
Coreset Markov chain Monte Carlo

Naitong Chen Trevor Campbell
Department of Statistics

University of British Columbia
naitong.chen@stat.ubc.ca

Department of Statistics
University of British Columbia

trevor@stat.ubc.ca

Abstract

A Bayesian coreset is a small, weighted subset
of data that replaces the full dataset during
inference in order to reduce computational
cost. However, state of the art methods for
tuning coreset weights are expensive, require
nontrivial user input, and impose constraints
on the model. In this work, we propose a
new method—Coreset MCMC—that simu-
lates a Markov chain targeting the coreset
posterior, while simultaneously updating the
coreset weights using those same draws. Core-
set MCMC is simple to implement and tune,
and can be used with any existing MCMC ker-
nel. We analyze Coreset MCMC in a represen-
tative setting to obtain key insights about the
convergence behaviour of the method. Empir-
ical results demonstrate that Coreset MCMC
provides higher quality posterior approxima-
tions and reduced computational cost com-
pared with other coreset construction meth-
ods. Further, compared with other general
subsampling MCMC methods, we find that
Coreset MCMC has a higher sampling effi-
ciency with competitively accurate posterior
approximations.

1 INTRODUCTION

Bayesian inference provides a flexible and principled
framework for parameter estimation and uncertainty
quantification when working with complex statistical
models. Markov chain Monte Carlo (MCMC) (Robert
and Casella, 2004; Robert and Casella, 2011; Gelman
et al., 2013, Ch. 11,12) is the standard methodology for
conducting Bayesian inference, and involves simulating

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

a Markov chain whose stationary distribution is the
Bayesian posterior. However, in the large-scale data
setting, standard MCMC methods become costly, as
simulating each Markov transition involves iterating
over the entire data set; and typically, many steps
are needed to obtain reasonable estimates of posterior
expectations.

To reduce the computational cost incurred by large
datasets, subsampling MCMC methods repeatedly sub-
sample the data and simulate the next state of the
chain based on only that subsample, instead of the
full dataset (Banterle et al., 2019; Quiroz et al., 2019;
Maclaurin and Adams, 2014; Korattikara et al., 2014;
Bardenet et al., 2014; Welling and Teh, 2011; Chen
et al., 2014). Some of these methods target the exact
posterior distribution asymptotically, but require a full
pass over the data per accepted step (Banterle et al.,
2019), require model-specific design of log-likelihood
surrogates (Maclaurin and Adams, 2014), or have pro-
gressively slower convergence (Welling and Teh, 2011).
Other methods approximate various aspects of the
transition with a subsample—e.g., the accept-reject de-
cision (Korattikara et al., 2014; Bardenet et al., 2014),
or dynamics that generate a proposal (Chen et al.,
2014; Baker et al., 2019)—but the performance of such
methods is dependent on the existence of good con-
trol variates to keep (gradient) log-likelihood estimate
variance low (Quiroz et al., 2019). Control variate
design is model-specific in general, while automated
methods impose limitations on the model (e.g., Tay-
lor expansion-based control variates require continuous
latent variables). For more in-depth reviews of sub-
sampling MCMC methods, see Bardenet et al. (2017);
Quiroz et al. (2018); Nemeth and Fearnhead (2021).

Another approach to handling large-scale Bayesian in-
ference problems are Bayesian coresets (Huggins et al.,
2016; Campbell and Broderick, 2019, 2018; Campbell
and Beronov, 2019; Manousakas et al., 2020; Naik
et al., 2022; Chen et al., 2022), which consist of a
fixed, weighted subsample of the data that replaces the
full dataset during inference. The intuition is that there
is typically redundancy present in large data, and so it

Coreset Markov chain Monte Carlo

should be possible to capture the information needed
for inference in a single small subsample. Indeed, recent
work has shown that a coreset of size O(logN) suffices
to provide a near-exact approximation of a posterior
for N data points in a wide class of models (Naik et al.,
2022, Thm. 4.1,4.2; Chen et al., 2022). Coresets do not
require bespoke kernel or control-variate design; once a
coreset is constructed, any generic MCMC kernel can
be applied. Coresets also typically preserve important
structure (e.g., unidentifiability, heavy tails) as they are
built using the original model’s log-likelihood terms.

Constructing a good coreset efficiently remains a chal-
lenge. Early methods based on importance sampling
(Huggins et al., 2016) are simple and computationally
efficient, but generally produce unreliable approxima-
tions in practice. Methods based on sparse regres-
sion with a finite-dimensional log-likelihood projection
(Campbell and Broderick, 2019, 2018; Zhang et al.,
2021) are sensitive to the projection and require sig-
nificant expert user tuning effort. Sequential greedy
KL minimization approaches (Campbell and Beronov,
2019) are able to produce high quality coresets, but
involve a slow and difficult-to-tune inner-loop weight
optimization with outer-loop point selection. Two re-
cent methods—Sparse Hamiltonian Flows (SHF) and
Quasi-Newton Coresets (QNC) (Naik et al., 2022; Chen
et al., 2022)—instead quickly select the points in the
coreset via uniform subsampling, and then run a sin-
gle joint weight optimization. SHF avoids inner-outer
loop procedures entirely, but is limited to differentiable
log-posterior densities and does not come with a con-
vergence guarantee on the weights. QNC applies more
broadly and has a guaranteed weight convergence, but
only if certain expectations can be evaluated exactly;
in practice, one requires inner-loop MCMC. Both meth-
ods tend to require significant user expertise and effort
when tuning.

This work introduces Coreset MCMC, a new construc-
tion method that is simpler and faster to implement and
tune compared with previous coreset methods. Coreset
MCMC can be thought of as a meta-algorithm that
wraps an existing MCMC kernel: the method iterates
between (1) taking a step with the kernel targeting
the coreset posterior, and (2) adapting the coreset
weights using the current draw, and is related to both
adaptive stochastic approximation algorithms (see Ben-
veniste et al., 1990, pp. 31-33) and adaptive MCMC
(see Andrieu and Thoms, 2008). We show that when
the optimal coreset is exact, Coreset MCMC will pro-
duce a coreset that converges to the exact posterior,
and hence is an asymptotically exact method. We
also analyze Coreset MCMC using a representative
model to obtain key insights in tuning the method.
This paper concludes with experiments demonstrating

that coreset MCMC provides higher quality posterior
approximations than other coreset methods, and im-
proved sampling efficiency compared with subsampling
MCMC methods.

2 BACKGROUND

We are given a dataset (Xn)
N
n=1 of N observations, a

log-likelihood ℓn(θ) := log p(Xn | θ) for observation n
given θ ∈ Θ, and a prior density π0(θ). The goal is to
sample from the Bayesian posterior with density

π(θ) :=
1

Z
exp

(
N∑

n=1

ℓn(θ)

)
π0(θ),

where Z is the normalizing constant. The Bayesian
coresets approach to reducing this cost involves replac-
ing the sum of log-likelihoods for the full dataset with
a small, weighted subsample (without loss of generality,
we assume these are the first M points 1, . . . ,M):

πw(θ) :=
1

Z(w)
exp

(
M∑

m=1

wmℓm(θ)

)
π0(θ),

where w ∈ RM , w ≥ 0 is a vector of nonnegative
weights. In this work, we follow the setting in Naik
et al. (2022) and Chen et al. (2022), where the coreset
points are uniformly subsampled. If we can construct
a set of weights w such that M ≪ N and πw ≈ π, then
we can generate draws using MCMC targeting πw as a
surrogate for draws from π at a low per-iteration cost.

Most recent coreset construction methods formulate
the task as a variational inference problem, following
Campbell and Beronov (2019):

w⋆ = argmin
w∈RM

DKL(πw||π) s.t. w ∈ W. (1)

In this work, we assume that the feasible region W ⊆
RM is convex and closed. We also assume that for
all w ∈ W, Z(w) < ∞. In practice, W is usually
the set of nonnegative weights RM

+ , but often also
includes other constraints, e.g.,

∑
m wm = N . This

variational problem is also slightly unusual, in the sense
that we cannot estimate the KL divergence even up
to a constant because of the unknown normalization
Z(w) that depends on the coreset weights w. However,
we can write the M -dimensional KL gradient as an
expectation under πw that does not explicitly involve
the normalization:

∇wDKL(πw||π)

=Covπw


 ℓ1(θ)

...
ℓM (θ)

 ,
∑
m

wmℓm(θ)−
∑
n

ℓn(θ)

 . (2)

Naitong Chen, Trevor Campbell

If we had access to i.i.d. draws from πw, we could ob-
tain an unbiased estimate of the gradient in Eq. (2) for
stochastic gradient descent (Robbins and Monro, 1951;
Bottou, 2004) by estimating the covariance using these
i.i.d. draws, and estimating the full-data sum

∑
n ℓn(θ)

with a subsample. Note that crucially, this estimate
can be computed using only black-box evaluations of
the log-likelihood, which makes this approach appli-
cable to a wide range of models (e.g., with discrete
variables). However, i.i.d. draws from πw are usually
not available, and one must resort to MCMC. This in-
troduces an inner loop MCMC estimation step, which
is slow and may need constant tuning as the coreset
weights w evolve (Campbell and Beronov, 2019; Naik
et al., 2022). In the next section, we draw inspiration
from adaptive MCMC and adaptive stochastic approx-
imation algorithms to develop a coreset construction
method that more naturally interleaves MCMC and
gradient updates.

3 CORESET MCMC

3.1 Setup

Suppose at iteration t ∈ N, for a fixed set of coreset
weights wt ∈ W, we had access to K ≥ 2 i.i.d. draws
θt = (θt1, . . . , θtK) ∈ ΘK from πwt , and a subsample
St ⊆ [N] of S data points drawn uniformly without
replacement from the full dataset. Then an unbiased
estimate of the gradient in Eq. (2) is given by

g(wt, θt,St) = (3)

1

K − 1

K∑
k=1

 ℓ̄1(θtk)
...

ℓ̄M (θtk)

(∑
m

wtmℓ̄m(θtk)−
N

S

∑
s∈St

ℓ̄s(θtk)

)
,

where ℓ̄n(θtk) are the centered log-likelihoods

ℓ̄n(θtk) = ℓn(θtk)−
1

K

K∑
j=1

ℓn(θtj).

Since the estimate g(wt, θt,St) is unbiased, i.e.,
Eg(wt, θt,St) = ∇DKL(πwt

||π), it can be used in a
stochastic optimization scheme:1

wt+1 = projW (wt − γtg(wt, θt,St)) , (4)

where γt > 0 is a monotone decreasing learning rate se-
quence, and projW projects the result onto the feasible
set W. However, in realistic scenarios, we do not have
access to independent draws from πw; we are forced

1In Eqs. (4) and (5) we show standard projected stochas-
tic gradient descent, but other methods such as ADAM
(Kingma and Ba, 2014) and AdaGrad (Duchi et al., 2011)
are also possible. We use ADAM in our experiments.

Algorithm 1 One iteration of Coreset MCMC

Require: wt, θt, γt, κw, S
▷ Subsample the data
St ← Unif (S, [N]) (without replacement)
▷ Compute gradient estimate
gt ← Eq. (3)
▷ Stochastic gradient step
wt+1 ← wt − γtgt
▷ Step each Markov chain
for k = 1, . . . ,K do

θ(t+1)k ∼ κwt+1
(· | θtk)

end for
return wt+1, θt+1

to take approximate draws using Markov chains. Our
algorithm in Section 3.2 is based on using the stochastic
optimization scheme in Eq. (4) but with K Markov
chains instead of independent sequences.

