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Abstract

Imbalanced data poses a significant challenge in classification as model performance is af-
fected by insufficient learning from minority classes. Balancing methods are often used to
address this problem. However, such techniques can lead to problems such as overfitting or
loss of information. This study addresses a more challenging aspect of balancing methods
- their impact on model behavior. To capture these changes, Explainable Artificial Intel-
ligence tools are used to compare models trained on datasets before and after balancing.
In addition to the Variable Importance method, this study uses Partial Dependence and
Accumulated Local Effects profiles. Real and simulated datasets are tested, and an open-
source Python package edgaro is developed to facilitate this analysis. The results obtained
show significant changes in model behavior due to balancing methods, which can lead
to biased models toward a balanced distribution. These findings confirm that balancing
analysis should go beyond model performance comparisons to achieve higher reliability of
machine learning models. Therefore, we propose a new method performance gain plot

for informed data balancing strategy to make an optimal selection of balancing method by
analyzing the measure of change in model behavior versus performance gain.

Keywords: Imbalanced learning, Explainable artificial intelligence, Data balancing, Model
behavior change, Performance gain plot

1. Introduction

Classification is one of the most common machine learning (ML) tasks, providing solutions
in a wide variety of fields. It frequently involves imbalanced target variables, where there is
only one class of particular importance, but there are much fewer data examples available
for that class than for the other. This is very common in real-world applications such
as credit score prediction, heart attack risk assessment, and fraud detection. However,
it can be challenging to train models on such data because many ML models assume a
uniform distribution of target variables. If this is not satisfied, the algorithms may lose
their ability to learn from the data. One of the approaches to deal with this problem is
to apply balancing methods. They are based on undersampling and oversampling, or they
combine both approaches.
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The Effect of Balancing Methods on Model Behavior

Although there are numerous balancing methods proposed in the literature, none of
them is universally superior. Each has its advantages and disadvantages, and the most
appropriate one depends on the specific characteristics of the dataset and the task at hand.
For example, oversampling techniques cause excessive learning of the model, which can lead
to overfitting, while undersampling methods cause loss of information. Even though such
problems, posed by many methods, have been examined from various perspectives, very few
studies have examined how they affect how the models behave.

The field that focuses on the study of model behavior is Explainable Artificial Intelligence
(XAI). It provides tools that help make the decisions made by models comprehensible
and transparent to humans. Consequently, it is possible to understand how balancing
methods change the predictions made by the model. This can be done by examining and
measuring the extent of changes in the explanations of models trained on the original and
balanced datasets. So far, the researchers have only examined these changes by comparing
the variable importance (VI) of the models. VI tools provide information about the order
of importance of the variables in the model but do not provide any information about the
change in the relationships between the variables. In this study, we investigate the effects of
the balancing methods on the model behavior using the partial dependence profiles, which
determine the relationships between the response variable and the explanatory variables. In
addition, we also use accumulated local effect profiles, which are more robust to correlated
features and may provide a more accurate representation of model behavior. To measure
the extent of change in model explanations, we developed a novel metric called SDD. We
used it to compare models trained with logistic regression, random forest, and gradient
boosting algorithms on both simulated and real unbalanced datasets. This research uses
two different types of data to provide a more controlled assessment of changes in model
behavior. This is supported by the fact that after applying balancing methods to real-
world datasets, it is difficult to determine which one represents the true ground truth
because the model structure has changed. To address this issue, we also perform simulations
using synthetic datasets where the ground truth is known. Furthermore, we propose the
performance gain plot, which can be used to select the optimal balancing method to solve
the dilemma arising from the negative effects of balancing methods on model behavior and
improve model prediction performance. In addition, to facilitate the evaluation of different
balancing methods and XAI tools, we have developed a Python package that provides a
unified interface for data preprocessing, model training, and XAI analysis. The package
includes implementations of several popular balancing methods and XAI tools, as well
as customized evaluation metrics to measure the impact of balancing methods on model
behavior.

