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Abstract

Model-free approaches for reinforcement learn-
ing (RL) and continuous control find policies
based only on past states and rewards, without
fitting a model of the system dynamics. They
are appealing as they are general purpose and
easy to implement; however, they also come
with fewer theoretical guarantees than model-
based RL. In this work, we present a new model-
free algorithm for controlling linear quadratic
(LQ) systems, and show that its regret scales
as O(T ⇠+2/3

) for any small ⇠ > 0 if time
horizon satisfies T > C1/⇠ for a constant C.
The algorithm is based on a reduction of con-
trol of Markov decision processes to an expert
prediction problem. In practice, it corresponds
to a variant of policy iteration with forced explo-
ration, where the policy in each phase is greedy
with respect to the average of all previous value
functions. This is the first model-free algorithm
for adaptive control of LQ systems that prov-
ably achieves sublinear regret and has a polyno-
mial computation cost. Empirically, our algo-
rithm dramatically outperforms standard policy
iteration, but performs worse than a model-based
approach.

1 INTRODUCTION

Reinforcement learning (RL) algorithms have recently
shown impressive performance in many challenging deci-
sion making problems, including game playing and vari-
ous robotic tasks. Model-based RL approaches estimate a
model of the transition dynamics and rely on the model to
plan future actions using approximate dynamic program-
ming. Model-free approaches aim to find an optimal pol-
icy without explicitly modeling the system transitions; they

Proceedings of the 22nd International Conference on Artificial In-
telligence and Statistics (AISTATS) 2019, Naha, Okinawa, Japan.
PMLR: Volume 89. Copyright 2019 by the author(s).

either estimate state-action value functions or directly op-
timize a parameterized policy based only on interactions
with the environment. Model-free RL is appealing for a
number of reasons: 1) it is an “end-to-end” approach, di-
rectly optimizing the cost function of interest, 2) it avoids
the difficulty of modeling and robust planning, and 3) it is
easy to implement. However, model-free algorithms also
come with fewer theoretical guarantees than their model-
based counterparts, which presents a considerable obsta-
cle in deploying them in real-world physical systems with
safety concerns and the potential for expensive failures.

In this work, we propose a model-free algorithm for con-
trolling linear quadratic (LQ) systems with theoretical
guarantees. LQ control is one of the most studied problems
in control theory (Bertsekas, 1995), and it is also widely
used in practice. Its simple formulation and tractability
given known dynamics make it an appealing benchmark for
studying RL algorithms with continuous states and actions.
A common way to analyze the performance of sequential
decision making algorithms is to use the notion of regret -
the difference between the total cost incurred and the cost
of the best policy in hindsight (Cesa-Bianchi and Lugosi,
2006, Hazan, 2016, Shalev-Shwartz, 2012). We show that
our model-free LQ control algorithm enjoys a O(T ⇠+2/3

)

regret bound. Note that existing regret bounds for LQ sys-
tems are only available for model-based approaches.

Our algorithm is a modified version of policy iteration with
exploration similar to ✏-greedy, but performed at a fixed
schedule. Standard policy iteration estimates the value of
the current policy in each round, and sets the next policy
to be greedy with respect to the most recent value function.
By contrast, we use a policy that is greedy with respect to
the average of all past value functions in each round. The
form of this update is a direct consequence of a reduction of
the control of Markov decision processes (MDPs) to expert
prediction problems (Even-Dar et al., 2009). In this reduc-
tion, each prediction loss corresponds to the value function
of the most recent policy, and the next policy is the output
of the expert algorithm. The structure of the LQ control
problem allows for an easy implementation of this idea:
since the value function is quadratic, the average of all pre-
vious value functions is also quadratic.

One major challenge in this work is the finite-time analy-
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sis of the value function estimation error. Existing finite-
sample results either consider bounded functions or dis-
counted problems, and are not applicable in our setting.
Our analysis relies on the contractiveness of stable poli-
cies, as well as the fact that our algorithm takes exploratory
actions. Another challenge is showing boundedness of the
value functions in our iterative scheme, especially consid-
ering that the state and action spaces are unbounded. We
are able to do so by showing that the policies produced by
our algorithm are stable assuming a sufficiently small esti-
mation error.