3.2 Algorithm

Iteration: Let κw be a family of Markov kernels
parametrized by coreset weights w such that for each set
of weights w, κw has invariant distribution πw. Then
one step of Coreset MCMC, shown in Algorithm 1,
involves the following updates in sequence:

wt+1 ← projW (wt − γtg(wt, θt,St)) (5)

θ(t+1)k ∼ κwt+1
(· | θtk) , k = 1, . . . ,K,

where St is a subset of S indices from {1, . . . , N} drawn
uniformly without replacement. Note that K ≥ 2
Markov chains are required for the gradient estimate
in Eq. (3); each step in these K chains is independent
given the current weights, and can be run in parallel.

Initialization: We initialize the coreset weights uni-
formly to have sum N :

w0m =
N

M
m = 1, . . . ,M,

and initialize the Markov chain states θ0k, k = 1, . . . ,K
arbitrarily, although it may help in practice to allow
some amount of burn-in before beginning to adapt the
coreset weights.

Choice of kernel: Coreset MCMC is agnostic as to
the choice of kernels κw; for example, κw could be a ba-
sic random-walk Metropolis–Hastings scheme (Robert
and Casella, 2004, Ch. 7), slice sampler (Neal, 2003), or
Hamiltonian Monte Carlo-based method (Neal, 2011;
Duane et al., 1987) designed to target πw. However,
because the weights wt—and hence the coreset poste-
rior πwt—will change as iterations proceed, one should
prefer kernels that automatically adapt to the local

Coreset Markov chain Monte Carlo

geometry of the coreset posterior. For example, a hit-
and-run slice sampler with doubling (Neal, 2003, Fig. 4;
Bélisle et al., 1993) is a reasonable choice as it will
automatically select reasonable step sizes as w changes.
Although adaptive MCMC kernels (see Andrieu and
Thoms, 2008) may seem attractive here, they are usu-
ally designed for a single target—not a moving target
like πwt—and tuning such methods jointly with Coreset
MCMC may be difficult.

Complexity: If the kernel κw can be applied in
O(M) time, and each log-likelihood term ℓn(θ) takes
O(1) time to compute, each step of Coreset MCMC
takes O((M + S)K) time on a single processor. If
K processors are available, this can be reduced to
O((M + S) logK) by running the Markov chains in
parallel and using distributed reduction in Eq. (3).

Subsampling: We draw St without replacement, as
this reduces subsampling variance by N−S

N−1 ≤ 1 versus
sampling with replacement. However, when S ≪ N ,
the difference between these two is small. In practice,
one can perform random order scans over the data.

3.3 Convergence Analysis

We now analyze the convergence behaviour of Coreset
MCMC. Proofs may be found in Appendix A. So far we
have assumed that γt > 0 is a (not necessarily strictly)
monotone decreasing sequence,W is closed and convex,
and that ∀w ∈ W , Z(w) <∞; all of these assumptions
are required to use Algorithm 1. In this subsection, we
impose a set of additional assumptions that are not
required by Algorithm 1 but simplify the analysis.

Note that the coreset optimization problem Eq. (1) is
nonconvex; but despite this fact, we are able to show
that Coreset MCMC produces an optimal set of weights
in settings where M is large enough such that there
is an exact coreset. We formalize this assumption in
Assumption 3.1.

Assumption 3.1 (Exact coreset). There exists a
unique w⋆ ∈ RM , c⋆ ∈ R such that w⋆ ∈ W and

N∑
n=1

ℓn(·) =
M∑

m=1

w⋆
mℓm(·) + c⋆ π0 − a.e.v.

We now begin with the simple case where S = N , i.e.,
where there is no data subsampling in the stochastic
gradient estimate Eq. (3). Define Gt ∈ RM×M to be

Gt =
1

K − 1

K∑
k=1

 ℓ̄1(θtk)
...

ℓ̄M (θtk)


 ℓ̄1(θtk)

...
ℓ̄M (θtk)


⊤

,

and note that the KL gradient estimate in Eq. (3) can

be written

g(wt, θt, [N]) = Gt (wt − w⋆) .

Hence all of the stochasticity in the gradient esti-
mate in Eq. (3) comes from Gt, which estimates
Cwt = Covπwt

[
ℓ1(θ) . . . ℓM (θ)

]
. As is usual in the

analysis of stochastic optimization, we require two high-
level conditions for convergence: the gradient estimate
must (1) provide progress per iteration on average, and
(2) not be so noisy that the algorithm makes unrecover-
able mistakes. We formulate these in Assumptions 3.2
and 3.3 in terms of the moments of Gt after a single
Markov chain step.

Assumption 3.2 (Markov gradient mixing). There
exists λ > 0 such that

∀wt ∈ W, θt−1 ∈ ΘK E [Gt | wt, θt−1] ⪰ λI.

Assumption 3.3 (Markov gradient noise bounded-
ness). There exists a λ <∞ such that

∀wt ∈ W, θt−1 ∈ ΘK E
[
G⊤

t Gt |wt, θt−1

]
⪯ λI.

Assumption 3.2 can be interpreted in two parts. First,
we ask that the Markov chains mix quickly so that the
covariance estimate Gt is similar to the exact covari-
ance Cwt in the KL gradient formula Eq. (2). Second,
we require the exact covariance Cwt to have a positive
minimum eigenvalue to guarantee that Algorithm 1
progresses towards the optimum. Assumption 3.3 can
be interpreted as placing a bound on the variance of
Gt at each iteration. Both Assumptions 3.2 and 3.3
are meant to be representative, akin to the uniformly
bounded gradient noise assumptions common in the
optimization literature (e.g. Rakhlin et al., 2012; Hazan
and Kale, 2014); they are too strong to hold precisely
in realistic models with unbounded parameter spaces
Θ. However, note that Assumption 3.3 holds if the ℓn
are continuous and the parameter space Θ is compact;
and Assumption 3.2 holds if additionallyW is compact
and the minimum eigenvalue of E [Gt | wt, θt−1] is con-
tinuous and strictly positive for wt ∈ W, θt−1 ∈ ΘK .

Theorem 3.4 shows that Coreset MCMC produces
weights that converge to the optimum w⋆ in expec-
tation (and hence in probability) when the full data
are used for gradient estimation, i.e., when S = N in
Eq. (3). In particular, a constant learning rate γt = γ
in Theorem 3.4 yields linear convergence despite the
use of stochastic gradient estimates. This is because
the gradient variance shrinks as the iterates approach
the optimum due to the multiplicative (wt−w⋆) factor
in the gradient estimate. The link between variance
reduction and linear convergence in stochastic gradient
methods is well-known in the optimization literature;
see Gower et al. (2020) for a more in-depth discussion.

Naitong Chen, Trevor Campbell

Theorem 3.4. Suppose Assumptions 3.1 to 3.3 hold
and S = N . There exists γ > 0 such that if supt γt ≤ γ,

E∥wt − w⋆∥2 ≤ e−λ
∑t−1

τ=0 γτ ∥w0 − w⋆∥2.

In particular, if
∑∞

t=0 γt =∞, then E∥wt − w⋆∥2 → 0
as t→∞.

When gradients are estimated using subsampling, i.e.,
when S < N in Eq. (3), there is an additional noise
term that must be controlled in the analysis. Define

∆tkn = ℓ̄n(θtk)−
1

N

N∑
n′=1

ℓ̄n′(θtk)

Vt =
1

MN

M∑
m=1

N∑
n=1

(
1

K − 1

K∑
k=1

ℓ̄m(θtk)∆tkn

)2

.

The quantity Vt ≥ 0 captures the variance of subsam-
pling noise. Assumption 3.5 uniformly bounds the
influence of this noise after a single Markov chain step.
Again, although meant just to be representative, As-
sumption 3.5 holds at least when the log-likelihood
functions are continuous and the parameter space Θ is
compact.

Assumption 3.5 (Subsampling noise boundedness).
There exists a V <∞ such that

∀wt ∈ W, θt−1 ∈ ΘK E [Vt | wt, θt−1] ≤ V.

Given the addition of Assumption 3.5, Theorem 3.6
provides a convergence guarantee for Coreset MCMC
with data subsampling. Note that convergence is now
sublinear due to subsampling noise.

Theorem 3.6. Suppose Assumptions 3.1 to 3.3 and 3.5
hold. There exists γ > 0 such that if supt γt ≤ γ, then

E∥wt − w⋆∥2 ≤ e−λ
∑t−1

τ=0 γτ ∥w0 − w⋆∥2

+
V (N − S)N2M

(N − 1)S

t−1∑
τ=0

γ2
τe

−λ
∑t−1

u=τ+1 γu .

In particular, if
∑∞

t=0 γt = ∞ and γt → 0 as t → ∞,
then E∥wt − w⋆∥2 → 0 as t→∞.

3.4 Intuition from a Representative Model

In this subsection we build intuition on the behaviour
of Algorithm 1 using a Gaussian location model in

Rd, with prior θ ∼ N (0, I), data Xn
iid∼ N (θ, I),

N = 10,000, and d = 20. We use the feasible re-
gion W = {w ∈ RM : w ≥ 0,

∑
m wm = N}. The

coreset posterior is πw = N (µw, σ
2I) with µw =

σ2
∑M

m=1 wmXm and σ2 = 1
1+N . We use a family

of Markov kernels κw inspired by Langevin dynamics,

θ(t+1)k ∼ N
(√

β (θtk − µwt
) + µwt

, (1− β)I
)
,

where β ∈ [0, 1] controls how quickly the Markov chains
mix; β = 0 provides independent draws, β = 1 yields
no mixing. We use a default setting of β = 0.8, S = 30,
M = 30, K = 20 for each experiment, and vary one
parameter while holding the others fixed. We use a
learning rate of the form γt = γ(t+ 1)α−1, with γ =
N

10M and—following Theorems 3.4 and 3.6—α = 1 for
full-data gradient estimates and α = 0.5 for subsampled
estimates. We plot KL divergence computed using
Eq. (10) versus “cost” equal to ((M + S) logK)t, per
the earlier complexity analysis. A heuristic analysis of
the expected KL divergence when β ≈ 0, N ≫M ≫ 1,
and γ ≪M (see Appendix B) yields the formula

EDKL(πwt
||π) ⪅ (6)

e−
2γ(tα−1)

α
N

2M
+

γ(N − S)d(K + d)(1 + log t1−α)

4S(K − 1)t1−α
.

Effect of parallelization (K): Inspecting the for-
mula in Eq. (6), we expect increasing the number of
chains should not influence the expected KL signifi-
cantly for full-data gradients, and when subsampling
should provide a meaningful reduction until K ≈ d.
Figs. 1a and 1b confirm this intuition. We recommend
setting K as large as possible given available hardware
in practice, as it may improve approximation quality
without a noticeable time penalty.

Effect of subsampling (S): Figs. 1a and 1b also
demonstrate the influence of subsampled gradient es-
timates, and confirm the results in Eq. (6) and The-
orems 3.4 and 3.6. In particular, the KL divergence
appears to converge geometrically when using the full
data gradient estimates, and polynomially when using
subsampled estimates. However, adjusting for iteration
cost, subsampling can provide improved approximation
quality, especially in earlier iterations. A reasonable
default setting of S in practice is such that the time
spent simulating the Markov chains and computing the
gradient update is comparable.

Effect of coreset size (M): Fig. 1c shows that
Coreset MCMC still converges when the optimal coreset
is not exact, but that there is persisting error. Once the
coreset gets large enough such that the optimal coreset
is exact, further increasing the size does not yield major
improvements. In this problem, M ≈ d = 20 suffices
to get an exact coreset, and beyond that the effect of
increasing M further diminishes.