The main contributions of this paper are as follows: (1) to investigate the effects of
balancing methods on model behavior, (2) to propose a measure to quantify changes in
model behavior, (3) to create benchmark datasets with imbalanced class distributions, (4)
to propose the performance gain plot for optimal balancing method selection regarding the
performance gain versus the model behavior change, and (5) to develop a Python package
that simplifies the workflow of using balancing methods, training models, and applying
XAI tools. In the remainder of this paper, we first discuss the related works in Sec. 2, then
we present the XAI tools used in the experiments and the proposed comparison metric in
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Sec. 3, describe our experiments conducted on simulated and real datasets in Sec. 4, and
discuss the results and conclusions in Sec. 5.

2. Related Works

The focus of this paper is to explore how XAI tools offer a new perspective on the problem
of imbalanced learning. In this section, we provide an overview of existing methods for
addressing the issue of imbalanced learning and a summary of research on their impact
on model behavior. In addition, we emphasize the distinctive contributions of our study
compared to similar work in the field.

In many domains where binary classification is applied, the class of interest is extremely
rare. Classification models tend to favor the majority class in such cases, leading to bias.
This bias results in a higher frequency of misclassification of minority class examples. The
problem of bias towards the majority class has been addressed through several proposed
methods, which can be divided into two groups: algorithmic-level methods (Gu et al., 2022;
Li et al., 2022), which aim to develop better algorithms, and data-level methods (Chawla
et al., 2002; He et al., 2008), which involve transforming the original dataset to balance it.

There are many studies focused on how data balancing influences and changes the per-
formance of trained ML models (Ortega Vázquez et al., 2023; Gu et al., 2022). However,
there have not been many attempts to investigate how they affect the model’s behavior.
Patil et al. (2020) investigated the changes in the order of importance of the variables in the
model after applying the balancing methods. They studied whether the balancing technique
SMOTE changes the correlations between features. The experiment was conducted only
on one highly imbalanced dataset. The results show that this algorithm was successful not
only in eliminating imbalance but also in preserving the original correlations. The authors
then applied a few XAI methods to extract the explanations of the model trained on over-
sampled data. However, they emphasized that it could be done only because the feature
correlations remained unchanged. Alarab and Prakoonwit (2022) sought an answer to a
similar question in an application on blockchain data. They compared the explanations of
models trained on the dataset after applying different balancing methods. The feature im-
portance is used and compared with a statistical test. The experiments were conducted on
two datasets using different variants of the SMOTE algorithm. The results show that one
of the methods changed the feature importance in both cases. However, these studies have
two main limitations: (1) they do not provide enough comprehensive information about the
change in model behavior as they only use feature importance, and (2) their results cannot
be generalized because they are based on only one or two datasets. Moreover, Saarela and
Jauhiainen (2021) showed that the most important features differ depending on the vari-
able importance technique used. They suggested using a combination of the explanation
techniques could provide more consistent results.

In this paper, we aim to investigate the effects of balancing methods on model behavior,
which is firstly mentioned in Cavus and Biecek (2022) and addressed in more detail in
Stańdo (2023). To do so, we propose a new metric based on the differences between the
partial dependence profiles or the accumulated local effect profiles, since it is not possible to
directly measure the model behavior over the PDP and ALE profiles by using the existing
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metrics proposed in Schwalbe and Finzel (2023); Visani et al. (2022); Roy et al. (2022);
Zhang et al. (2022); Agarwal et al. (2022).

3. Methodology

This section presents the XAI tools used and the proposed metric for measuring the change
in model behavior.

3.1. Partial dependence profile

The partial dependence profile (PDP) is introduced in Friedman (2001). Let X be the data
set and Xj be any variable in the data set. The PDP is a function of the observation z
for a model f and a variable j defined as PDP (f, j, z) = EX−j [f(Xj|=z)]. In other words,
the PDP value for the j-th column in the observation z is an average prediction of model f
when values in the j-th column are set to z. In practice, however, we do not usually know
the distribution of X−j (Biecek and Burzykowski, 2021). Therefore, it is estimated using

P̂DP (f, j, z) = 1
n

∑n
i=1 f(X

j|=z
i ).