Our main contribution is a model-free algorithm for adap-
tive control of linear quadratic systems with strong theoret-
ical guarantees. This is the first such algorithm that prov-
ably achieves sublinear regret and has a polynomial com-
putation cost. The only other computationally efficient al-
gorithm with sublinear regret is the model-based approach
of Dean et al. (2018) (which appeared in parallel to this
work). Previous works have either been restricted to one-
dimensional LQ problems (Abeille and Lazaric, 2017), or
have considered the problem in a Bayesian setting (Ouyang
et al., 2017). In addition to theoretical guarantees, we
demonstrate empirically that our algorithm leads to signif-
icantly more stable policies than standard policy iteration.

1.1 Related work

Model-based adaptive control of linear quadratic systems
has been studied extensively in control literature. Open-
loop strategies identify the system in a dedicated explo-
ration phase. Classical asymptotic results in linear sys-
tem identification are covered in (Ljung and Söderström,
1983); an overview of frequency-domain system identifi-
cation methods is available in (Chen and Gu, 2000), while
identification of auto-regressive time series models is cov-
ered in (Box et al., 2015). Non-asymptotic results are lim-
ited, and existing studies often require additional stability
assumptions on the system (Helmicki et al., 1991, Hardt
et al., 2016, Tu et al., 2017). Dean et al. (2017) relate the
finite-sample identification error to the smallest eigenvalue
of the controllability Gramian.

Closed-loop model-based strategies update the model on-
line while trying to control the system, and are more
akin to standard RL. Fiechter (1997) and Szita (2007)
study model-based algorithms with PAC-bound guaran-
tees for discounted LQ problems. Asymptotically effi-
cient algorithms are shown in (Lai and Wei, 1982, 1987,
Chen and Guo, 1987, Campi and Kumar, 1998, Bittanti
and Campi, 2006). Multiple approaches (Campi and Ku-
mar, 1998, Bittanti and Campi, 2006, Abbasi-Yadkori and
Szepesvári, 2011, Ibrahimi et al., 2012) have relied on the
optimism in the face of uncertainty principle. Abbasi-
Yadkori and Szepesvári (2011) show an O(

p
T ) finite-

time regret bound for an optimistic algorithm that selects

the dynamics with the lowest attainable cost from a con-
fidence set; however this strategy is somewhat impracti-
cal as finding lowest-cost dynamics is computationally in-
tractable. Abbasi-Yadkori and Szepesvári (2015), Abeille
and Lazaric (2017), Ouyang et al. (2017) demonstrate sim-
ilar regret bounds in the Bayesian and one-dimensional set-
tings using Thompson sampling. Dean et al. (2018) show
an O(T 2/3

) regret bound using robust control synthesis.

Fewer theoretical results exist for model-free LQ control.
The LQ value function can be expressed as a linear func-
tion of known features, and is hence amenable to least
squares estimation methods. Least squares temporal differ-
ence (LSTD) learning has been extensively studied in rein-
forcement learning, with asymptotic convergence shown by
Tsitsiklis and Van Roy (1997), Tsitsiklis and Roy (1999),
Yu and Bertsekas (2009), and finite-sample analyses given
in Antos et al. (2008), Farahmand et al. (2016), Lazaric
et al. (2012), Liu et al. (2015, 2012). Most of these meth-
ods assume bounded features and rewards, and hence do
not apply to the LQ setting. For LQ control, Bradtke et al.
(1994) show asymptotic convergence of Q-learning to op-
timum under persistently exciting inputs, and Tu and Recht
(2017) analyze the finite sample complexity of LSTD for
discounted LQ problems. Here we adapt the work of Tu
and Recht (2017) to analyze the finite sample estimation
error in the average-cost setting. Among other model-free
LQ methods, Fazel et al. (2018) analyze policy gradient
for deterministic dynamics, and Arora et al. (2018) formu-
late optimal control as a convex program by relying on a
spectral filtering technique for representing linear dynami-
cal systems in a linear basis.