Effect of mixing rate (β): Fig. 1d shows that, at
least in this example, the mixing rate of the Markov

Coreset Markov chain Monte Carlo

(a) Varying K, full data (b) Varying K, subsampling (c) Varying M (d) Varying β

Figure 1: Influence of gradient estimation scheme (with or without subsampling), number of Markov chains,
Markov chain mixing rate, and coreset size on the performance of Coreset MCMC in the Gaussian location model.

chain has little effect on the performance of Coreset
MCMC. In practice, the mixing rate of any kernel κw

could in principle be adjusted by increasing the number
of steps between gradient updates. Given the results
here, we recommend using a single application of an
automatically adapting kernel, e.g., a slice sampler with
doubling (Neal, 2003).

4 EXPERIMENTS

In this section, we compare CoresetMCMC (without
subsampling, i.e., S = N) and CoresetMCMC-S (with
subsampling, i.e., S < N) against previous coreset
construction methods, as well as various subsampling
MCMC methods. The coreset construction methods
that we compare to are uniform subsampling (Unif)—
which assigns a weight of N/M to M uniformly drawn
points—as well as QNC (Naik et al., 2022) and SHF

(Chen et al., 2022). Note that we do not compare to
Sparse VI (Campbell and Beronov, 2019) due to its
high computational cost; see Naik et al. (2022) for a
comparison between Sparse VI and QNC. The subsam-
pling MCMC methods we compare to are Austerity MH
(Austerity) (Korattikara et al., 2014), confidence MH
(Confidence) (Bardenet et al., 2014), and stochastic
gradient Langevin dynamics (SGLD-CV) and stochastic
gradient Hamiltonian Monte Carlo (SGHMC-CV) each
with a control variate set to the log-likelihood gra-
dient near the posterior density mode (Nemeth and
Fearnhead, 2021).

We consider four Bayesian regression models: a (non-
conjugate) linear, a logistic, a Poisson, and a sparse
regression model. The models for the first three real
data experiments contain only continuous variables,
and that for the last synthetic experiment contains both
continuous and discrete variables; see Appendix C for
details. We use Stan (Carpenter et al., 2017) to obtain
full data inference results for real data experiments,
and use the Gibbs sampler developed by George and
McCulloch (1993) for the synthetic experiment, due to
its inclusion of discrete variables.

For the three real data experiments (with only continu-

ous variables), we measure the posterior approximation
quality of all methods using the two-moment KL, de-
fined as DKL(N (µ̂, Σ̂)||N (µ,Σ)), where µ̂, Σ̂ are the
mean and covariance estimated using draws from each
method, and µ,Σ are the same estimated for the full
data posterior. This metric combines posterior mean
and covariance error into a single number. We measure
efficiency using wall-clock training time as well as the
minimum marginal effective sample size (ESS) per sec-
ond across all dimensions. For sparse regression (with
both continuous and discrete variables), we measure the
posterior approximation quality and sampling efficiency
for the discrete and continuous posterior marginals sep-
arately. For the continuous variables, we use the same
metrics as for the other experiments. For the discrete
variables, we measure posterior approximation quality
via the Jensen-Shannon divergence—which accounts
for the possiblity of differing support in empirical dis-
tribution approximations—and efficiency via the ESS
computed for the fraction of correct feature inclusion
indicators. For both ESS computations, we use the
bulk-ESS formula in Vehtari et al. (2021).

For all coreset methods that use an MCMC kernel,
we use the hit-and-run slice sampler with doubling
(Bélisle et al., 1993; Neal, 2003) for linear and logistic
regressions, the univariate slice sampler with doubling
(Neal, 2003, Fig. 4) applied to each dimension for the
more challenging Poisson regression, and the Gibbs
sampler developed by George and McCulloch (1993)
for sparse regression. For SGLD-CV and SGHMC-CV, we
set the subsampling size to 500. For Austerity and
Confidence, we set the accept-reject decision threshold
to 0.05.

All experiments were performed on the UBC ARC
Sockeye cluster. Each algorithm was run on 8 single-
threaded cores of a 2.1GHz Intel Xeon Gold 6130 pro-
cessor with 32GB memory. Code for these experiments
is available at https://github.com/NaitongChen/

coreset-mcmc-experiments. More experimental de-
tails and additional plots are in Appendices C and D.

https://github.com/NaitongChen/coreset-mcmc-experiments
https://github.com/NaitongChen/coreset-mcmc-experiments

Naitong Chen, Trevor Campbell

(a) linear regression (b) logistic regression (c) Poisson regression

(d) linear regression (e) logistic regression (f) Poisson regression

(g) linear regression (h) logistic regression (i) Poisson regression

Figure 2: Comparison of coreset methods on real data examples. Figs. 2a to 2c show posterior approximation
quality via the two-moment KL, Figs. 2d to 2f show training time, and Figs. 2g to 2i show sampling efficiency via
the min. ESS per second. The lines indicate the median, and error regions indicate 25th to 75th percentile from
10 runs.

4.1 Comparison of Coreset Methods

Fig. 2 displays the comparison of Coreset MCMC with
past coreset construction methods on the three real
data experiments over various coreset sizes M . As
shown in Figs. 2a to 2c, the Unif baseline, although
not requiring any training and yielding a competitive
sampling efficiency, generally provides poor quality core-
sets with an order of magnitude higher two-moment
KL nearly uniformly across all coreset sizes than all
other methods. QNC generates competitive posterior
approximations for both linear and logistic regression,
but a significantly worse approximation in the more
challenging Poisson regression problem. Its approxima-
tions are also less reliable in general; the instability is
particularly evident in linear regression when the core-
set size is small—where QNC produces NaN values even
after multiple attempts at tuning—and in the poisson
regression example. SHF generally provides high quality
approximations for small coreset sizes, but they do not
improve with increasing coreset size. We conjecture

that this is due to the quasi-refreshment steps limiting
the expressiveness of the variational family used in SHF.

Figs. 2d to 2f show that both QNC and SHF take between
2 to 10 times longer to train than both variants of
Coreset MCMC. QNC takes longer than CoresetMCMC

to train because it runs a full MCMC procedure at each
optimization iteration, and computes a quasi-Newton
update that has time complexity O(M3); compare
to CoresetMCMC, which has updates that require only
O(M) time. SHF takes longer than CoresetMCMC to
train because it requires taking the gradient over the
entire flow to obtain updates on the coreset weights,
refreshment parameters, and step sizes. Once trained,
Figs. 2g to 2i show that all coreset methods provide a
similar minimum ESS per second except for SHF, which
is a variational methods that provides i.i.d. draws.

Fig. 3 shows the same comparison of coreset methods
on sparse regression. Note that SHF is not applicable
here due to the inclusion of discrete variables, and

Coreset Markov chain Monte Carlo

(a) quality (cont.) (b) efficiency (cont.) (c) training time (d) quality (disc.) (e) efficiency (disc.)

Figure 3: Comparison of coreset methods on sparse regression. Figs. 3a and 3b show posterior approximation
quality and sampling efficiency across the continuous components via the two-moment KL and the min. ESS per
second. Figs. 3d and 3e show those across the discrete components via the Jensen-Shannon divergence and ESS
per second. Fig. 3c shows training time in seconds. The lines indicate the median, and error regions indicate 25th

to 75th percentile from 10 runs.

hence is excluded from this experiment. We see that
the trends in these plots resemble those from the three
real data experiments: Unif produces worse quality
coresets than CoresetMCMC and QNC, and QNC requires
much longer training times than CoresetMCMC.

Comparing between the two variants of Coreset MCMC
methods, it is clear that by including the full dataset
when estimating the gradient, we obtain generally
higher quality posterior approximations in terms of
the two-moment KL. In general, we recommend set-
ting S in Eq. (3) such that gradient updates require
similar time as generating the next MCMC state, to
balance time spent on simulating the Markov chains
and estimating KL gradients.

4.2 Comparison with Subsampling MCMC

Figs. 4 and 5 display the comparison between all coreset
methods and all subsampling MCMC methods, on the
three real data experiments and the synthetic sparse
regression experiment. Here we fix the coreset size to
M = 500. On the easier linear and logistic regression
problems (i.e., with more Gaussian-like posteriors), we
see that CoresetMCMC provides approximations com-
petitive, and sometimes better, than the other methods
except for SGHMC-CV. However, we note that stochas-
tic gradient MCMC methods depends heavily on the
quality of the control variate. This is illustrated in the
more challenging Poisson regression example; in this
example, the control variate construction struggled to
identify the mode of the posterior, causing resulting ap-
proximation quality to suffer. Furthermore, stochastic
gradient MCMC methods are limited to models with
only continuous variables, whereas CoresetMCMC, as
illustrated in Fig. 5, applies to and performs well on
models with both continuous and discrete variables.

In terms of sampling efficiency, CoresetMCMC and
CoresetMCMC-S are uniformly better than other sub-
sampling MCMC methods. Specifically, we get
roughly 2 orders of magnitude higher ESS per sec-
ond in CoresetMCMC than SGHMC-CV. This means that

CoresetMCMC can eventually catch up despite the initial
training time. As an example, in the linear regression
case, although it takes CoresetMCMC roughly 500 sec-
onds to train, it is only enough time for SGHMC-CV to
obtain roughly 50 effective samples. This deficit can
be recovered by CoresetMCMC after 5 seconds once it
stops adapting the coreset weights.

4.3 Tuning Difficulty

Although not reflected in the results in Figs. 2 to 5,
tuning difficulty was a key differentiator in usability
among the methods tested. Compared with other core-
set methods, we found CoresetMCMC very straightfor-
ward to tune, as it just requires setting a learning rate.
For QNC, in contrast, one needs to pick the number of
MCMC samples used to estimate the gradient, the opti-
mization step size, the number of iterations in which to
perform a line search on the step size, and the number
of weight optimization iterations. We note that the
recommendation of setting the optimization step size to
1 from Naik et al. (2022) may cause the coreset weights
to become unstable; we instead set this value to the
step size at the last iteration where a line search was
performed. Despite this modification, we can see from
our results that QNC is still less stable than other core-
set methods, and as such required significantly more
manual tuning effort and time than CoresetMCMC. For
SHF, much of the tuning effort goes into specifying the
flow architecture: one must select the number of quasi-
refreshment steps and the number of leapfrog steps in
between quasi-refreshments. As discussed earlier, these
tuning parameters determine the expressiveness of the
variational family, and so one needs to balance having
a highly expressive variational family without it being
too complex to train within reasonable time.

For the stochastic gradient MCMC methods with con-
trol variates, the key difficulty (beyond tuning the sub-
sample size) was to balance the effort spent construct-
ing a good control variate (i.e., finding a reasonable
estimate of the posterior mode) versus the effort spent

Naitong Chen, Trevor Campbell

(a) linear regression (b) logistic regression (c) Poisson regression

(d) linear regression (e) logistic regression (f) Poisson regression

Figure 4: Comparison of coreset and subsampling MCMC methods on real data examples. Figs. 4a to 4c show
posterior approximation quality via the two-moment KL, and Figs. 4d to 4f show sampling efficiency via the min.
ESS per second. The boxplots indicate the median, 25th, and 75th percentiles from 10 runs.

(a) quality (cont.) (b) efficiency (cont.) (c) quality (disc.) (d) efficiency (disc.)

Figure 5: Comparison of coreset and subsampling MCMC methods on sparse regression. Figs. 5a and 5b show
posterior approximation quality and sampling efficiency across the continuous components via the two-moment KL
and the min. ESS per second. Figs. 5c and 5d show those across the discrete components via the Jensen-Shannon
divergence and ESS per second. The boxplots indicate the median, 25th, and 75th percentiles from 10 runs.

using the control variate in sampling. For SGHMC-CV,
one also needs to specify the number of leapfrog steps
and the leapfrog step size. These two parameters are
as complicated to tune as in Hamiltonian Monte Carlo.