3.2. Accumulated local effects

PDP may provide explanations that can be misleading if explanatory features are correlated.
Therefore, the Accumulated Local Effects (ALE) profiles are proposed (Apley and Zhu,
2020). It is a noteworthy alternative to PDP because both produce the functions as outputs,
but ALE is unbiased. ALE for a model f and a variable j is a function of observation z
defined as follows:

ALE(f, j, z) =

∫ z

z0

(
EX−j

[∂f(u)

∂uj u=Xj|=v

])
dv + c. (1)

The constant c is selected in such a way that EXj [ALE(f, j,Xj)] = 0 and z0 is a value close

to the lower bound of the support of Xj . In other words, ∂f(u)
∂uj describes the local change

of the model which is then averaged over the distribution of X−j and integrated over values
from z0 to z. The estimator of ALE is the following:

ÂLE(f, j, z) =
K∑
k=1

(
1∑

l w
j
l (zk)

N∑
i=1

wj
i (zk)

[
f
(
xj|=zk

)
− f

(
Xj|=zk−∆

)])
+ ĉ. (2)

The constant K is the number of intermediate points, (z0, z1, ..., zK) are evenly distributed
points in (z0, z) interval with step ∆ = (z−z0)/K. The weights wj

i (zk) represent the distance

between zk and xji . The constant ĉ is selected in such a way that
∑N

i=1ALE(f, j,Xj
i ) = 0

(Biecek and Burzykowski, 2021).

3.3. Variable importance

The previous two methods show how the model predictions change when the value of the
selected variable changes. The variable importance (VI) tool, however, focuses on creating
one explanation for all variables in the model. We use the VI which permutes each column
in X multiple times and see how it affects the model performance - the method proposed
by Fisher et al. (2019).
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(b) Two example PDP curves with
SDD ≈ 0.58.

Figure 1: Exemplary PDP plots and the SDD values.

3.4. Standard Deviation of the Differences (SDD)

Assume that f1 and f2 be two models trained on the same data set, the SDD metric:

SDD(h1, h2, j, k) = sd[h1(xi) − h2(xi)i=1,2,...,k] (3)

where h1(z) = PDP (f1, j, z) and h2(z) = PDP (f2, j, z) are the values of the profiles for
the j-th variable at point z. In the above definition, if h1(z) = h2(z), ∀z, which means
that the profiles are equal, the metric value SDD(h1, h2, j, k) = 0. Similarly, if h1(z) =
h2(z) + c,∃c∀z, which means that the profiles are parallel and SDD(h1, h2, j, k) = 0. This
behavior is expected as the metric is intended to measure the changes in the shape of the
curves, not the vertical offset. This is because the position of the PDP curve depends on
the accuracy of the model, but only the changes in shape indicate changes in behavior.

On the other hand, consider (x1, x2, ..., x101) = ( 0
100 ,

1
100 , ...,

100
100), h1(z) = z, and h2(z) =

1−z. In such a situation, SDD(h1, h2, j, 101) ≈ 0.58. As can be seen in Figure 1, the curves
that behave differently have a high value of SDD. It compares two models for one variable.
Additionally, the SDD values can be aggregated to the averaged SDD (ASDD) values to
compare the behavior of models with respect to all variables. This can be formalized as
ASDD(f1, f2, k) = 1

m

∑m
j=1 SDD[PDP (f1, j, ∗), PDP (f2, j, ∗), j, k].