Relevant model-free methods for finite state-action MDPs
include the Delayed Q-learning algorithm of Strehl et al.
(2006), which is based on the optimism principle and has a
PAC bound in the discounted setting. Osband et al. (2017)
propose exploration by randomizing value function param-
eters, an algorithm that is applicable to large state prob-
lems. However the performance guarantees are only shown
for finite-state problems.

Our approach is based on a reduction of the MDP control
to an expert prediction problem. The reduction was first
proposed by Even-Dar et al. (2009) for the online control
of finite-state MDPs with changing cost functions. This ap-
proach has since been extended to finite MDPs with known
dynamics and bandit feedback (Neu et al., 2014), LQ track-
ing with known dynamics (Abbasi-Yadkori et al., 2014),
and linearly solvable MDPs (Neu and Gómez, 2017).

2 PRELIMINARIES

We model the interaction between the agent (i.e. the learn-
ing algorithm) and the environment as a Markov decision
process (MDP). An MDP is a tuple hX ,A, c, P i, where
X ⇢ Rn is the state space, A ⇢ Rd is the action space,
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c : X ⇥A ! R is a cost function, and P : X ⇥A ! �X is
the transition probability distribution that maps each state-
action pair to a distribution over states �X . At each dis-
crete time step t 2 N, the agent receives the state of the
environment xt 2 X , chooses an action at 2 A based on
xt and past observations, and suffers a cost ct = c(xt, at).
The environment then transitions to the next state accord-
ing to xt+1

⇠ P (xt, at). We assume that the agent does
not know P , but does know c. A policy is a mapping
⇡ : X ! A from the current state to an action, or a distri-
bution over actions. Following a policy means that in any
round upon receiving state x, the action a is chosen accord-
ing to ⇡(x). Let µ⇡(x) be the stationary state distribution
under policy ⇡, and let �⇡ = Eµ(c(x,⇡(x)) be the average
cost of policy ⇡:

�⇡ := lim

T!+1
E⇡

"
1

T

TX

t=1

c(xt, at)

#
,

which does not depend on the initial state in the problems
that we consider in this paper. The corresponding bias
function, also called value function in this paper, associ-
ated with a stationary policy ⇡ is given by:

V⇡(x) := lim

T!+1
E⇡

"
TX

t=1

(c(xt, at)� �⇡(xt))

#
.

The average cost �⇡ and value V⇡ satisfy the following
evaluation equation for any state x 2 X ,

V⇡(x) = c(x,⇡(x))� �⇡ +Ex0⇠P (.|x,⇡(x))(V⇡(x
0
)).

Let x⇡
t be the state at time step t when policy ⇡ is followed.

The objective of the agent is to have small regret, defined
as

RegretT =

TX

t=1

c(xt, at)�min

⇡

TX

t=1

c(x⇡
t ,⇡(x

⇡
t )) .

2.1 Linear quadratic control

In a linear quadratic control problem, the state transition
dynamics and the cost function are given by

xt+1

= Axt +Bat + wt+1

, ct = x>
t Mxt + a>t Nat .

The state space is X = Rn and the action space is A =

Rd. We assume the initial state is zero, x
1

= 0. A and B
are unknown dynamics matrices of appropriate dimensions,
assumed to be controllable1. M and N are known positive
definite cost matrices. Vectors wt+1

correspond to system
noise; similarly to previous work, we assume that wt are
drawn i.i.d. from a known Gaussian distribution N (0,W ).

1The linear system is controllable if the matrix
(B AB · · · An�1B) has full column rank.

