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A Value function estimation

A.1 Proof of Lemma 4.1
To see the identity
Py(®—B, + W)(h—h) =®(I —T @) VEC(h — h), (13)
note that a single element of the vector (® — & + W)(h — ﬁ) can be expressed as
(¢ —E(¢y) + VEC(W)) " (h— h) = VEC(z2" —Tzz'TT)T(h—h) = vEc(zz )T (I -T @) (h—h), (14)
where we have used the Kronecker product identity VEC(I'XT ") = (I' ® I')VEC(X). Thus we have that
H<I>(I—F®F)T(h—ﬁ)H < HP<I,(5+—<I>+)BH . (15)
Next we lower-bound H(I —Tren)"(h— 71)” Let L = HY?TH-Y/2 andlet H = I — H-'/2HH~/2. We have the
following:
H(I T &) veC(H — ﬁ)H - HH ~H-TT(H- ﬁ)FHF

- HHl/Q(Ff LTFL)HV?HF

— \Jtr(H(H — LTHL)H(H — LTHL))

where the second-last inequality follows from the fact that tr(AB) > Apin(A) tr(B) for p.s.d matrices A and B (Zhang
and Zhang, 2006). Furthermore, using the fact that || L||* < 1 — Apin (M) |H| 7", 3

[ - LTHL|, = (I — Lo L) vec(H)|

> (1 —||L||2 ) [ H]|
A
Z mm HI H—1/2HH I/QH
\HII
= duin(M) | f H)H-(H-H
T M) Jew (201 = By — )

—2 fap
> Nuwin (M) | H] HH - HHF

Hence we get that
H(I —TeD) (h- E)H > A (M)2 || H|| 2 HH - EHF . (16)
A.2 Proof of Lemma 4.2

Proof. Let Py = (U T W)~ be the orthogonal projector onto W. The true parameters g = VEC(G) and the estimate
§ = VEC(G) satisfy the following:

Uj = Py(c+ (P, — W)h) (17)

3This can be seen by multiplying the equation H > I'T HI' + Amin(M)I by H~'/2 on both sides.

Subtracting the above equations, we have

1% — w3l = || Pu (@ = W)(h— ) + @ — @)h)
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< |[@s = Wy = i)|| + | Poe@s - @00

Using || 90| > v/ Amin(PT¥) [|v] on the Lh.s., and || Pyo|| < [[¥ || /v/Amin(PT ) on the rhis.,

(@ =Wy =n)|| ||oT@s - i
Amin (U T V) Amin (U7 V)

le-é|, =la-al< (19)

Using similar arguments as for )\min(qﬂq)) and the fact that actions are randomly sampled, it can be shown that
)\min(‘I'T\IJ) = O(1).
Let Yg r = AY AT + BY,BT. Assuming that we are close to steady state x ~ N (0, X;) each time we take a random

action a ~ N(0, 3,), the next state is distributed as z, ~ N(0, £ x + W). Therefore each element of (&4 — W)(h—h)
is bounded as:

(B(¢+) — VEC(W) T (h = h)| = | tr (S (H — H))

< tr(Ser) ‘H .y

)

where we have used the fact that | tr(M; Ms)| < || M1]| tr(Mz) for real-valued square matrices M; and My > O (see e.g.
(Zhang and Zhang, 2006)). Thus, the first term of (19) is bounded as

|@s =Wy =) < 6r(Sr)

’HffIH NG (20)

To bound the second term, we can again use Lemma 4.8 of Tu and Recht (2017), where the only changes are that we
bound max; ||¢¢|| as opposed to max; ||¢;||, and that we have a different distribution of next-state vectors . Thus, with
probability at least 1 — &, the second term scales as

Hqﬁ(@ - <1>+)BH - O(ﬁ HWI?HF (tr(25) + t2(3a)) | Se.x|l » polylog(n?,1/6, T)) @1)
0

B Analysis of the MFLQ algorithm

B.1 Proof of Lemma 5.1

Proof. Let G7 = % Z{Il G;and G = % 2521 G be the averages of true and estimated state-action value matrices of

policies K71, ..., K, respectively. Let H7 and HY be the corresponding value matrices. The greedy policy with respect to
G is given by:

. ~i | o
Kj 1 =arg m}gntr (;r,T [I —KT] G’ {—K} x)
_ ; Ai
= arg m&ntr (G XK) , (22)

where X = {_I

K] zx' [I —KT]. (23)