4. Experiments

In this section, we conduct experiments to measure the impact of six balancing methods: Un-
dersampling (Random, Near Miss), Oversampling (Random, SMOTE, Borderline SMOTE),
and Hybrid (SMOTETomek) on the behavior of the three models (Logistic Regression, Ran-
dom Forest, and XGBoost) behaviors on simulated and real imbalanced datasets in terms
of SDD of PDP and ALE. The edgaro Python package (Explainable imbalanceD learninG
compARatOr) is implemented to run the experiments. It is the first to provide a user-
friendly interface to balance and train ML models for several datasets arranged in arrays or
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nested arrays. It allows using implementations from two major libraries, scikit-learn and
imbalanced-learn. The package also calculates, in the same form of arrays and nested arrays,
explanations using the PDP, ALE, or VI method and provides functions to compare them.
To ensure that the explanations for each experiment are calculated over the same data, the
test dataset extracted before any balancing is used as the background data. By default, the
test size is equal to 20%, and the data is split in a stratified fashion (preserving the class
distribution in both subsets).

4.1. Simulated Dataset Experiments

We conducted experiments on simulated data, which were generated through simulations
that allowed us to control the ground truth (Amiri et al., 2020). We were unsure which
model represented the ground truth, as there are changes in the model behavior due to
the use of balancing methods. For this purpose, we constructed a comprehensive model
framework and followed a simulation design similar to Casalicchio et al. (2019), and we
used the following model to simulate the imbalanced datasets:

z = β0i + 2.9X1 − 3.7X2 + 1.2X3 + ϵj (4)

where the binary response variable Y ∼ B(1, p = 1/(1+exp(−z))), the explanatory variables
X1, X2, X3 ∼ N(0, 1) and the error term ϵj ∼ N(0, vj). The simulations are set up as 12
scenarios: β0i takes the values {1.5, 2.5, 3.5, 4.5} and the variance of the error term vj takes
the values in {1, 2, 3} respectively, in the scenario ij to generate the dataset. The error
term ϵ controls the variance of the model prediction, and the parameter β0i controls the
imbalance ratio of the target variable in the dataset.

The figure in https://tinyurl.com/baccuracyplot, shows how the balancing methods im-
prove the model performance in terms of balanced accuracy, at the bottom of each panel
shows the distribution of the model performance, which is trained on imbalanced datasets
as the reference level. As the value of the coefficient β0 increases, indicating an increase
in the imbalance ratio, the performance of the model decreases. Similarly, an increase
in the variance of the error term leads to a decrease in the model’s performance. When
evaluated separately, logistic regression, random forests, and XGBoost exhibit the highest
performance, respectively. Among them, increasing the variance of the error term has the
largest impact on reducing the performance of the random forest model. When examining
the positive effects of balancing methods on model performance, Random Undersampling is
the most effective method, followed by all Oversampling methods. The Near Miss method
reduces the performance of the random forest and XGBoost models as the imbalance ratio
increases.

The SDD values for PDP profiles between models trained on the simulated datasets
are presented in Figure 2 (the figure in https://tinyurl.com/alesdd for the ALE profiles).
The similarity of SDD values for PDP and ALE indicates that either approach can be used
to compare models. The impact of undersampling and other methods on model behavior
varies. Undersampling has the smallest effect on the Logistic Regression model but the
largest effect on the XGBoost model. Conversely, other methods have a greater impact on
the behavior of the logistic regression model and a lesser impact on the random forest model.
The effects of these methods become more pronounced as the variance of the model error
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Table 1: Proposed benchmarking set