In the infinite horizon setting, it is well-known that the
optimal policy ⇡⇤(x) corresponding to the lowest aver-
age cost �⇡ is given by constant linear state feedback,
⇡⇤(x) = �K⇤x. When following any linear feedback pol-
icy ⇡(x) = �Kx, the system states evolve as xt+1

=

(A � BK)xt + wt+1

. A linear policy is called stable if
⇢(A�BK) < 1, where ⇢(·) denotes the spectral radius of
a matrix. It is well-known that the value function V⇡ and
state-action value function Q⇡ of any stable linear policy
⇡(x) = �Kx are quadratic functions (see e.g. Abbasi-
Yadkori et al. (2014)):

Q⇡(x, a) =
�
x> a>

�
G⇡

✓
x
a

◆

V⇡(x) = x>H⇡x = x> �
I �K>� G⇡

✓
I

�K

◆
x ,

where H⇡ � 0 and G⇡ � 0. We call H⇡ the value matrix
of policy ⇡. The matrix G⇡ is the unique solution of the
equation

G =

✓
A>

B>

◆�
I �K>�G

✓
I

�K

◆�
A B

�
+

✓
M 0

0 N

◆
.

The greedy policy with respect to Q⇡ is given by

⇡0
(x) = argmin

a
Q⇡(x, a) = �G�1

⇡,22G⇡,21x = �Kx .

Here, G⇡,ij for i, j 2 {1, 2} refers to (i, j)’s block of ma-
trix G⇡ where block structure is based on state and action
dimensions. The average expected cost of following a lin-
ear policy is �⇡ = tr(H⇡W ). The stationary state distribu-
tion of a stable linear policy is µ⇡(x) = N (x|0,⌃), where
⌃ is the unique solution of the Lyapunov equation

⌃ = (A�BK)⌃(A�BK)

>
+W .

3 MODEL-FREE LQ CONTROL

Our model-free linear quadratic control algorithm (MFLQ)
is shown in algorithm 1, where V1 and V2 indicate different
versions. At a high level, MFLQ is a variant of policy iter-
ation with a deterministic exploration schedule. We assume
that an initial stable suboptimal policy ⇡

1

(x) = �K
1

x
is given. During phase i, we first execute policy ⇡i for
a fixed number of rounds, and compute a value function
estimate bVi. We then estimate Qi from bVi and a dataset
Z = {(xt, at, xt+1

)} which includes exploratory actions.
We set ⇡i+1

to the greedy policy with respect to the aver-
age of all previous estimates bQ

1

, ..., bQi. This step is dif-
ferent than standard policy iteration (which only consid-
ers the most recent value estimate), and a consequence of
using the FOLLOW-THE-LEADER expert algorithm (Cesa-
Bianchi and Lugosi, 2006).

The dataset Z is generated by executing the policy and tak-
ing a random action every Ts steps. In MFLQV1, we gen-
erate Z at the beginning, and reuse it in all phases, while
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Algorithm 1 MFLQ
MFLQ (stable policy ⇡

1

, trajectory length T , initial state
x
0

, exploration covariance⌃a)
V1: S = T 1/3�⇠ � 1, Ts = const, Tv = T 2/3+⇠

V1: Z = COLLECTDATA(⇡
1

, Tv, Ts,⌃a)

V2: S = T 1/4, Ts = T 1/4�⇠, Tv = 0.5T 3/4

for i = 1, 2, . . . , S do
Execute ⇡i for Tv rounds and compute bVi using (2)
V2: Z = COLLECTDATA(⇡i, Tv, Ts,⌃a)

Compute bQi from Z and bVi using (7)
⇡i+1

(x) = argmina

Pi
j=1

bQj(x, a) = �Ki+1

x
end for

COLLECTDATA (policy ⇡, traj. length ⌧ , exploration pe-
riod s, cov. ⌃a):

Z = {}
for k = 1, 2, . . . , b⌧/sc do

Execute the policy ⇡ for s� 1 rounds and let x be the
final state
Sample a ⇠ N (0,⌃a), observe next state x

+

, add
(x, a, x

+

) to Z
end for
return Z

in V2 we generate a new dataset Z in each phase follow-
ing the execution of the policy. While MFLQ as described
stores long trajectories in each phase, this requirement can
be removed by updating parameters of Vi and Qi in an on-
line fashion. However, in the case of MFLQV1, we need
to store the dataset Z throughout (since it gets reused), so
this variant is more memory demanding.