Finally, both Austerity and Confidence require the
user to input a threshold that determines the quality of
the accept-reject decision approximation. This quantity
does not directly influence the sampling efficiency as
subsample size would. As a result, if one has a clear
computation time budget, it may be more intricate to
tune these methods well.

5 CONCLUSION

This paper introduced Coreset MCMC, a novel coreset
construction method that is simple to implement and

tune compared with previous coreset methods. Coreset
MCMC involves interleaving simulating states from
several independent Markov chains targeting the core-
set posterior with updating the coreset weights using
these same draws. Theoretical results demonstrated
that our method is asymptotically exact, assuming
there exists a coreset whose corresponding posterior
approximation has KL 0 to the true posterior, as well
as other technical conditions. Finally, empirical results
demonstrated that our method provides higher quality
posterior approximations compared with other coreset
methods, and improved sampling efficiency compared
with subsampling MCMC methods.

Acknowledgements

We acknowledge the support of an NSERC Discovery
Grant (RGPIN-2019-03962), and the use of the ARC

Coreset Markov chain Monte Carlo

Sockeye computing platform from the University of
British Columbia.

References

Christian Robert and George Casella. Monte Carlo
Statistical Methods. Springer, 2nd edition, 2004.

Christian Robert and George Casella. A short history of
Markov chain Monte Carlo: subjective recollections
from incomplete data. Statistical Science, 26(1):102–
115, 2011.

Andrew Gelman, John Carlin, Hal Stern, David Dun-
son, Aki Vehtari, and Donald Rubin. Bayesian Data
Analysis. CRC Press, 3rd edition, 2013.

Marco Banterle, Clara Grazian, Anthony Lee, and
Christian Robert. Accelerating Metropolis-Hastings
algorithms by delayed acceptance. Foundations of
Data Science, 1(2):103–128, 2019.

Matias Quiroz, Robert Kohn, Mattias Villani, and
Minh-Ngoc Tran. Speeding up MCMC by efficient
data subsampling. Journal of the American Statisti-
cal Association, 114(526):831–843, 2019.

Dougal Maclaurin and Ryan Adams. Firefly Monte
Carlo: exact MCMC with subsets of data. In Uncer-
tainty in Artificial Intelligence, 2014.

Anoop Korattikara, Yutian Chen, and Max Welling.
Austerity in MCMC land: cutting the Metropolis-
Hastings budget. In International Conference on
Machine Learning, 2014.

Rémi Bardenet, Arnaud Doucet, and Chris Holmes.
Towards scaling up Markov chain Monte Carlo: an
adaptive subsampling approach. In International
Conference on Machine Learning, 2014.

Max Welling and Yee Whye Teh. Bayesian learning
via stochastic gradient Langevin dynamics. In Inter-
national Conference on Machine Learning, 2011.

Tianqi Chen, Emily Fox, and Carlos Guestrin. Stochas-
tic gradient Hamiltonian Monte Carlo. In Interna-
tional Conference on Machine Learning, 2014.

Jack Baker, Paul Fearnhead, Emily Fox, and Christo-
pher Nemeth. sgmcmc: an R package for stochastic
gradient Markov chain Monte Carlo. Journal of
Statistical Software, 91(3):1–27, 2019.

Rémi Bardenet, Arnaud Doucet, and Chris Holmes.
On Markov chain Monte Carlo methods for tall data.
Journal of Machine Learning Research, 18(47):1–43,
2017.

Matias Quiroz, Mattias Villani, Robert Kohn, Minh-
Ngoc Tran, and Khue-Dung Dang. Subsampling
MCMC - an introduction for the survey statistician.
Sankhya A, 80(1):33–69, 2018.

Christopher Nemeth and Paul Fearnhead. Stochastic
gradient Markov chain Monte Carlo. Journal of the
American Statistical Association, 116(533):433–450,
2021.

Jonathan Huggins, Trevor Campbell, and Tamara Brod-
erick. Coresets for scalable Bayesian logistic regres-
sion. In Advances in Neural Information Processing
Systems, 2016.

Trevor Campbell and Tamara Broderick. Automated
scalable Bayesian inference via Hilbert coresets. The
Journal of Machine Learning Research, 20(1):551–
588, 2019.

Trevor Campbell and Tamara Broderick. Bayesian
coreset construction via greedy iterative geodesic
ascent. In International Conference on Machine
Learning, 2018.

Trevor Campbell and Boyan Beronov. Sparse varia-
tional inference: Bayesian coresets from scratch. In
Advances in Neural Information Processing Systems,
2019.

Dionysis Manousakas, Zuheng Xu, Cecilia Mascolo,
and Trevor Campbell. Bayesian pseudocoresets. In
Advances in Neural Information Processing Systems,
2020.

Cian Naik, Judith Rousseau, and Trevor Campbell.
Fast Bayesian coresets via subsampling and quasi-
Newton refinement. In Advances in Neural Informa-
tion Processing Systems, 2022.

Naitong Chen, Zuheng Xu, and Trevor Campbell.
Bayesian inference via sparse Hamiltonian flows. In
Advances in Neural Information Processing Systems,
2022.

Jacky Zhang, Rajiv Khanna, Anastasios Kyrillidis, and
Oluwasanmi Koyejo. Bayesian coresets: revisiting
the nonconvex optimization perspective. In Artificial
Intelligence and Statistics, 2021.

Albert Benveniste, Michel Métivier, and Pierre
Priouret. Adaptive Algorithms and Stochastic Ap-
proximations. Springer, 1st edition, 1990.

Christophe Andrieu and Johannes Thoms. A tutorial
on adaptive MCMC. Statistics and Computing, 18
(4):343–373, 2008.

Herbert Robbins and Sutton Monro. A stochastic
approximation method. The Annals of Mathematical
Statistics, 22(3):400–407, 1951.

Léon Bottou. Stochastic learning. In Olivier Bousquet,
Ulrike von Luxburg, and Gunnar Rätsch, editors,
Advanced Lectures on Machine Learning: ML Sum-
mer Schools 2003, chapter 7, pages 146–168. Springer
Berlin Heidelberg, 2004.

Naitong Chen, Trevor Campbell

Diederik Kingma and Jimmy Ba. Adam: a method for
stochastic optimization. In International Conference
on Learning Representations, 2014.

John Duchi, Elad Hazan, and Yoram Singer. Adap-
tive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learn-
ing Research, 12(61):2121–2159, 2011.

Radford Neal. Slice sampling. The Annals of Statistics,
31(3):705–767, 2003.

Radford Neal. MCMC using Hamiltonian dynamics.
In Steve Brooks, Andrew Gelman, Galin Jones, and
Xiao-Li Meng, editors, Handbook of Markov chain
Monte Carlo, chapter 5. CRC Press, 2011.

Simon Duane, Anthony Kennedy, Brian Pendleton,
and Duncan Roweth. Hybrid Monte Carlo. Physics
Letters B, 195(2):216–222, 1987.

Claude Bélisle, Edwin Romeijn, and Robert Smith.
Hit-and-run algorithms for generating multivariate
distributions. Mathematics of Operations Research,
18(2):255–266, 1993.

Alexander Rakhlin, Ohad Shamir, and Karthik Sridha-
ran. Making stochastic gradient descent optimal for
strongly convex problems. In International Confer-
ence on Machine Learning, 2012.

Elad Hazan and Satyen Kale. Beyond the regret mini-
mization barrier: optimal algorithms for stochastic
strongly-convex optimization. The Journal of Ma-
chine Learning Research, 15(1):2489–2512, 2014.

Robert Gower, Mark Schmidt, Francis Bach, and Peter
Richtárik. Variance-reduced methods for machine
learning. Proceedings of the IEEE, 108(11):1968–
1983, 2020.

Bob Carpenter, Andrew Gelman, Matthew Hoffman,
Daniel Lee, Ben Goodrich, Michael Betancourt, Mar-
cus Brubaker, Jiqiang Guo, Peter Li, and Allen Rid-
dell. Stan: a probabilistic programming language.
Journal of Statistical Software, 76(1):1—-32, 2017.

Edward George and Robert McCulloch. Variable selec-
tion via Gibbs sampling. Journal of the American
Statistical Association, 88(423):881–889, 1993.

Aki Vehtari, Andrew Gelman, Daniel Simpson, Bob
Carpenter, and Paul-Christian Bürkner. Rank-
normalization, folding, and localization: an improved
R̂ for assessing convergence of MCMC (with discus-
sion). Bayesian Analysis, 16(2):667–718, 2021.

Philip Wolfe. Convergence conditions for ascent meth-
ods. SIAM Review, 11(2):226–235, 1969.

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
Yes, this may be found in Section 3.

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
Yes, this may be found in Section 3,
with more detailed in Appendices A
and B.

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. Yes, this is included in
the zip file in the supplementary mate-
rial.

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. Yes, this may be
found in Section 3.

(b) Complete proofs of all theoretical results.
Yes, this may be found in Appendices A
and B.

(c) Clear explanations of any assumptions. Yes,
the assumptions are listed in Section 3,
with more detailed explanations in Ap-
pendices A and B.

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to re-
produce the main experimental results (either
in the supplemental material or as a URL).
Yes, this is included in the zip file in the
supplementary material, and a URL is
also provided in Section 4.

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). Yes,
this may be found in Appendix C.

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). Yes, the error metrics
are defined in Section 4, and the error
bars are explained in the caption of each
figure.

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). Yes, this may be found
in Section 4.

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator if your work uses
existing assets. Yes, these are included as
footnotes in Appendix C.

Coreset Markov chain Monte Carlo

(b) The license information of the assets, if appli-
cable. Not Applicable. We did not use
any licensed assets.

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. Yes, this is
included in the zip file in the supple-
mentary material, and a URL is also
provided in Section 4.

(d) Information about consent from data
providers/curators. Not Applicable. We
did not use any data that required
consent from providers/curators.

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. Not Applicable. None
of such information is included in the
paper.

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partic-
ipants and screenshots. Not Applicable.
No human subjects are involved in this
paper.

(b) Descriptions of potential participant risks,
with links to Institutional Review Board (IRB)
approvals if applicable. Not Applicable.

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. Not Applicable.

Naitong Chen, Trevor Campbell

A PROOFS

Proof of Theorem 3.6. Define

Ht :=
1

K − 1

K∑
k=1

 ℓ̄1(θtk)
...

ℓ̄M (θtk)


 ℓ̄1(θtk)...
ℓ̄N (θtk)


⊤

∈ RM×N .

Note that Ht is similar to Gt except that there are N columns. Define st ∈ RN such that ∀j ∈ St, stj = N
S and 0

otherwise. The subsampled gradient estimate can then be written in the form

g(wt, θt,St) = Gt(wt − w⋆) +Ht(1− st).

We apply the projected gradient update to get

∥wt+1 − w⋆∥2 = ∥ projW (wt − γtGt(wt − w⋆)− γtHt(1− st))− w⋆∥2

= ∥ projW (wt − γtGt(wt − w⋆)− γtHt(1− st))− projW w⋆∥2

≤ ∥wt − γtGt(wt − w⋆)− γtHt(1− st)− w⋆∥2

= ∥(I − γtGt)(wt − w⋆)− γtHt(1− st)∥2.

The second equality follows because w⋆ ∈ W by assumption. The inequality follows because W is convex and
closed by assumption, and hence projW is a contraction. Therefore,

∥wt+1 − w⋆∥2 ≤ ∥(I − γtGt)(wt − w⋆)− γtHt(1− st)∥2.