Dataset name IR Rows Columns Source

spambase 1.54 4601 55 OpenML-100, OpenML-CC18
MagicTelescope 1.84 19020 10 OpenML-100
steel-plates-fault 1.88 1941 13 OpenML-100, OpenML-CC18
qsar-biodeg 1.96 1055 17 OpenML-100, OpenML-CC18
phoneme 2.41 5404 5 OpenML-100
jm1 4.17 10880 17 OpenML-100, OpenML-CC18
SpeedDating 4.63 1048 18 OpenML-100
kc1 5.47 2109 17 OpenML-100, OpenML-CC18
churn 6.07 5000 8 OpenML-CC18
pc4 7.19 1458 12 OpenML-100, OpenML-CC18
pc3 8.77 1563 14 OpenML-100, OpenML-CC18
abalone 9.68 4177 7 imblearn
us crime 12.29 1994 100 imblearn
yeast ml8 12.58 2417 103 imblearn
pc1 13.40 1109 17 OpenML-100, OpenML-CC18
ozone-level-8hr 14.84 2534 72 imblearn, OpenML-100, OpenML-CC18
wilt 17.54 4839 5 OpenML-100, OpenML-CC18
wine quality 25.77 4898 11 imblearn
yeast me2 28.10 1484 8 imblearn
mammography 42.01 11183 6 imblearn
abalone 19 129.53 4177 7 imblearn

term and the imbalance ratio of predicted values increase. Thus, the negative impact of
balancing methods on model behavior increases with higher variance and imbalance ratios
in the model predictions.

4.2. Benchmark Datasets

Benchmark datasets are the backbone of large-scale experiments. Their quality is of great
importance for generalizing the results obtained in the experiments. Moniz and Cerqueira
(2021) and Singh and Vanschoren (2022) proposed benchmark datasets for imbalanced
learning. To measure the effect of balancing methods on model behavior in terms of SDD,
we propose a new benchmarking set of datasets. For now, SDD works only on continuous
variables, therefore, we need to create a new imbalanced benchmark dataset.

The proposed benchmarking set of datasets is made up of three main sources: OpenML-
100, OpenML-CC18 (Bischl et al., 2017), and the collection of datasets available in imblearn

library which was proposed by Ding (2011). The benchmarking set contains only datasets
for binary classification tasks that have only continuous columns (categorical and nominal
were removed), at least 1000 rows, and an imbalance ratio of at least 1.5. The set is also
available via a dedicated class in edgaro package. The list of selected datasets and their
details are presented in Table 1.

4.3. Real Dataset Experiments

We ran the experiments on the proposed benchmark dataset. Figure 3(a) presents the
balanced accuracy values for models on both original and balanced datasets. It is clear
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Figure 2: SDD results based on partial dependence profiles of the models trained on the sim-
ulated dataset. group represents the β0 values (group i: β0i = [1.5, 2.5, 3.5, 4.5]),
and var represents the variance of the error term (varj = [1, 2, 3])
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from the chart that balancing does improve model performance in terms of the evaluation
metric. This confirms the results of many studies showing that these methods have a positive
influence on the predictive power of the models. The biggest change observed is in the case of
XGBoost, which has evolved from the worst to the best model after balancing. Nevertheless,
there are some cases where the predictive power of the model decreased significantly. These
outliers are the effect of the Near Miss method (Figure 3(b)). It is the only one that in
some cases prevents the models from learning from the data. Apart from that, Figure 3(b)
suggests that the best results were obtained after applying the Random Undersampling
technique and that the Random Forest model benefited from it the most.

The SDD values for PDP and ALE profiles between models trained on the original and
the balanced datasets are presented in Figure 4. Firstly, the SDD values for PDP and ALE
are very alike in these plots. This means that either approach can be used to compare
models. Secondly, all balancing methods cause significant changes in the behavior of the
Logistic Regression models. Consequently, it can be concluded that this model is biased
toward a balanced distribution. Moreover, the Near Miss method, which was the worst in
terms of balanced accuracy, also causes the largest changes in SDD values. On the other
hand, the XGBoost models have changed the least after applying Random Oversampling.
This means that it is safe to use this technique when training an XGBoost model.

An example of how model behavior can change after balancing is illustrated in Figure 6.
It presents ALE profiles for Random Forest models trained on the wilt dataset. It can be
seen that the profiles for Random Undersampling and Near Miss methods have completely
different characteristics compared to the original line.