Assume the initial policy is stable and let C
1

be the norm
of its value matrix. Our main result are the following two
theorems.
Theorem 3.1. For any �, ⇠ > 0, appropriate constants C

and C, and T > C
1/⇠

, the regret of the MFLQV1 algo-
rithm is bounded as

RegretT  CT 2/3+⇠
log T ,

where C and C scale as poly(n, d, kH
1

k , log(1/�)).
Theorem 3.2. For any �, ⇠ > 0, appropriate constants C

and C, and T > C
1/⇠

, the regret of the MFLQV2 algo-
rithm is bounded as

RegretT  CT 3/4+⇠
log T ,

where C and C scale as poly(n, d, kH
1

k , log(1/�)).

To prove the above theorems, we rely on the following re-
gret decomposition. The regret of an algorithm with respect
to a fixed policy ⇡ can be written as

RegretT =

TX

t=1

cT �
TX

t=1

c⇡t = ↵T + �T + �T ,

↵T =

TX

t=1

ct��⇡(t)
, �T =

TX

t=1

�⇡(t)
��⇡, �T =

TX

t=1

�⇡�c⇡t

where ⇡
(t) is the policy played by the algorithm at time

t. The terms ↵T and �T represent the difference between
instantaneous and average cost of a policy, and can be
bounded using mixing properties of policies and MDPs. To
bound �T , first we can show that (see, e.g. Even-Dar et al.
(2009))

�⇡(t)
��⇡ = Ex⇠µ⇡ (Q⇡(t)

(x,⇡
(t)(x))�Q⇡(t)

(x,⇡(x))) .

Let bQi be an estimate of Qi, computed from data at the end
of phase i. We can write

Qi(x,⇡i(x))�Qi(x,⇡(x)) = bQi(x,⇡i(x))� bQi(x,⇡(x))

+Qi(x,⇡i(x))� bQi(x,⇡i(x))

+

bQi(x,⇡(x))�Qi(x,⇡(x)) .
(1)

Since we feed the expert in state x with bQi(x, .) at the end
of each phase, the first term on the RHS can be bounded
by the regret bound of the expert algorithm. The remaining
terms correspond to the estimation errors. We will show
that in the case of linear quadratic control, the value func-
tion parameters can be estimated with small error. Given
sufficiently small estimation errors, we show that all poli-
cies remain stable, and hence all value functions remain
bounded. Given the boundedness and the quadratic form
of the value functions, we use existing regret bounds for
the FTL strategy to finish the proof.

4 VALUE FUNCTION ESTIMATION

4.1 State value function

In this section, we study least squares temporal difference
(LSTD) estimates of the value matrix H⇡ . In order to sim-
plify notation, we will drop ⇡ subscripts in this section. In
steady state, with at = ⇡(xt), we have the following:

V (xt) = c(xt, at) +E(V (xt+1

)|xt, at)� �

x>
t Hxt = c(xt, at) +E(x>

t+1

Hxt+1

|xt, at)� tr(WH) .

Let VEC(A) denote the vectorized version of a symmetric
matrix A, such that VEC(A

1

)

>VEC(A
2

) = tr(A
1

A
2

), and
let �(x) = VEC(xx>

). We will use the shorthand notation
�t = �(xt) and ct = c(xt, at). The vectorized version of
the Bellman equation is

�>t VEC(H) = ct +
�
E(�t+1

|xt,⇡(xt))� VEC(W )

�>
H .

