibility spaces and link them to
the generalized Bayes rule. As a technical preliminary, we
define a wrapper function𝛹 : PF(𝛺) ∪ {⊥} → PF(𝛺) as:

𝛹 (𝑃) B
{
𝑃0 if 𝑃 = ⊥,
𝑃 otherwise,

where 𝑃0 is an arbitrary finitely additive probability on 2𝛺 .

4.1. Conditional Probability

Recall our sequence of unconditional finitely additive prob-
abilities #–

𝑃 (𝑛) B 𝐴 ↦→ 1
𝑛

∑𝑛
𝑖=1 𝜒𝐴

(
#–
𝛺 (𝑖)

)
. We want to

define a similar sequence of conditional finitely additive
probabilities. A very natural approach is the following: let
𝐴, 𝐵 ⊆ 𝛺 be such that #–

𝛺 (𝑖) ∈ 𝐵 for at least one 𝑖 ∈ ℕ.
We write 2

#–
𝛺
1+ for the set of such events, i.e. events which

occur at least once in the sequence. Define a sequence of
conditional probabilities #–

𝑃 (·|𝐵) : ℕ → PF(𝛺) by

#–
𝑃 (·|𝐵) (𝑛) B𝛹

©«𝐴 ↦→

∑𝑛
𝑖=1 (𝜒𝐴 · 𝜒𝐵)

(
#–
𝛺 (𝑖)

)
∑𝑛

𝑖=1 𝜒𝐵

(
#–
𝛺 (𝑖)

) ª®®¬ ,

where we consider only those #–
𝛺 (𝑖) which lie in 𝐵,

and hence we adapt the relative frequencies to the
occurrence of 𝐵. Informally, this is simply counting
|𝐴 and 𝐵 occured|/|𝐵 occured|. Throughout, we demand
that the event 𝐵 on which we condition is in 2

#–
𝛺
1+, i.e. occurs

at least once in the sequence. Note that this is a much weaker
condition than demanding that 𝑃(𝐵) > 0, if 𝐵 is precise.
Denote by 𝑛𝐵 the smallest index so that

#–
𝛺 (𝑛𝐵) ∈ 𝐵. Note

that #–
𝑃 (𝐴|𝐵) (𝑛) = #–

𝑃 (𝑛) (𝐴 ∩ 𝐵)/ #–
𝑃 (𝑛) (𝐵) for 𝑛 ≥ 𝑛𝐵.

Even though the probability is conditional, we deal with a
sequence of finitely additive probabilities again. Hence, we
can now essentially repeat the argument from Section 2.2.
To each #–

𝑃 (·|𝐵) (𝑛), associate its uniquely corresponding
linear prevision #–

𝐸 (·|𝐵) (𝑛), which is of course given by
(∀𝑋 ∈ 𝐿∞, ∀𝑛 ≥ 𝑛𝐵):

#–
𝐸 (·|𝐵) (𝑛) = #   –

𝛴𝑋 |𝐵(𝑛) B 𝑋 ↦→

∑𝑛
𝑖=1 (𝑋 · 𝜒𝐵)

(
#–
𝛺 (𝑖)

)
∑𝑛

𝑖=1 𝜒𝐵

(
#–
𝛺 (𝑖)

) .

It is easy to check that #–
𝐸 (·|𝐵) (𝑛) is coherent. For 𝑛 < 𝑛𝐵,

set #–
𝐸 (·|𝐵) (𝑛) = NatExt(𝑃0). From the weak* compactness

of PF(𝛺), we obtain a non-empty closed set of cluster points
CP( #–

𝐸 (·|𝐵)).

Definition 7 If 𝐵 ∈ 2
#–
𝛺
1+, we define the conditional upper

prevision and the conditional upper probability as:

𝑅(𝑋 |𝐵) B sup
{
𝐸 (𝑋) : 𝐸 ∈ CP

(
#–
𝐸 (·|𝐵)

)}
, ∀𝑋 ∈ 𝐿∞,

𝑃(𝐴|𝐵) B sup
{
𝑄(𝐴) : 𝑄 ∈ CP

(
#–
𝑃 (·|𝐵)

)}
, ∀𝐴 ⊆ 𝛺.

Since they are expressed via an envelope representation,15
𝑅 and 𝑃 are automatically coherent [47, Theorem 3.3.3].
By similar reasoning as in Section 2.2, we get the following
representation.

Corollary 8 The conditional upper prevision (probability)
can be represented as (𝐵 ∈ 2

#–
𝛺
1+):

𝑅(𝑋 |𝐵) = lim sup
𝑛→∞

#   –
𝛴𝑋 |𝐵(𝑛), ∀𝑋 ∈ 𝐿∞,

𝑃(𝐴|𝐵) = lim sup
𝑛→∞

#–
𝑃 (𝐴|𝐵) (𝑛), ∀𝐴 ⊆ 𝛺.