The results of the Wilcoxon test, which compares the Variable Importance profiles of
the models trained on the original and balanced datasets, are visualized in Figure 5. This
plot confirms earlier observations that the Near Miss method causes the most changes
in the model behavior. On the other hand, the XGBoost algorithm seems to be the most
robust, as it has the largest fraction of accepted tests in all cases. However, it should be
noted that the results obtained by the VI and PDP/ALE methods are not coherent. For
example, the smallest SDD values were present for the XGBoost algorithm after applying
Random Oversampling. The chart in Figure 5 does not depict that - the larger fraction
of the accepted tests has Random Forest.

4.4. Performance gain plot

We proposed the performance gain plot that shows the relationship between the models and
the balancing methods considered. The performance gain is given in the x-axis in terms of
balanced accuracy and the ASDD values, which show the model behavior change based on
the PDP or ALE profiles, are given in the y-axis. On such a scatterplot, we can compare
two types of changes: in performance and behavior. The higher values on the x-axis and the
lower the values on the y-axis is better. Conversely, high model behavior changes and low
prediction performance gain. In this direction, we examined the changes in model behavior
versus model performance gain by using the performance gain plot on simulated and real
datasets.

In Figure 7, the most important observation in the case of Random Forest and XGBoost,
the Near Miss method was the one with the highest behavior changes and the largest per-
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Figure 3: Balanced Accuracy results of the real dataset experiments.
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Figure 4: The SDD results of the real dataset experiments.

formance change. On the contrary, the Random Undersampling technique had the highest
performance gain, but still at the cost of behavior change. Another conclusion is that the
ASDD values tend to be lower for Logistic Regression than for other models. Consequently,
it can be concluded that the Near Miss method is the riskier method in terms of model
behavior change for Random Forest and XGBoost models.

Figure 8 shows that the most important observation in the case of Random Forest and
XGBoost is that for some datasets, the Near Miss method was the one with the highest
behavior changes and the largest performance decrease. On the other hand, the Random
Undersampling technique had the highest performance gain, but still at the cost of behavior

25
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Figure 7: Performance gain plot for simulated datasets.

change. Another conclusion is that the ASDD values tend to be higher for Logistic Regres-
sion than for other models, while the decrease in the balanced accuracy value is almost not
observed (or only to a small extent). Therefore, it can be concluded that data balancing
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Figure 8: Performance gain plot for real datasets.

in the case of Logistic Regression is safer in terms of performance, but riskier in terms of
behavior change.

5. Conclusions

In this paper, we investigated the impact of balancing methods on model behavior in imbal-
anced datasets. We conducted experiments on both simulated and real datasets to measure
the impact of different balancing methods on model behavior and performance by using
edgaro package. Our results show that Random Undersampling is the most effective
method for improving model performance, followed by all Oversampling methods. How-
ever, the Near Miss method does not always lead to better performance, especially when
the imbalance ratio is high. We also observed that the impact of the balancing methods on
model behavior varies depending on the algorithm. These findings are consistent with the
results presented in Moniz and Monteiro (2021) about the No Free Lunch concept (Schaf-
fer, 1994) for imbalanced ML. Thus, we propose to use the performance gain plot to select
the optimal balancing method in terms of performance gain and model behavior change.
Additionally, we introduced a comprehensive model framework and followed a simulation
design similar to previous studies to generate simulated datasets with controlled imbalances.
The results of our experiments on these datasets demonstrate that the negative impact of
balancing methods on model behavior increases with higher variance and imbalance ratios
of model predictions.

In conclusion, our paper provides insights into the trade-offs between model performance
and behavior when dealing with imbalanced datasets. Future research can explore alter-
native balancing methods, such as cost-sensitive learning, or combine multiple methods to
further improve model performance and minimize changes in model behavior in imbalanced
datasets.
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Supplemental Materials

The materials for reproducing the experiments performed in Sec 4, the Python package,
benchmark datasets, and the figures are accessible at a GitHub repository.
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