By multiplying both sides with �t and taking expectations
with respect to the steady state distribution,

E(�t(�t � �t+1

+ VEC(W ))

>
)VEC(H) = E(�tct) .
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We estimate H from data generated by following the policy
for ⌧ rounds. Let � be a ⌧ ⇥ n2 matrix whose rows are
vectors �

1

, ...,�⌧ , and similarly let �
+

be a matrix whose
rows are �

2

, ...,�⌧+1

. Let W be a ⌧ ⇥ n2 matrix whose
each row is VEC(W ). Let c = [c

1

, ..., c⌧ ]>. The LSTD
estimator of H is given by (see e.g. Tsitsiklis and Roy
(1999), Yu and Bertsekas (2009)):

VEC( bH) =

�
�

>
(�� �

+

+W)

�†
�

>c , (2)

where (.)† denotes the pseudo-inverse. Given that H �
M , we project our estimate onto the constraint bH � M .
Note that this step can only decrease the estimation error,
since an orthogonal projection onto a closed convex set is
contractive.

Remark. Since the average cost tr(WH) cannot be com-
puted from value function parameters H alone, assuming
known noise covariance W seems necessary. However, if
W is unknown in practice, we can use the following esti-
mator instead, which relies on the empirical average cost
c = 1

⌧

P⌧
t=1

ct:

VEC( eH⌧ ) =
�
�

>
(�� �

+

)

�†
�

>
(c� c1). (3)

Lemma 4.1. Let ⌃t be the state covariance at time step t,
and let ⌃⇡ be the steady-state covariance of the policy. Let
⌃V = ⌃⇡ + ⌃

0

and let � = A�BK. With probability at
least 1� �, we have

kH � bHkF =

kHk2

�
min

(M)

2

O

✓
⌧�1/2

���W bH
���
F
tr(⌃V )

����⌃1/2
V

��� polylog(⌧, 1/�)
◆
. (4)

The proof is similar to the analysis of LSTD for the dis-
counted LQ setting by Tu and Recht (2017); however, in-
stead of relying on the contractive property of the dis-
counted Bellman operator, we use the contractiveness of
stable policies.

Proof. Let �
+

be a ⌧ ⇥ n2 matrix, whose rows cor-
respond to vectors E[�

2

|�
1

,⇡], . . . ,E[�⌧+1

|�⌧ ,⇡]. Let
P
�

= �(�

>
�)

�1

�

> be the orthogonal projector onto �.
The value function estimate ˆh = VEC( bH) and the true
value function parameters h = VEC(h) satisfy the follow-
ing:

�

ˆh = P
�

(c+ (�

+

�W)

ˆh)

�h = c+ (�

+

�W)h .

Subtracting the two previous equations, and adding and
subtracting �

+

ˆh, we have:

P
�

(�� �
+

+W)(h� ˆh) = P
�

(�

+

� �
+

)

ˆh .

In Appendix A.1, we show that the left-hand side can be
equivalently be written as

P
�

(���
+

+W)(h� bh) = �(I � �⌦ �)>VEC(h� ˆh).

Using k�vk �
p
�
min

(�

>
�) kvk on the l.h.s., and P

�

v ��
�

>v
�� /

p
�
min

(�

>
�) on the r.h.s.,

���(I � �⌦ �)>(h� ˆh)
��� 

����>
(�

+

� �
+

)

ˆh
���

�
min

(�

>
�)

(5)

Lemma 4.4 of Tu and Recht (2017) shows that for a suf-
ficiently long trajectory, �

min

(�

>
�) = O

�
⌧�2

min

(⌃⇡)
�
.

Lemma 4.8 of Tu and Recht (2017) (adapted to the average-
cost setting with noise covariance W ) shows that for a suf-
ficiently long trajectory, with probability at least 1� �,
����>

(�

+

� �
+

)

ˆh
��� 

O
�p
⌧ tr(⌃V )

���W bH
���
F

����⌃1/2
V

��� polylog(⌧, 1/�)
�
.

(6)

Here, ⌃V = ⌃

0

+ ⌃⇡ is a simple upper bound on the state
covariances ⌃t obtained as follows:

⌃t = �⌃t�1

�

>
+W

= �

t
⌃

0

�

t>
+

t�1X

k=0

�

kW�k
>

� ⌃
0

+

1X

k=0

�

kW�k
>
= ⌃

0

+ ⌃⇡.