Also, we get the corresponding lower quantities
𝑅(𝑋 |𝐵) = lim inf𝑛→∞

#   –
𝛴𝑋 |𝐵(𝑛) and 𝑃(𝐴|𝐵) =

lim inf𝑛→∞
#–
𝑃 (𝐴|𝐵) (𝑛). Note that these definitions also

have reasonable frequentist semantics even when 𝐵

occurs only finitely often; then the sequence #–
𝑃 (·|𝐵)

is eventually constant and we have #–
𝑃 (𝐴|𝐵) =

|𝐴 and 𝐵 occured|/|𝐵 occured|. For instance, if 𝐴 and 𝐵 oc-
cur just once, but simultaneously, then 𝑃(𝐴|𝐵) = 𝑃(𝐴|𝐵) =

15An envelope representation expresses a coherent upper prevision as
a supremum over a set of linear previsions.
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1. This is an advantage over Kolmogorov’s approach, where
conditioning on events of measure zero is not meaningfully
defined.
We now further analyze the conditional upper probability

and the conditional upper prevision measure. As a warm-
up, we consider the case of precise probabilities. If for
some event 𝐴 ⊆ 𝛺, we have 𝑃(𝐴|𝐵) = 𝑃(𝐴|𝐵), we write
�̃�(𝐴|𝐵) B lim𝑛→∞

#–
𝑃 (𝐴|𝐵) (𝑛).

Proposition 9 Assume 𝑃(𝐵), 𝑃(𝐴 ∩ 𝐵) exist for some
𝐴, 𝐵 ⊆ 𝛺 and 𝑃(𝐵) > 0. Then it holds that �̃�(𝐴|𝐵) =

𝑃(𝐴|𝐵), where 𝑃(·|𝐵) is the conditional probability in the
sense of Equation 1.

Thus, when the relative frequencies of 𝐵 and 𝐴 ∩ 𝐵 con-
verge, we reproduce the classical definition of conditional
probability. Now what happens under non-convergence?

4.2. The Generalized Bayes Rule

We now relax the assumptions of Proposition 9 and only
demand that 𝑃(𝐵) > 0.16 Then we observe that the condi-
tional upper prevision coincides with the generalized Bayes
rule, which is an important updating principle in impre-
cise probability (see e.g. [36]). The unconditional set of
desirable gambles is:

D #–
𝛺 B

{
𝑋 ∈ 𝐿∞ : 𝑅(𝑋) ≤ 0

}
.

Definition 10 For 𝑃(𝐵) > 0, we define the conditional set
of desirable gambles as:

D #–
𝛺 |𝐵 B

{
𝑋 ∈ 𝐿∞ : 𝑋𝜒𝐵 ∈ D #–

𝛺

}
.

and a corresponding upper prevision, which we call the
generalized Bayes rule, as:

GBR(𝑋 |𝐵)B inf
{
𝛼 ∈ ℝ : 𝑋 − 𝛼 ∈ D #–

𝛺 |𝐵

}
= inf

{
𝛼 ∈ ℝ : 𝜒𝐵 (𝑋 − 𝛼) ∈ D #–

𝛺

}
= inf

{
𝛼 ∈ ℝ : 𝑅 (𝜒𝐵 (𝑋 − 𝛼)) ≤ 0

}
.

Remark 11 In fact, Walley [47, Section 6.4] defines the
generalized Bayes rule as the solution of 𝑅(𝜒𝐵 (𝑋 −𝛼)) = 0
for 𝛼. It can be checked that this solution coincides with
Definition 10.17

Proposition 12 If 𝑃(𝐵) > 0, then 𝑅(𝑋 |𝐵) = GBR(𝑋 |𝐵).

16This condition is indispensable in order to make the connection to
the generalized Bayes rule.

17The conditional set of desirable gambles is considered for instance
in [1] and [49], but there the link to the generalized Bayes rule is not made
technically clear.

The proof is in the extended preprint [17].

Remark 13 Note that 𝑋 ↦→ lim sup𝑛→∞
#                –

𝛴 (𝑋𝜒𝐵) =

𝑅 (𝑋𝜒𝐵) is not in general a coherent upper prevision on
𝐿∞, as it can violate UP1. To see this, take for example
𝑋 (𝜔) = −1 for a 𝐵 ⊆ 𝛺 where 𝑃(𝐵) < 1. In general, we
have GBR(𝑋 |𝐵) ≠ 𝑅 (𝑋𝜒𝐵).

As a consequence, we can apply the classical representa-
tion result for the generalized Bayes rule.

Corollary 14 If 𝑃(𝐵) > 0, the conditional upper prevision
can be obtained by conditioning each linear prevision in
the set of cluster points, that is:

𝑅(𝑋 |𝐵) = sup
{
𝐸 (𝑋 |𝐵) : 𝐸 ∈ CP

(
#–
𝐸

)}
, (3)

where conditioning of the linear previsions is in the sense
of Equation 2.

This follows from [47, Theorem 6.4.2]. Intuitively, it makes
no difference whether we consider the cluster points of
the sequence of conditional probabilities or whether we
condition all probabilities in the set of cluster points in the
classical sense.
Closely related to conditional probability is the concept

of statistical independence, which plays a central role not
only in Kolmogorov’s [10, p. 37], but more generally in
most probability theories (Levin [35]; Fine [13, Sections
IIF, IIIG and VH]). In the extended preprint [17] we offer
an independence concept for the case of possibly diverging
relative frequencies and discuss how it relates to the classical
independence notion in Kolmogorov’s framework.