Let | X x| be the matrix obtained from X i by taking the absolute value of each entry. We have the following:

tr(Gi Xk, ,,) < t0(GXx,,,) +ertr(117 [ Xg ) (24)
Str(éjXKj)+511T‘XKj+1‘1 (25)
<tr(GiXk,) + a1l (| Xk, | + | Xk, )1 (26)

=2 Hjz+e1" (| Xk,| + Xk, ,, )1 (27)
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Here, (24) and (26) follow from the error bound,* and (27) follows from tr(G X K].) =z H jx. To see (25), note that
K1 is optimal for G' and we have:

~ . i — 1 ~ 1 ~
tr(GJXKHI) = / j tI‘(GJ 1XKj+1) + }tI‘(GleKjJrl)

j—1
J
:tl"(GjXKj).

<

. 1 -
tr(G7 ' Xk, ) + ; tr(G; Xk;)

Since tr(GI~1 X, ) < tr(G7~' Xy, , ) it follows that tr(G; Xk, ,,) < tr(G; Xk, ).

Now note that we can rewrite tr(G; Xk, ) as a function of H as follows:

I
(G XKJ+1) - xT [I KJT‘Fl] G |:—Kj+1:| t

AT M 0 I
T
=a' [I K;l]([BT]Hj[A BH{O ND[—KMF
T T M 0
= ((A—BKJ+1) Hj(A—BKj+1)>l'+tr<|:0 :|XK7+1>‘
Letting I'; = A — BKj;, we have that

x’ <F]T+1ijj+1> r+e; <z Hjz (28)

where g5 =z (M+K TANKj )z — el (| Xk, | + [ Xk

)1

If the estimation error €, is small enough so that e, > 0 for any unit-norm x and all policies, then H; >~ FJ-THH 3I'j+1 and
K4 is stable by a Lyapunov theorem. Since K is stable and H; bounded, all policies remain stable.

In order to have €5 > 0, it suffices to have
-1
e1 < (Vn+[IK;[IVd)* + (v + [|K; 11| Vd)?)

This follows since M > I, and since for any unit norm vector z € S”, 1T 22 "1 < n, with equality achieved by = = ﬁ 1.
Similarly, 1" Kzz T K1 < ||[K|?d, and 17 (| X, )1 < (vVn + || K;|[Vd)>.

As we will see, we need a smaller estimation error in phase j:

€1<m(<I+IIK Va2 + (Vi + 1Kl Va©) (29)

Here, C is an upper bound on || Hy ||; > M > I,s0 C7 > 1. The above condition guarantees that

1
1T (X | 4+ [ Xk DL < —— .
61 (l K]| +| K]+1|) —_ 6015

We have that G120 = N > I and G121 = BTH,A. Given that the estimation error (10) is small, we have ||Ky| <
2(||BTH1A|| + 1) < Ck. Then (10) implies (29) for j = 1, and the above argument shows that K> is stable.

Next, we show a bound on HI‘fH Let L;y1 = H;/QI‘Z-HH;UQ. By (28), M > I, and the error bound,
H, =Ty HiT's + (M + Ky NKy) — (6C15)~!

I= L] Lo+ HY3(M + K] NKy)H;Y/? — (60,5) " H !
- L;LQ + Hl_l — (601)71

“Note that the elementwise max norm of a matrix satisfies ||G||... < |G|l -
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> Ly Ly + (3C1) ™' — (60y) 71 .
Thus, ||Lz|| < 4/1 — (6C1)~! and we have that

e = [ Laml ) | < VET (- 60y 2.
To show a uniform bound on value functions, we first note that

Hy — Hy < Ty (Hy — H)Ty + (6C1.5) 71 .
Using the stability of I's,
(o)
Hy — Hy < (6C1.8)™" ) (g )T}

k=0
&

6C1S(1 — || Ls|*)

| Hal| < ||Hyl| + < (148 HC .

Thus Cs < (1 + S~1)C4, and by repeating the same argument,
C; <1+ 85Yie, <30, . (30)

C Regret bound

In this section, we prove Lemma 5.2 by bounding 57, v, and ar.