In Appendix A.1, we show that
���(I � �⌦ �)>(h� ˆh)

��� is

lower-bounded by �
min

(M)

2 kHk�2 kH � bHkF . The re-
sult follows from applying the bounds to (5) and rearrang-
ing terms.

While the error bound depends on bH , for large ⌧ we have

k bHkF � kHkF  kH � bHkF = ck bHkF

for some c < 1. Therefore k bHkF  (1� c)�1 kHkF .

4.2 State-action value function

Let z> = (x>, a>), and let  = VEC(zz>). The state-
action value function corresponds to the cost of deviating
from the policy, and satisfies

Q(x, a) = z>Gz = c(x, a) +E(x>
+

Hx
+

|z)� tr(HW )

 >VEC(G) = c(x, a) +
�
E(�

+

|z)� VEC(W )

�>
VEC(H) .

We estimate G based on the above equation, using the value
function estimate bH of the previous section in place of H
and randomly sampled actions. Let  be a ⌧ ⇥ (n + d)2
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matrix whose rows are vectors  
1

, ..., ⌧ , and let c =

[c
1

, ..., c⌧ ]> be the vector of corresponding costs. Let �
+

be the ⌧ ⇥ n2 matrix containing the next-state features af-
ter each random action, and let �

+

be its expectation. We
estimate G as follows:

VEC( bG) = ( 

>
 )

�1

 

>
(c+ (�

+

�W)

ˆh), (7)

and additionally project the estimate onto the constraint
bG ⌫ (

M 0

0 N ).

To gather appropriate data, we iteratively (1) execute the
policy ⇡ for Ts iterations in order to get sufficiently close
to the steady-state distribution,2 (2) sample a random action
a ⇠ N (0,⌃a), (3) observe the cost c and next state x

+

, and
(4) add the tuple (x, a, x

+

) to our dataset Z . We collect
⌧ = 0.5T 1/2+⇠ such tuples in each phase of MFLQV2,
and ⌧ = T 2/3+⇠ such tuples in the first phase of MFLQV1.

Lemma 4.2. Let ⌃G,⇡ = A⌃⇡A>
+B⌃aB>. With prob-

ability at least 1� �
1

, we have

���G� bG
���
F
= O

✓
tr(⌃G,⇡)

���H � bH
���

+ ⌧�1/2
���W bH

���
F
tr(⌃⇡ + ⌃a) k⌃G,⇡kF

⇥ polylog(n2,
1

�
1

, ⌧)

◆
. (8)

The proof is given in Appendix A.2 and similar to that of
Lemma 4.1. One difference is that we now require a lower
bound on �

min

( 

>
 ), where  >

 is a function of both
states and actions. Since actions may lie in a subspace of A
when following a linear policy, we estimate G using only
the exploratory dataset Z . Another difference is that we
rely on bH , so the error includes a kH � bHk term.

Let ⌃
max

be an upper bound on the state covariance ma-
trices in the p.s.d. sense, and let CH be an upper bound
on kHik (see Appendix C.3.1 and Lemma 5.1 for concrete
values for these bounds). By a union bound, with probabil-
ity at least 1�S(�+�

1

), the estimation error in any phase i
of MFLQ with ⌧v steps of value estimation and ⌧q random
actions is bounded as
���Gi � bGi

���
F
 "

1

:=

Ch⌧
�1/2
v tr(⌃G,max

)

C3

H kWkF tr(⌃

max

)

�
min

(M)

����⌃1/2
max

���

+ Cg⌧q
�1/2CH kWkF (tr(⌃

max

) + tr(⌃a)) k⌃G,max

kF
(9)

for appropriate constants Ch and Cg .

2Note that stable linear systems mix exponentially fast; see Tu
and Recht (2017) for details.