Expand the right hand side above and take the expectation, we get

E∥wt+1 − w⋆∥2

≤ E
[
(wt − w⋆)⊤(I − γtGt)

⊤(I − γtGt)(wt − w⋆)
]
+ γ2

t E
[
(1− st)

⊤H⊤
t Ht(1− st)

]
− 2γtE

[
(wt − w⋆)⊤(I − γtGt)

⊤Ht(1− st)
]
. (7)

Now use the tower property to show that the last term above is 0:

E
[
(wt − w⋆)⊤(I − γtGt)

⊤Ht(1− st)
]
= E

[
E
[
(wt − w⋆)⊤(I − γtGt)

⊤Ht(1− st) | wt, θt
]]

= E
[
(wt − w⋆)⊤(I − γtGt)

⊤HtE [(1− st) | wt, θt]
]

= 0,

Coreset Markov chain Monte Carlo

where the second line follows by noting E [1− st | wt, θt] = E [1− st] = 0 due to the unbiased subsampling. We
now focus on the second term on the right-hand side of Eq. (7). Again note that E [st | θt] = E [st] = 1, so

E
[
(1− st)

⊤H⊤
t Ht(1− st) | θt

]
= −1⊤H⊤

t Ht1 + E
[
s⊤t H

⊤
t Htst | θt

]
= E

∑
n,n′

stnstn′(H⊤
t Ht)nn′ | θt

−∑
n,n′

(H⊤
t Ht)nn′

=
N

S

∑
n

(
1− S

N

)
(H⊤

t Ht)nn +
∑
n ̸=n′

(
S − 1

N − 1
− S

N

)
(H⊤

t Ht)nn′


=

N

S

∑
n

(
N − S

N

)
(H⊤

t Ht)nn −
∑
n ̸=n′

N − S

N(N − 1)
(H⊤

t Ht)nn′


=

N(N − S)

S(N − 1)

∑
n

(H⊤
t Ht)nn −

1

N

∑
n,n′

(H⊤
t Ht)nn′


=

N2(N − S)

S(N − 1)(K − 1)2

∑
k,k′

(∑
m

ℓ̄m(θtk)ℓ̄m(θtk′)

) 1

N

∑
n

ℓ̄n(θtk)ℓ̄n(θtk′)− 1

N2

∑
n,n′

ℓ̄n(θtk)ℓ̄n′(θtk′)


=

N2(N−S)
S(N−1)(K−1)2

∑
k,k′

(∑
m

ℓ̄m(θtk)ℓ̄m(θtk′)

)(
1

N

∑
n

(
ℓ̄n(θtk)−

1

N

∑
n′

ℓ̄n′(θtk)

)(
ℓ̄n(θtk′)− 1

N

∑
n′

ℓ̄n′(θtk′)

))

=
N2M(N − S)

S(N − 1)
Vt,

where Vt is as defined in Assumption 3.5. Therefore,

E
[
(1− st)

⊤H⊤
t Ht(1− st)

]
= E

[
E
[
(1− st)

⊤H⊤
t Ht(1− st) | θt

]]
=

N2M(N − S)

S(N − 1)
E [Vt] .

Given the previous two steps, Eq. (7) becomes

E∥wt+1 − w⋆∥2 ≤ E
[
(wt − w⋆)⊤(I − γtGt)

⊤(I − γtGt)(wt − w⋆)
]
+ γ2

t

N2M(N − S)

S(N − 1)
E [Vt] .

By Assumptions 3.2 and 3.3, we can rewrite the first term above as

E
[
(wt − w⋆)⊤(I − γtGt)

⊤(I − γtGt)(wt − w⋆)
]

= E
[
E
[
(wt − w⋆)⊤(I − γtGt)

⊤(I − γtGt)(wt − w⋆) | wt, θt−1

]]
= E

[
(wt − w⋆)⊤

(
I − 2γtE [Gt | wt, θt−1] + γ2

t E
[
G⊤

t Gt | wt, θt−1

])
(wt − w⋆)

]
≤ E

[
(wt − w⋆)⊤

(
I − 2γtλI + γ2

t λ̄I
)
(wt − w⋆)

]
.

By Assumption 3.5, we have

E [Vt] = E [E [Vt | wt, θt−1]] ≤ V.

Therefore

E∥wt+1 − w⋆∥2 ≤ E
[
(wt − w⋆

t)
⊤ (I − 2γtλI + γ2

t λ̄I
)
(wt − w⋆

t)
]
+ γ2

t

N2M(N − S)

S(N − 1)
V

= E
[(
1− 2γtλ+ γ2

t λ̄
)
∥wt − w⋆∥2

]
+ γ2

t

N2M(N − S)

S(N − 1)
V

=
(
1− 2γtλ+ γ2

t λ̄
)
E∥wt − w⋆∥2 + γ2

t

N2M(N − S)

S(N − 1)
V.

Naitong Chen, Trevor Campbell

Now let γ = λ/λ > 0, and suppose supt γt ≤ γ. Then

E∥wt+1 − w⋆∥2 ≤ (1− γtλ)E∥wt − w⋆∥2 + γ2
t

N2M(N − S)

S(N − 1)
V

≤ e−γtλE∥wt − w⋆∥2 + γ2
t

N2M(N − S)

S(N − 1)
V.

Then expand the recursion to obtain the stated bound:

E∥wt − w⋆∥2 ≤ e−λ
∑t−1

τ=0 γτ ∥w0 − w⋆∥2 + N2M(N − S)V

S(N − 1)

t−1∑
τ=0

γ2
τe

−λ
∑t−1

u=τ+1 γu . (8)

Convergence of the first term to 0 as t→∞ occurs as long as
∑∞

t=0 γt =∞. It remains to show that the second
sum term converges to 0 as t→∞ when additionally γt → 0. Note that since

∑∞
t=0 γt =∞,

γ2
0e

−λ
∑t−1

u=1 γu → 0, t→∞,

and so the 0-index term in the sum converges to 0. Therefore we can focus on the sum from indices 1 to t− 1.
Note that since γt is a monotone decreasing sequence, it can be expanded to a monotone decreasing continuous
real function through linear interpolation, so

t−1∑
u=τ+1

γu ≥
∫ t

τ+1

γudu,

and thus we have
t−1∑
τ=1

γ2
τe

−λ
∑t

u=τ+1 γu ≤
t−1∑
τ=1

γ2
τe

−λ
∫ t
τ+1

γudu.

Next we split the sum into two sums separated by some arbitrary index 1 < b < t,

t−1∑
τ=1

γ2
τe

−λ
∫ t
τ+1

γudu =

b−1∑
τ=1

γ2
τe

−λ
∫ t
τ+1

γudu +

t−1∑
τ=b

γ2
τe

−λ
∫ t
τ+1

γudu. (9)

We now bound each of the above two terms. The second term in Eq. (9) above can be bounded by a sum with a
monotone decreasing summand, which can then be bounded with an integral:

t−1∑
τ=b

γ2
τe

−λ
∫ t
τ+1

γudu ≤
t−1∑
τ=b

γ2
τ ≤

∫ t

b

γ2
τ−1dτ.

The first sum term in Eq. (9) has a summand that is a product of a monotone decreasing and a monotone
increasing sequence. We can split this sum further by isolating the summand at τ = 0:

b−1∑
τ=1

γ2
τe

−λ
∫ t
τ+1

γudu =

b−1∑
τ=1

γ2
τe

−λ
∫ t
τ+1

γudu

≤
∫ b

1

γ2
τ−1e

−λ
∫ t
τ+1

γududτ

= e−λ
∫ t
0
γudu

∫ b

1

γ2
τ−1e

λ
∫ τ+1
0

γududτ

= e−λ
∫ t
0
γudu

∫ b

1

γ2
τ−1e

λ
∫ τ−1
0

γudueλ
∫ τ+1
τ−1

γududτ

≤ e−λ
∫ t
0
γudu

∫ b

1

γ2
τ−1e

λ
∫ τ−1
0

γudueλ
∫ 2
0
γududτ

≤ e−λ
∫ t
0
γudu+λ2γ

∫ b

1

γ2
τ−1e

λ
∫ τ−1
0

γududτ

≤ γe−λ
∫ t
0
γudu+λ2γ

∫ b

1

γτ−1e
λ
∫ τ−1
0

γududτ,

Coreset Markov chain Monte Carlo

where all inequalities follow by noting that γt is monotone decreasing. Now apply the change of variables

x =
∫ τ−1

0
γudu with dx = γτ−1dτ to get

∫ b

1

γτ−1e
λ
∫ τ−1
0

γududτ =

∫ ∫ b−1
0

γudu

0

eλxdx =
eλ

∫ b−1
0

γudu − 1

λ
≤ λ−1eλ

∫ b
0
γudu.

Therefore the first term in Eq. (9) becomes

b−1∑
τ=1

γ2
τe

−λ
∫ t
τ+1

γudu ≤ γλ−1e−λ
∫ t
0
γudu+λ2γ+λ

∫ b
0
γudu = γλ−1e2λγ−λ

∫ t
b
γudu.

Therefore we have that

t−1∑
τ=1

γ2
τe

−λ
∫ t
τ+1

γudu ≤
∫ t

b

γ2
τ−1dτ + γλ−1e2λγ−λ

∫ t
b
γudu.

As long as we can write b as a monotone increasing function of t such that∫ t

b

γ2
τdτ → 0

∫ t

b

γτdτ →∞,

we have the desired result that Eq. (8) converges to 0 as t → ∞. Note that we can make
∫ t

b
γτdτ diverge to

infinity slower by making b increase faster in t; we can achieve an arbitrarily slow rate of divergence with a quickly
enough increasing b. Therefore since γt → 0 as t→∞ by assumption, we can select b increasing slowly enough
that

∫ t

b
γτdτ →∞, but quickly enough such that∫ t

b

γ2
τdτ ≤ γb

∫ t

b

γτdτ → 0.

Proof of Theorem 3.4. This result can be viewed as a special case of Theorem 3.6 where N = S, and so the
result can be obtained by following the steps of Theorem 3.6. Note that when N = S, we have that for all t,
Ht(1− st) = 0. Therefore, we can obtain the desired result without Assumption 3.5 or requiring that γt → 0 as
t→∞.

B GAUSSIAN LOCATION EXAMPLE

In this section we derive an approximate bound for EDKL(πw||π) under the Gaussian location model described in
Section 3.4 and using the update rule in Section 3.2. Here we use the feasible region

W = {w ∈ RM : w ≥ 0,
∑
m

wm = N}.

For better readability, we use a slightly different notation for the coreset. In particular, we use

Y =
[
Y1 · · · YM

]
∈ Rd×M

to denote the coreset points, which is a subset of the entire dataset

X =
[
X1 · · · XN

]
∈ Rd×N .

The full data posterior, as well as the coreset posterior given weights w ∈ RM can then be written as

π = N

(
1

1 +N

N∑
n=1

Xn,
1

1 +N
I

)
, πw = N

(∑M
m=1 wmYm

1 +
∑M

m=1 wm

,
1

1 +
∑M

m=1 wm

I

)
.