C.1 Bounding 1

Because we use FTL as our expert algorithm and value functions are quadratic, we can use the following regret bound for
the FTL algorithm (Theorem 3.1 in (Cesa-Bianchi and Lugosi, 2006)).

Theorem C.1 (FTL Regret Bound). Assume that the loss function fi(-) is convex, is Lipschitz with constant Fy, and is
twice differentiable everywhere with Hessian H >~ Fy1. Then the regret of the Follow The Leader algorithm is bounded by
2

Br < Fi

1 (14+1ogT).
_2F2(+0g)

Because we execute S policies, each for 7 = T'/.S rounds (where 7 = T2/3%€ and 7 = T3/4 for MFLQV1 and MFLQV2,
respectively),

s
Br = Z TEgp, (Qi(2, mi(2)) — Qi(w, w(x)))

S ~
s <EM(Q¢<W<I>> — Qu(a, ()

+ Epnp, (Qil, mi(2)) — Qula, mi(w)))
+ Eonp, (Qil, () — Qulw, m(x))

s
< C'VSTlogT + TZEIN#W(@(I,M(J?)) - Q\z(xaﬂ—(z))) )

i=1

where the last inequality holds by Lemma 4.2. Consider the remaining term:

S
Er =7 oy Qi mi(2) — Qi 7()) -

=1
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We bound this term using the FTL regret bound. We show that the conditions of Theorem C.1 hold for the loss function
fi(K) = Egrp, (Qi(x, Kx)). Let $, be the covariance matrix of the steady-state distribution 1., (z). We have that

fi(K) = tr <E7T (éi,ll — K Gio1 — Gi2K + KTémzK))

Vi fi(K) =25, (KT@i,QQ - éi,m)
= QMAT((@i,zz ® Xr)VEC(K)) — ZZW@MQ
Ve filK) = 2Gi22 @ Sy .

Boundedness and Lipschitzness of the loss function f;(K;) follow from the boundedness of policies K; and value matrix
estimates G;. By Lemma 5.1, we have that || K;|| < C. To bound [|G; |, note that

Gi = (g:) H; (A B) + (1\04 ;3,)

1G] < Cr(IAll + 1BI? + IM]] + | N]| (Lemma 5.1)
vn+d (Lemma 4.2).

The Hessian lower bound is V%EC( K) fi(K) = F»I, where F5 is given by two times the product of the minimum eigenvalues

of ¥, and GZ 29. For any stable policy w(x) = K, the covariance matrix of the stationary distribution satisfies >, > W,
and we project the estimates G onto the constraint G = (M {). Therefore the Hessian of the loss is lower-bounded by
2Amin(W)I. By Theorem C.1, Er < 7log S = C"7log T for an appropriate constant C”'.

C.2 Bounding v

In this section, we bound the average cost of following a stable policy, v = Zle(Aﬁ — (2, m(2))). Recall that the

instantaneous and average costs of following a policy 7(z) = —Kx can be written as
c(xy, w(xy)) = 2] (M + K"NK)x, 31
Ar = tr(Z.(M + KTNK)) (32)

where X; is the steady-state covariance of x;. Let 3; be the covariance of zy, let D; = 1/ 2(M +KTNK )X, »i/2 , and let
At = tr(Dy). To bound 7, we start by rewriting the cost terms as follows:

Aw = (@, m(2)) = Ax — A + A — c(af, m(27)) (33)

=tr((Zr — Z¢)(M + K" NK)) + (tr(Dy) — u/ Dyuy) (34)

where u; ~ N (0, I,,) is a standard normal vector.

To bound tr((X, — ¥¢)(M + KT NK)), note that ¥, = 'S, I'" + W and ¥y = I'S;_;T'" + W. Subtracting the two
equations and recursing,

Y= =0(Z, =2 )T =T, —So)TH)". (35)
Thus,
T T
S (M +KTNK)(Se = %4)) = > tr (M + KTNE)I (S, - 0)(I) ") (36)
t=0 t=0
< tr(Sy — Xo) tr (Z(Ft)T(M + KTNK)Ft) (37)
t=0

=tr(Z; — Xo) tr(H;) . (33)
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Let U be the concatenation of uy, ..., ur, and let D be a block-diagonal matrix constructed from Dy, ..., D7r. To bound
the second term, note that by the Hanson-Wright inequality

(2

ZutTDtut —tI‘Dt >
t=1

s> =P (JU'DU - trD| > s)