5. Related Work and Conclusion
While divergence of relative frequencies has been linked
to imprecise probability before, this has almost exclusively
been done in settings which are not strictly frequentist.
Fine [12] was one of the first authors to critically evaluate
the hypothesis of statistical stability and observed that this
widespread hypothesis is regarded as a “striking instance of
order in chaos” in the statistics community. This paper may
be seen as a predecessor to a long line of work by Terrence
Fine and collaborators, [14, 48, 34, 19, 15, 37, 38, 40, 11];
see also [16] for an introduction. A central motivation
behind this work was to develop a frequentist model for
the puzzling case of stationary, unstable phenomena with
bounded time averages. What differentiates this work from
ours is that we take a strictly frequentist approach: we
explicitly define the upper probability and upper prevision
from a given sequence. In contrast, the above works (with
the exceptions of [38], [11] and Section 4.3 in [48]) use
an imprecise probability to represent a single trial in a
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sequence of unlinked repetitions of an experiment, and
then induce an imprecise probability via an infinite product
space. This can be understood as a generalization of the
standard frequentist approach, where one would assume
that 𝑋1, 𝑋2, . . . form an i.i.d. sequence. While we are not
against this framework as such, our motivation was to work
with a parsimonious set of assumptions. To this end, we
took the sequence as the primitive entity, without relying
on an underlying “individual” (imprecise) probability.
In order to access a more powerful toolbox, de Cooman,

de Bock and Persiau more recently studied the interplay of
imprecise probability and randomness in the game-theoretic
setup [7, 39] with references to a frequentist perspective, see
e.g. [7, Corollary 28]. While we believe there is potential
for establishing relations between our approach and theirs,
the differences in technical setup make it challenging to do
so straightforwardly.
Within the setup of [48], Cozman and Chrisman [6, Theo-

rem 1, Theorem 2] proposed an estimator for the underlying
imprecise probability of the sequence. Specifically, they
computed relative frequencies along a finite set of selection
rules (yet without referring to von Mises) and then took
their minimum to obtain bounds on the lower probability.
What motivated the authors to do this is an assumption
on the data-generating process: at each trial, “nature” may
select a different distribution from a set of probability mea-
sures; the trials are then independent but not identically
distributed. A related approach is that of [11]. They offered
the metaphor of an analytical microscope. With more and
more complex selection rules (“powerful lenses”), along
which relative frequencies are computed, more and more
structure of the set of probabilities comes to light. The
authors also proposed a way to simulate data from a set of
probability measures.
In this work, we have extended strict frequentism to the

case of possibly divergent relative frequencies and sample
averages, tying together threads from [45], [22] and [47] and
thus providing a unified account based on coherent upper
previsions. In particular, we have recovered the generalized
Bayes rule from a strictly frequentist perspective by taking
inspiration from von Mises [45] definition of conditional
probability. Our converse result (Section 3) provides strictly
frequentist semantics for coherent upper previsions; pre-
viously, this has been done only for the simpler case of
coherent upper probabilities.
Statisticians exclusively assume that their data is part of

a stable sequence, but the hypothesis of perfect statistical
stability is just a hypothesis. A key point is that when one
blindly assumes convergence of relative frequencies, one
will not notice when it is violated — in the practical case,
when only a finite sequence is given, such a violation would
correspond to instability of relative frequencies even for
long observation intervals [18], in the sense that divergence

in an infinite sequence is an idealization of instability in
the case of finite data. In this work, we have rejected the
assumption of perfect statistical stability; furthermore, in
contrast to other related work, we have aimed to weaken
the set of assumptions by taking the concept of a sequence
as the primitive. However, this gives rise to the critique that
no finite part of a sequence has any bearing on what the
limit is, as has been pointed out by other authors whose
studies attempted a frequentist understanding of imprecise
probability (e.g. [4]). So what is the empirical content of
our theory, what are its practical implications?
The reader may wonder why we have introduced von

Mises frequentist account but not further used selection
rules afterwards. In von Mises’ framework, the set of se-
lection rules expresses randomness assumptions about the
sequence, similar to what the i.i.d. assumption achieves in
the standard picture. In our view, randomness assumptions
are the key to empower generalization in the finite data
setting. Hence, to supplement our theory with empirical
content, the introduction of selection rules is needed. How-
ever, multiple directions can be pursued here. For instance,
Papamarcou and Fine [38] have defined the concept of an
unstable collective, where divergence remains unchanged
when applying selection rules. By contrast, we could in-
troduce a set of selection rules and assume that relative
frequencies converge within each selection rule, but to po-
tentially different limits across selection rules.18 Hence, we
view this paper as only the first step of a larger research
agenda. The next step is to incorporate randomness assump-
tions into the picture and explore the connections between
various possible approaches, specifically how different ways
of relaxing vM1 and vM2 are related.
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