Naitong Chen, Trevor Campbell

Since both π and πwt are Gaussian, we have a closed-form expression for DKL(πw||π):

DKL(πw||π) =
1

2

(
d log

1 +
∑

m wm

1 +N
− d+ d

1 +N

1 +
∑

m wm
+ (1 +N)

∥∥∥∥ ∑m wmYm

1 +
∑

m wm
−
∑

n Xn

1 +N

∥∥∥∥2
)

=
1

2

(
d log

1 + 1⊤w

1 +N
− d+ d

1 +N

1 + 1⊤w
+

1 +N

(1 + 1⊤w)2

∥∥∥∥Y w − 1 + 1⊤w

1 +N
X1

∥∥∥∥2
)

=
1

2(1 +N)
∥Y w −X1∥2 , (10)

where the last line is by 1⊤w = N . To obtain an approximate bound for EDKL(πw||π), we look at the update rule
of Coreset MCMC on w. By assumption, β ≈ 0, and so we assume that draws of θ obtained using the Markov

kernel κw are approximately i.i.d. Then following Eq. (3), given θ1, . . . , θK
iid∼ πw, we can write the unbiased

estimate of ∇wDKL(πw||π) as

g(w, θ, [N]) =
−1

K − 1

K∑
k=1


 ℓ1(θk)

...
ℓM (θk)

−


1
K

∑K
j=1 ℓ1(θj)
...

1
K

∑K
j=1 ℓM (θj)


 ·

 N∑
n=1

ℓn(θk)−
M∑

m=1

wmℓm(θk)−
1

K

K∑
j=1

(
N∑

n=1

ℓn(θj)−
M∑

m=1

wmℓm(θj)

)

=
−1

K − 1

K∑
k=1


 ℓ1(θk)

...
ℓM (θk)

−


1
K

∑K
j=1 ℓ1(θj)
...

1
K

∑K
j=1 ℓM (θj)


 ·

 N∑
n=1

ℓn(θk)−
1

K

K∑
j=1

ℓn(θj)

− M∑
m=1

wmℓm(θk)−
1

K

K∑
j=1

wmℓm(θj)

 , (11)

Under the Gaussian location model, we know that

ℓn(θ) = −
1

2
∥Xn − θ∥2 .

We can then simplify Eq. (11). First note that
 ℓ1(θk)

...
ℓM (θk)

−


1
K

∑K
j=1 ℓ1(θj)
...

1
K

∑K
j=1 ℓM (θj)


 = −1

2


 ∥Y1 − θk∥2

...
∥YM − θk∥2

−


1
K

∑K
j=1 ∥Y1 − θj∥2

...
1
K

∑K
j=1 ∥YM − θj∥2




= −1

2


−2Y

⊤
1 θk + ∥θk∥2

...
−2Y ⊤

Mθk + ∥θk∥2

−


1
K

∑K
j=1−2Y ⊤

1 θj + ∥θj∥2
...

1
K

∑K
j=1−2Y ⊤

Mθj + ∥θj∥2




= −1

2



−2Y ⊤

1

(
θk − 1

K

∑K
j=1 θj

)
+ ∥θk∥2 − 1

K

∑K
j=1 ∥θj∥2

...

−2Y ⊤
M

(
θk − 1

K

∑K
j=1 θj

)
+ ∥θk∥2 − 1

K

∑K
j=1 ∥θj∥2




= Y ⊤

θk −
1

K

K∑
j=1

θj

− 1

2

∥θk∥2 − 1

K

K∑
j=1

∥θj∥2
 1.

Coreset Markov chain Monte Carlo

We now look at the two summation terms in the last line of Eq. (11).

N∑
n=1

ℓn(θk)−
1

K

K∑
j=1

ℓn(θj)

 = −1

2

N∑
n=1

∥Xn − θk∥2 −
1

K

K∑
j=1

∥Xn − θj∥2


= (X1)⊤

θk −
1

K

K∑
j=1

θj

− N

2

∥θk∥2 − 1

K

K∑
j=1

∥θj∥2
 .

Similarly,

M∑
m=1

wmℓm(θk)−
1

K

K∑
j=1

wmℓm(θj)

 = (Y w)⊤

θk −
1

K

K∑
j=1

θj

− 1⊤w

2

∥θk∥2 − 1

K

K∑
j=1

∥θj∥2
 .

Therefore

g(w, θ, [N]) =
1

K − 1

K∑
k=1

Y ⊤

θk −
1

K

K∑
j=1

θj

− 1

2

∥θk∥2 − 1

K

K∑
j=1

∥θj∥2
 1

 ·

θk −

1

K

K∑
j=1

θj

⊤

(Y w −X1)− 1⊤w −N

2

∥θk∥2 − 1

K

K∑
j=1

∥θj∥2

 .

Since 1⊤w = N , we can use P =
(
I −M−111⊤

)
to obtain the projected gradient update as in Section 3.2 to get

wt+1 = wt − γtPg(wt, θt, [N])

= wt − γtPY ⊤ 1

K − 1

K∑
k=1

θtk −
1

K

K∑
j=1

θtj

θtk −
1

K

K∑
j=1

θtj

⊤

(Y w −X1)

= wt − γtPY ⊤Qt(Y wt −X1),

where

Qt :=
1

K − 1

K∑
k=1

θtk −
1

K

K∑
j=1

θtj

θtk −
1

K

K∑
j=1

θtj

⊤

.

Note that the analysis so far assumes that one does not subsample the data to estimate the gradient. If one were
to replace the full data in g with an unbiased subsample of the data, the projected gradient update of Coreset
MCMC becomes

wt+1 = wt − γtPY ⊤Qt(Y wt − St), (12)

where we define St to be some random vector, independent of all else, such that ESt = X1 and CovSt = Σ̄. By
further defining Zt := Y wt −X1, and A := Y PY ⊤, the recursion in Eq. (12) can instead be written in terms of
Zt:

Zt+1 = (I − γtAQt)Zt + γtAQt(St −X1).

Solving the recursion, we have that

Zt =

[
t−1∏
τ=0

(I − γτAQτ)

]
Z0 +

t−1∑
τ=0

[
t−1∏

u=τ+1

(I − γuAQu)

]
γτAQτ (Sτ −X1),

where matrix products indicate left multiplication with increasing index. We can also rewrite Eq. (10) as

EDKL(πwt
||π) = 1

2(1 +N)
E ∥Zt∥2 =

1

2(1 +N)
trEZtZ

⊤
t . (13)

Naitong Chen, Trevor Campbell

The rest of the analysis approximates EZtZ
⊤
t to obtain a final approximate bound for EDKL(πwt ||π). With θt

denoting the set of K samples at iteration t, we note that

E [St −X1 | θ1, . . . ,θt−1] = E [St −X1] = 0.

At the same time, St is independent across all t iterations. Therefore, we can expand EZtZ
⊤
t to get

EZtZ
⊤
t = E

[
t−1∏
τ=0

(I − γτAQτ)

]
Z0Z

⊤
0

[
t−1∏
τ=0

(I − γτAQτ)

]⊤

+ E
t−1∑
τ=0

γ2
τ

[
t−1∏

u=τ+1

(I − γuAQu)

]
AQτ (Sτ −X1)(Sτ −X1)⊤Q⊤

τ A
⊤

[
t−1∏

u=τ+1

(I − γuAQu)

]⊤

= E

[
t−1∏
τ=0

(I − γτAQτ)

]
Z0Z

⊤
0

[
t−1∏
τ=0

(I − γτAQτ)

]⊤

+

t−1∑
τ=0

γ2
τE

[
t−1∏

u=τ+1

(I − γuAQu)

]
AQτ Σ̄Q

⊤
τ A

⊤

[
t−1∏

u=τ+1

(I − γuAQu)

]⊤
. (14)

We now use the tower property to rewrite the expectation in the second term in Eq. (14) above to get

E

[
t−1∏

u=τ+1

(I − γuAQu)

]
AQτ Σ̄Q

⊤
τ A

⊤

[
t−1∏

u=τ+1

(I − γuAQu)

]⊤

= E

[t−1∏
u=τ+1

(I − γuAQu)

]
AE

[
Qτ Σ̄Q

⊤
τ | θτ+1, . . . ,θt−1

]
A⊤

[
t−1∏

u=τ+1

(I − γuAQu)

]⊤ .

Looking at the inner conditional expectation, we see that all randomness comes from θτ . By letting

θ̄τ =
1

K

K∑
j=1

θτj ,

we then have

EθτQ
⊤
τ Σ̄Qτ

=
1

(1 +N)2
Eθτ

K2

(K − 1)2

(
1

K

K∑
k=1

θτkθ
⊤
τk − θ̄τ θ̄

⊤
τ

)
Σ̄

(
1

K

K∑
k=1

θτkθ
⊤
τk − θ̄τ θ̄

⊤
τ

)

=
K2

(K − 1)2(1 +N)2
Eθτ

 1

K2

K∑
k,k′=1

θτkθ
⊤
τkΣ̄θτk′θ⊤τk′ −

1

K

K∑
k=1

θτkθ
⊤
τkΣ̄θ̄τ θ̄

⊤
τ −

1

K

K∑
k=1

θ̄τ θ̄
⊤
τ Σ̄θτkθ

⊤
τk + θ̄τ θ̄

⊤
τ Σ̄θ̄τ θ̄

⊤
τ


=

KΣ̄ + tr(Σ̄)I

(K − 1)(1 +N)2
,

where the last equality is obtained by noting that θτ1, . . . , θτk are i.i.d. isotropic Gaussian with variance 1/(1+N)
and that

E
[
θ̄τ θ̄

⊤
τ | θτj

]
= E

 1

K2

K∑
k,k′=1

θτkθ
⊤
τk′ | θτj

 =
1

K2
θτjθ

⊤
τj +

K − 1

K2
I.

Therefore,

E

[
t−1∏

u=τ+1

(I − γuAQu)

]
AQτ Σ̄Q

⊤
τ A

⊤

[
t−1∏

u=τ+1

(I − γuAQu)

]⊤

= E

[
t−1∏

u=τ+1

(I − γuAQu)

]
A

KΣ̄ + tr Σ̄I

(K − 1)(1 +N)2
A⊤

[
t−1∏

u=τ+1

(I − γuAQu)

]⊤
.

Coreset Markov chain Monte Carlo

Define B := A KΣ̄+tr Σ̄I
(K−1)(1+N)2A

⊤. Note that B is constant, and so we can write

E(I − γAQt)B(I − γAQt)
⊤ = E

[
B − γAQtB − γBQ⊤

t A
⊤ + γ2AQtBQ⊤

t A
⊤]

= B − γ

1 +N
AB − γ

1 +N
BA⊤ + γ2AE

[
QtBQ⊤

t

]
A⊤

= B − γ

1 +N
AB − γ

1 +N
BA⊤ + γ2A

(
KB + tr(B)I

(K − 1)(1 +N)2

)
A⊤

=

(
I − γA

1 +N

)
B

(
I − γA

1 +N

)⊤

+ γ2ABA⊤ + tr(B)AA⊤

(K − 1)(1 +N)2
,

where the second equality is by noting that EQt =
1

N+1I. Since A is symmetric and positive semidefinite, we can

write A = UDU⊤ with D ⪰ 0 diagonal and U unitary. Then by defining E := U⊤A KΣ̄+tr Σ̄I
(K−1)(1+N)2A

⊤U , we have

B = UU⊤A
KΣ̄ + tr Σ̄I

(K − 1)(1 +N)2
A⊤UU⊤ = UEU⊤.

Therefore,

E(I − γAQt)B(I − γAQt)
⊤ = U

((
I − γ

1 +N
D

)
E

(
I − γ

1 +N
D

)
+ γ2DED + tr(E)D2

(K − 1)(1 +N)2

)
U⊤.

From this, we can see that starting with B = UEU⊤, the above operation yields

E(I − γAQt)B(I − γAQt)
⊤ = E(I − γAQt)UEU⊤(I − γAQt)

⊤ = UE′U⊤,

where each element of E′ can be written in terms of E as

E′
ij =

{(
1− γ

N + 1
Di

)(
1− γ

N + 1
Dj

)
+

γ2

(K − 1)(N + 1)2
DiDj

}
Eij +

γ2

(K − 1)(N + 1)2
1[i = j]D2

i trE.