< 2exp ( — cmin (82 5)) (39
) 1Dl 121/

Thus with probability at least 1 — § we have

T
> u/ Dy — tr(Dy)| < |[D|| p v/ In(2/6)/c + | D] In(2/5) /¢
t=1
T
< \| 2 ID:5 v/ I(2/6) /e + max || Dy || In(2/6) /e (40)
t=1
where c is a universal constant. Given that for all ¢,
| D] < tr(Dy)
=tr(M + KTNK)(Z, + T2 — 2,)(TT)Y))
< Ar,
with probability at least 1 — 4,
T
3 e, m(@)) = A < As ( T(2/5)/c + 1n(2/5)/c) . 1)
t=1
Thus, we can bound v as
< tr(H) tr(S0) + Ar (\/T m(2/5)/c + In(2/5) /c) . 42)

C.3 Bounding ar

To bound ap = Zthl(c(xt, at) — Ar,), in addition to bounding the cost of following a policy, we need to account for
having S policy switches, as well as the cost of random actions. Let I, be the set of time indices of all random actions
a ~ N(0,%,). Using the Hanson-Wright inequality, with probability at least 1 — d,

3 la) Nay = t2(EaN)| < SN | g /T In(2/8) [e1 + SN || In(2/6) /e . 43)

tel,

Let D; s = 21/2 (M + KTNK |on 1/2 ,and let A; ¢ = tr(D; ). Let I; be the set of time indices corresponding to following
policy 7; in phase <. The correspondmg cost can be decomposed similarly to yr:

Z > el mi(x)) Z D tr(Be = Sr ) (M + KT NK;) + (u] Dy guy — tr(Diy)) - (44)

=1 tel; i=1tel;

Let Dyax > max; ¢ || D; || Similarly to the previous section, with probability at least 1 — ¢ we have

Z > ) Diguy — t1(D;y)| < Dimax/TnIn(2/6) /2 + Dinax In(2/6) /cz . (45)

i=1tel;

At the beginning of each phase ¢, the state covariance is X, , (and we define ¥, = W). After following 7; for T,, steps,

S
SN (B = Ba) (M + KNK)) =YY t1((Sr,_, — S, )09 (M + K NK)TF)
i=1tel; i=1 k=0
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.

Il
-

tr(H;) tr(Sr,_,)

< SnCy maxtr(Xr,)
Following each random action, the state covariance is Xg,; = AZMA—r + BY,BT + W. After taking a random action
and following 7; for T steps, we have

TS
> w((Sai — Sa, ) (TP T(M + K NE)DF) < t0(Sa) tr(H;) < nChy(tr(BSeBT) + || Al tr(2,)) -
k=0

Putting everything together, we have

ap <[ BalNllp VILaln(2/8)/c1 + [[Ea N[ In(2/6) /1
+ DiaxvV/T11n(2/0)/¢a + Dimax In(2/6)/ca

+ SnCy max tr(X,,)
+ I |InCy (tr(B,B ") + ||A|” max tr(2,,))

where in v1 S = T'/3=¢ and |I,,| = O(T?/3+¢), while in v2 S = T'/* and |I,| = T?/**+¢. We bound max; tr(X,,) and
| Di.¢|lin C.3.1.

C.3.1 State covariance bound

We bound max; tr(3,,) using the following equation for the average cost of a policy:

tr(Xx, (M + K NK;)) = tr(H; W)
tr(Ex,) < [|Hill tr(W)/Amin (M)

i

maxtr(X,,) < Cgtr(W)/Amin (M) .

To bound || D; ||, we note that
| Dj il < tr(Dyy) = tr (S(M + K NK;))
< te(So) (M| + CE N

and bound the state covariance tr(3;). After starting at distribution A'(0, X¢) and following a policy 7; for ¢ steps, the
state covariance is

Y =000 +W

t—1
=Tixrt "+ Y rEwrt’
k=0
< S0+ S

The initial covariance X is close to X, , after a policy switch, and close to AZJmAT + BY,BT" + W after a random
action. Therefore we can bound the state covariance in each phase as

Y <Y + %, +AS AT + BY,BT
tr(2) < (24 ||A|?) max tr(Sy,) + tr(BE,BT)

< (24 |AIP)Cx tr(W) /Amin (M) + tr(BE,BT) .