Therefore, by applying this operation multiple times, we get

E

[
t−1∏

u=τ+1

(I − γuAQu)

]
AQτ Σ̄Q

⊤
τ A

⊤

[
t−1∏

u=τ+1

(I − γuAQu)

]⊤

= E

[
t−1∏

u=τ+1

(I − γuAQu)

]
UEU⊤

[
t−1∏

u=τ+1

(I − γuAQu)

]⊤
= UE′′U⊤,

where

E′′
ij =

[
t−1∏

u=τ+1

{(
1− γu

N + 1
Di

)(
1− γu

N + 1
Dj

)
+

γ2
u

(K − 1)(N + 1)2
DiDj

}]
Eij

+

[
t−1∏

u=τ+1

γ2
u

(K − 1)(N + 1)2
1[i = j]D2

i

]
trE.

Considering γu small enough such that γ2
u/(N + 1)2 ≪ γu/(N + 1), we drop the higher order terms to find that

E

[
t−1∏

u=τ+1

(I − γuAQu)

]
AQτ Σ̄Q

⊤
τ A

⊤

[
t−1∏

u=τ+1

(I − γuAQu)

]⊤

≈ U

[
t−1∏

u=τ+1

(
I − γu

N + 1
D

)]
U⊤A

KΣ̄ + tr Σ̄I

(K − 1)(1 +N)2
A⊤U

[
t−1∏

u=τ+1

(
I − γu

N + 1
D

)]⊤
U⊤

≈ e−
∑t−1

u=τ+1
γu

N+1 AA
KΣ̄ + tr Σ̄I

(K − 1)(1 +N)2
A⊤e−

∑t−1
u=τ+1

γu

N+1 A⊤
.

Naitong Chen, Trevor Campbell

For the expectation in the first term in Eq. (14), since Z0Z
⊤
0 is constant, we can use the same trick to get

E

[
t−1∏
τ=0

(I − γτAQτ)

]
Z0Z

⊤
0

[
t−1∏
τ=0

(I − γτAQτ)

]⊤
≈ e−

∑t−1
τ=0 γτ
N+1 AZ0Z

⊤
0 e−

∑t−1
τ=0 γτ
N+1 A⊤

.

Therefore,

EZtZ
⊤
t ≈ e−

∑t−1
τ=0 γτ
N+1 AZ0Z

⊤
0 e−

∑t−1
τ=0 γτ
N+1 A⊤

+

t−1∑
τ=0

γ2
τe

−
∑t−1

u=τ+1
γu

N+1 AA(KΣ̄ + tr Σ̄I)A⊤e−
∑t−1

u=τ+1
γu

N+1 A⊤

(K − 1)(N + 1)2
.

Note that for uniform independent subsamples of size S without replacement,

Σ̄ =
N2(N − S)

S(N − 1)

[
1

N
XX⊤ − 1

N2
X11⊤X⊤

]
=

N2(N − S)

S(N − 1)
ΣX ,

where ΣX = 1
NXX⊤− 1

N2X11⊤X⊤ = 1
NX

(
I − 1

N 11⊤
)
X⊤ is the empirical covariance of the full data. Similarly

we have A = MΣY for the empirical covariance of the coreset. Therefore,

EZtZ
⊤
t ≈ e−

M
∑t−1

τ=0 γτ
N+1 ΣY Z0Z

⊤
0 e−

M
∑s−1

τ=0 γτ
N+1 Σ⊤

Y +

s−1∑
τ=0

γ2
τM

2N2(N − S)e−
M

∑t−1
u=τ+1

γu

N+1 ΣY ΣY (KΣX + trΣXI)Σ⊤
Y e

−
M

∑t−1
u=τ+1

γu

N+1 Σ⊤
Y

(N − 1)S(K − 1)(N + 1)2
.

By assumption, N ≫M ≫ 1. Since the data are generated i.i.d. from a standard Gaussian, we can approximate
ΣX ≈ ΣY ≈ I. Therefore,

EZtZ
⊤
t ≈ e−

M(∑t−1
τ=0 γτ+

∑t−1
τ=0 γτ)

N+1 Z0Z
⊤
0 +

M2(N − S)N2(K + d)

(N − 1)S(K − 1)(N + 1)2

t−1∑
τ=0

γ2
τe

−
M(

∑t−1
u=τ+1

γu+
∑t−1

u=τ+1
γu)

N+1 I.

We assume that γt = γ(t+ 1)α−1 for some γ > 0 and 0 ≤ α ≤ 1. Then we have the approximation

t−1∑
τ=0

γτ ≈ γ

∫ t−1

0

(τ + 1)α−1dτ =
γ(tα − 1)

α
.

Using this approximation and the fact that N + 1 ≈ N − 1 ≈ N , we obtain

EZtZ
⊤
t ≈ e−

γM(tα+tα−2)
αN Z0Z

⊤
0 +

(N − S)M2(K + d)

NS(K − 1)

t∑
τ=1

γ2
τ−1e

− γM(tα+tα−2τα)
αN I

= e−
γM(tα+tα−2)

αN Z0Z
⊤
0 +

γ2(N − S)M2(K + d)

NS(K − 1)

t∑
τ=1

τ2(α−1)e−
γM(tα+tα−2τα)

αN I.

Again using an approximation of the sum as an integral, we get

EZtZ
⊤
t ≈ e−

γM(tα+tα−2)
αN Z0Z

⊤
0 +

γ2(N − S)M2(K + d)

NS(K − 1)

∫ t

1

τ2(α−1)e−
γM(tα+tα−2τα)

αN dτI.

We can now substitute the above expression to Eq. (13) to get

EDKL(πwt ||π) =
1

2(N + 1)
trEZtZ

⊤
t

≈ 1

2(N + 1)
E∥Z0∥2 +

γ2(N − S)M2(K + d)

NS(K − 1)

∫ t

1

τ2(α−1)e−
γM(tα+tα−2τα)

αN dτ tr I

≈ 1

2(N + 1)
E∥Z0∥2 +

γ2(N − S)M2(K + d)d

NS(K − 1)

∫ t

1

τ2(α−1)e−
γM(tα+tα−2τα)

αN dτ.

Coreset Markov chain Monte Carlo

Again by the assumption that N ≫ M ≫ 1 and that all data points are i.i.d. standard Gaussian, we have
E∥Z0∥2 ≈ N2/M . Therefore,

EDKL(πwt
||π) ≈ e−

2γM(tα−1)
αN

N

2M
+

γ2(N − S)M2(K + d)d

2N2S(K − 1)

∫ t

1

τ2(α−1)e−
2γM(tα−τα)

αN dτ.

Set γ = cN/M for some tunable 0 < c≪M , then

EDKL(πwt
||π) ≈ e−

2c(tα−1)
α

N

2M
+

c2(N − S)(K + d)d

2S(K − 1)

∫ t

1

τ2(α−1)e−
2c(tα−τα)

α dτ. (15)

We now derive an approximate upper bound for the integral term in Eq. (15) above. Apply the transformation of
variables x = τα with dx = ατα−1dτ to get∫ t

1

τ2(α−1)e−
2c(tα−τα)

α dτ = e−
2ctα

α

∫ t

1

τ2(α−1)e
2cτα

α dτ

= α−1e−
2ctα

α

∫ tα

1

x1−α−1

e
2cx
α dx.

Let 1 ≤ b ≤ t and b→∞ as t→∞, and so∫ bα

1

x1−α−1

e
2cx
α dx ≤

∫ bα

1

e
2cx
α dx ≤ α

2c

(
e

2cbα

α − e
2c
α

)
≤ α

2c
e

2cbα

α .

We also have that ∫ tα

bα
x1−α−1

e
2cx
α dx ≤ e

2ctα

α

∫ tα

bα
x1−α−1

dx = e
2ctα

α
t2α−1 − b2α−1

2− α−1
.

Therefore for any 1 ≤ b ≤ t,∫ t

1

τ2(α−1)e−
2c(tα−τα)

α dτ ≤ α−1e−
2ctα

α

(
α

2c
e

2cbα

α + e
2ctα

α
t2α−1 − b2α−1

2− α−1

)
=

1

2c
e−

2c(tα−bα)
α +

t2α−1 − b2α−1

2α− 1
.

Then let b = t− h(t) where h(t) = o(t). So as t gets large, b ≈ t, and so

1

2c
e−

2c(tα−bα)
α +

t2α−1 − b2α−1

2α− 1
≈ 1

2c
e−

2ctα−1h(t)
α +

t2α−2h(t)

2α− 1

≤ 1

2c
e−2ctα−1h(t) + t2α−2h(t).

By setting h(t) = 1−α
2c t1−α log t,∫ t

1

τ2(α−1)e−
2c(tα−τα)

α dτ ⪅
1

2ct1−α
+

1− α

2ct1−α
log t =

1 + (1− α) log t

2ct1−α
.

By substituting the above approximate bound to Eq. (15), we arrive at the final approximate bound

EDKL(πwt
||π) ⪅ e−

2c(tα−1)
α

N

2M
+

c(N − S)(K + d)d

4S(K − 1)

(1 + (1− α) log t)

t1−α
.

C DETAILS OF EXPERIMENTS

C.1 Model Specification

In this subsection, we describe the four examples (three real data and one synthetic) that we used for our
experiments. For each model, we are given a set of points (xn, yn)

N
n=1, each consisting of features xn ∈ Rp and

response yn.

Naitong Chen, Trevor Campbell

Bayesian linear regression: We use the model[
β log σ2

]⊤ ∼ N (0, I),

∀n ∈ [N], yn | xn, β, σ
2 ind∼ N

([
1 x⊤

n

]
β, σ2

)
,

where β ∈ Rp+1 is a vector of regression coefficients and σ2 ∈ R+ is the noise variance. Note that the prior here is
not conjugate for the likelihood. The dataset2 consists of flight delay information from N = 98,673 observations.
We study the difference, in minutes, between the scheduled and actual departure times against p = 10 features
including flight-specific and meteorological information.

Bayesian logistic regression: We use the model

∀i ∈ [p+ 1], βi
iid∼ Cauchy(0, 1),

∀n ∈ [N], yn
ind∼ Bern

((
1 + exp

(
−
[
1 x⊤

n

]
β
))−1

)
,

where β =
[
β1 . . . βp+1

]⊤ ∈ Rp+1 is a vector of regression coefficients. Here we use the same dataset as in
linear regression, but instead model the relationship between whether a flight is cancelled using the same set of
features. Note that of all flights included, only 0.058% were cancelled.

Bayesian Poisson regression: We use the model

β ∼ N (0, I),

∀n ∈ [N], yn | xn, β
ind∼ Poiss

(
log

(
1 + e

[
1 x⊤

n

]
β
))

,

where β ∈ Rp+1 is a vector of regression coefficients. Here we use a processed version of the bikeshare dataset3

consisting of N = 15,641 data points. We model the hourly count of rental bikes against p = 8 features (e.g.,
temperature, humidity at the time, and whether or not the day is a workday).

Bayesian sparse linear regression: This is based on Example 4.1 from George and McCulloch (1993). We use
the model

σ2 ∼ InvGam (ν/2, νλ/2) ,

∀i ∈ [p], γi
iid∼ Bern(q),

βi | γi
ind∼ N

(
0, (1(γi = 0)τ + 1(γi = 1)cτ)

2
)
,

∀n ∈ [N], yn | xn, β, σ
2 ind∼ N

(
x⊤
n β, σ

2
)
,

where we set ν = 0.1, λ = 1, q = 0.1, τ = 0.1, and c = 10. Here we model the variance σ2, the vector of regression

coefficients β =
[
β1 . . . βp

]⊤ ∈ Rp and the vector of binary variables γ =
[
γ1 . . . γp

]⊤ ∈ {0, 1}p indicating

the inclusion of the pth feature in the model. We setN = 50,000, p = 10, β⋆ =
[
0 0 0 0 0 5 5 5 5 5

]⊤
,

and generate a synthetic dataset by

∀n ∈ [N], xn
iid∼ N (0, I) ,

ϵn
iid∼ N

(
0, 252

)
,

yn = x⊤
n β

⋆ + ϵn.

For full-data inference results of the three real data examples, we ran Stan (Carpenter et al., 2017) with 10
parallel chains, each taking 15,000 steps where the first 5,000 were discarded, for a combined 100,000 draws.
Full-data inference time was ∼ 22 minutes for linear regression, ∼ 28 minutes for logistic regression, and ∼ 5
minutes for Poisson regression, though note that these times are not comparable with the other results since
Stan is highly optimized. For full-data inference result of the synthetic data example, we use the Gibbs sampler
developed by George and McCulloch (1993) to generate 200,000 draws, with the first half discarded as burn-in.
Full-data inference time for the sparse linear regression model was ∼ 20 minutes.

2The dataset is available at https://github.com/NaitongChen/Sparse-Hamiltonian-Flows.
3The dataset is available at https://github.com/trevorcampbell/bayesian-coresets.

https://github.com/NaitongChen/Sparse-Hamiltonian-Flows
https://github.com/trevorcampbell/bayesian-coresets

Coreset Markov chain Monte Carlo

C.2 Parameter Settings

We begin by describing settings that apply across all experiments before moving to model-specific settings. For
each method, we use 10, 000 samples to estimate metrics that assess posterior approximation quality and sampling
efficiency. For metrics that require information from the full-data posterior, we use a sample of size 100, 000 from
Stan (Carpenter et al., 2017) across all three real data experiments, and a sample of size 10, 000 using the Gibbs
sampler developed by George and McCulloch (1993) for the synthetic data experiment. To account for changes in
w, for all coreset methods that use an MCMC kernel, we use the hit-and-run slice sampler with doubling (Bélisle
et al., 1993; Neal, 2003) for linear and logistic regressions, the univariate slice sampler with doubling (Neal, 2003,
Fig. 4) applied to each dimension for the mor challenging Poisson regression, and the Gibbs sampler developed by
George and McCulloch (1993) for sparse regression. Note that to get the 10, 000 samples for metric evaluation
from each method, we simulate 20, 000 MCMC states and take the second half of the chain to ensure proper
mixing. The exceptions are CoresetMCMC and SHF. For CoresetMCMC, no burn-in is necessary as in each of our
experiments we adapt the coreset weights for more than 10, 000 steps. For SHF, we have access to i.i.d. samples
from the final trained posterior approximation.

Across all experiments, we set K = 2 for CoresetMCMC. We follow Chen et al. (2022) and use 8 quasi-refreshment
and 10 leapfrog steps between quasi-refreshments in SHF. To estimate the ELBO objective, we use a fresh minibatch
of size 100 at each optimization iteration. Both CoresetMCMC and SHF are trained using ADAM (Kingma and Ba,
2014). For QNC, we use a sample of size 1, 000 to estimate each weight update. We set the threshold to 0.05 for
both Austerity and Confidence. For tuning SGLD-CV and SGHMC-CV, we follow Baker et al. (2019), and find the
control variate using ADAM.

Bayesian linear regression: We train CoresetMCMC for 25,000 iterations with the ADAM step sizes set to 20,
1, 10, 10, 1, 1 for coreset sizes M = 10, 20, 50, 100, 200, 500. We also train CoresetMCMC-S for 25,000 iterations
with the ADAM step sizes set to 10t−0.1, 10t−0.1, 10t−0.1, 10t−0.3, 20t−0.5, 20t−0.3 for coreset sizes M = 10, 20,
50, 100, 200, 500, where t is the iteration number. At each gradient estimate, we set the minibatch size to be 5
times the coreset size. We train QNC for 50 iterations so that the total number of samples drawn from the coreset
posterior during optimization is the same between CoresetMCMC and QNC. In QNC, we choose the step size using
a line search for each of the first 10 iterations. For the line search procedure, we use the curvature part of the
Wolfe condition (Wolfe, 1969) to shrink the step size for a maximum of 20 times. For all iterations after, we use
the same step size that is used in th 10th iteration. For SHF, we set the Adam step size to 0.002 and train the
flow for 50, 000 iterations. We use standard normal as the initial distribution across all dimensions.

For Austerity, we set the minibatch size to be 100. For both Austerity and Confidence, we use independent
Gaussian proposal centred at the previous state with the variance of each component set to 0.01. For both
SGLD-CV and SGHMC-CV, we set the subsample size to 500. For SGLD-CV, we use a constant step size of 2× 10−5

For SGHMC-CV, we use 30 leapfrog steps and a constant step size of 8× 10−4. To find the mode for the control
variate, we use ADAM with default settings, drawing a subsamples of 100 observations until the weight updates
for all dimensions are of magnitude smaller than 5× 10−5. All other parameters for the two stochastic gradient
MCMC methods follow that of Baker et al. (2019).

Bayesian logistic regression: We train CoresetMCMC for 25,000 iterations with the ADAM step sizes set to 0.1,
5, 1, 1, 1, 0.1 for coreset sizes M = 10, 20, 50, 100, 200, 500. We also train CoresetMCMC-S for 25,000 iterations
with the ADAM step sizes set to 10t−0.1, 10t−0.1, 10t−0.1, 10t−0.3, t−0.3, 10t−0.5 for coreset sizes M = 10, 20,
50, 100, 200, 500, where t is the iteration number. For both Austerity and Confidence, we use independent
Gaussian proposal centred at the previous state with the variance of each component set to 0.001. To find the
mode for the control variate for both stochastic gradient MCMC methods, we use ADAM with default settings,
drawing a subsamples of 100 observations until the weight updates for all dimensions are of magnitude smaller
than 1× 10−3. All other parameters are the same as in Bayesian linear regression.

To account for the class imbalance problem, for all coreset methods, we include all observations from the rare
positive class if the coreset size is more than twice as big as the total number of observations with positive labels.
Otherwise we sample our coreset to have 50% positive labels and 50% negative labels. This is only done for
coreset methods because unlike subsampling MCMC methods which gets a fresh subsample each time, coreset
points are only picked once.

Bayesian Poisson regression: We train CoresetMCMC for 50,000 iterations with the ADAM step sizes set to 2,
0.5, 0.5, 0.1, 0.05, 0.01 for coreset sizes M = 10, 20, 50, 100, 200, 500. We also train CoresetMCMC-S for 50,000

Naitong Chen, Trevor Campbell

(a) linear regression (b) logistic regression (c) Poisson regression (d) sparse regression

(e) linear regression (f) logistic regression (g) Poisson regression (h) sparse regression

Figure 6: Comparison of coreset methods. Figs. 6a to 6d show posterior approximation quality via the relative
mean error, and Figs. 6e to 6h show posterior approximation quality via the relative covariance error. The lines
indicate the median, and error regions indicate 25th to 75th percentile from 10 runs.

iterations with the ADAM step sizes set to t−0.1, 2t−0.1, 2t−0.1, t−0.1, 2t−0.3, 0.5t−0.3 for coreset sizes M = 10,
20, 50, 100, 200, 500, where t is the iteration number. At each gradient estimate, we set the minibatch size to be
10 times the coreset size. We train QNC for 100 iterations so that the total number of samples drawn from the
coreset posterior during optimization is the same between CoresetMCMC and QNC. In QNC, we choose the step size
using a line search for each of the first 10 iterations, where the step size may be shrunk up to 50 times each. For
both Austerity and Confidence, we use independent Gaussian proposal centred at the previous state with the
variance of each component set to 0.01. For SGLD-CV, we use a constant step size of 2× 10−4 For SGHMC-CV, we
use 30 leapfrog steps and a constant step size of 8× 10−4. To find the mode for the control variate, we use ADAM
with default settings, drawing a subsamples of 1000 observations until the weight updates for all dimensions are
of magnitude smaller than 1× 10−4. All other parameters are the same as in Bayesian linear regression.

Bayesian sparse linear regression: We train CoresetMCMC for 25,000 iterations with the ADAM step sizes
set to 0.1, 0.1, 1, 1, 0.1, 0.01 for coreset sizes M = 10, 20, 50, 100, 200, 500. We also train CoresetMCMC-S for
25,000 iterations with the ADAM step sizes set to 5t−0.1, 10t−0.1, 10t−0.1, t−0.1, 5t−0.5, 2t−0.5 for coreset sizes
M = 10, 20, 50, 100, 200, 500, where t is the iteration number. At each gradient estimate, we set the minibatch
size to be 10 times the coreset size. For the continuous components of both Austerity and Confidence, we
use independent truncated Gaussian proposal that are centred at the previous state with the variance of each
component set to 0.001. For the discrete components, we use independent Bernoulli proposals with the success
probability set to 0.5. All other parameters are the same as in Bayesian linear regression. Note that due to
the inclusion of discrete variables, SHF, SGLD-CV, and SGHMC-CV are no longer directly applicable, and are hence
excluded from this experiment.

D ADDITIONAL RESULTS

In this section we present additional experimental results that show the posterior relative mean error (∥µ −
µ̂∥2/∥µ∥2) and relative covariance error (∥Σ− Σ̂∥F /∥Σ∥F) across all methods. Similar to the main text, here we
use µ̂, Σ̂ to denote the mean and covariance estimated using draws from each method, and µ,Σ are the same
estimated for the full data posterior. Recall that the two-moment KL metric that we show in the main text
combines both the posterior mean and covariance error into a single number.

Fig. 6 shows the relative mean and covariance error between coreset methods for all four models. Note that for
the sparse regression model, this error is computed only on the continuous components. We see that the trends
are mostly similar compared to those of two-moment KLs. However, we note that while SHF is able to capture
the mean, it approximates the posterior covariances poorly, which is due to the limited expressiveness of the
variational family. All other coreset methods involve using MCMC to sample from the coreset posterior, and so

Coreset Markov chain Monte Carlo

(a) linear regression (b) logistic regression (c) Poisson regression (d) sparse regression

(e) linear regression (f) logistic regression (g) Poisson regression (h) sparse regression

Figure 7: Comparison of coreset and subsampling MCMC methods. Figs. 7a to 7d show posterior approximation
quality via the relative mean error, and Figs. 7e to 7h show posterior approximation quality via the relative
covariance error. The boxplots indicate the median, 25th, and 75th percentiles from 10 runs.

the covariance estimates become closer to the true posterior as we increase the coreset size.

We now look at Fig. 7 to compare the relative mean and covariance error between coreset methods and subsampling
MCMC methods. We set the coreset size M = 500 for all coreset methods. We see that for models with only
continuous variables, the lower two-moment KLs from SGHMC-CV that we show in the main text largely come from
it being able to approximate the posterior mean well. However, in the Poisson regression example, stochastic
optimization struggles to identify the mode of the posterior within the time for CoresetMCMC to train and sample.
This causes the posterior approximation quality, especially that of the posterior covariance (as shown in Fig. 7g),
to drop.

	Introduction
	Background
	Coreset MCMC
	Setup
	Algorithm
	Convergence Analysis
	Intuition from a Representative Model

	Experiments
	Comparison of Coreset Methods
	Comparison with Subsampling MCMC
	Tuning Difficulty

	Conclusion
	Proofs
	Gaussian location example
	Details of experiments
	Model Specification
	Parameter Settings

	Additional results