5 ANALYSIS OF MFLQ

In this section, we first show that given sufficiently small
estimation errors, all policies produced by the MFLQ al-
gorithm remain stable. Consequently the value matrices,
states, and actions remain bounded. We then bound the
terms ↵T , �T , and �T to show the main result. For sim-
plicity, we will assume that M � I and N � I for the
rest of this section; we can always rescale M and N so
that this holds true without loss of generality. We ana-
lyze MFLQV2; the analysis of MFLQV1 is similar and
obtained by a different choice of constants.

By assumption, K
1

is bounded and stable. By the argu-
ments in Section 4, the estimation error in the first phase
can be made small for sufficiently long phases. In par-
ticular, we assume that estimation error in each phase is
bounded by "

1

as in Equation (9) and that "
1

satisfies

"
1

<
�
12C

1

(

p
n+ CK

p
d)2S

��1

. (10)

Here C
1

> 1 is an upper bound on kH
1

k, and CK =

2(3C
1

kBk kAk+ 1). Since we take S2T ⇠ random actions
in the first phase, the error factor S�1 is valid as long as
T > C

1/⇠
for a constant C that can be derived from (9)

and (10). We prove the following lemma in Appendix B.1.
Lemma 5.1. Let {Ki}Si=2

be the sequence of policies pro-
duced by the MFLQ algorithm. For all i 2 [S], kHik 
Ci < CH := 3C

1

, Ki is stable, kKik  CK , and for all
k 2 N,

��
(A�BKi)

k
�� 

p
Ci�1

(1� (6C
1

)

�1

)

k/2


p

CH(1� (2CH)

�1

)

k/2 .

To prove the lemma, we first show that the value matrices
Hj and closed-loop matrices �j = A�BKj satisfy

x>�
�

>
j+1

Hj�j+1

�
x+ "

2

 x>Hjx (11)

where

"
2

= x>
(M+K>

j+1

NKj+1

)x�"
1

1>
(|XKj |+|XKj+1 |)1 ,

XK =


I

�K

�
xx> ⇥

I �K>⇤ ,

and |XK | is the matrix obtained from XK by taking the
absolute value of each entry. If the estimation error "

1

is
small enough so that "

2

> 0 for any unit-norm x and all
policies, then Hj � �

>
j+1

Hj�j+1

and Kj+1

is stable by
a Lyapunov theorem. Since K

1

is stable and H
1

bounded,
all policies remain stable. If estimation errors are bounded
as in (10), we can show that the policies and value matrices
are bounded as in Lemma 5.1.

Let E denote the event that all errors are bounded as in
Equation (10). We bound the terms ↵T , �T , and �T for
MFLQV2 next.
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Lemma 5.2. Under the event E , for appropriate constants
C 0, D0, and D00,

�T  C 0T 3/4
log(T/�), ↵T  D0T 3/4+⇠, �T  D00T 1/2 .

The proof is given in Appendix C. For �T , we rely on the
decomposition shown in Equation (1). Because we execute
S policies, each for ⌧ = T/S rounds (where S = T 1/3�⇠

and ⌧ = T 1/4 for MFLQV1 and MFLQV2, respectively),

�T =

SX

i=1

⌧E(Qi(x,⇡i(x))�Qi(x,⇡(x)))

= ⌧
SX

i=1

✓
E(

bQi(x,⇡i(x))� bQi(x,⇡(x)))

+E(Qi(x,⇡i(x))� bQi(x,⇡i(x)))

+E(

bQi(x,⇡(x))�Qi(x,⇡(x)))

◆

where the expectations are w.r.t. x ⇠ µ⇡ . We bound the
first term using the FTL regret bound of (Cesa-Bianchi
and Lugosi, 2006) (Theorem 3.1), by showing that the
theorem conditions hold for the loss function fi(K) =

Ex⇠µ⇡ (
bQi(x,Kx)). We bound the second and third term

(corresponding to estimation errors) using Lemma 4.2.
This results in the following bound on �T for constants C 0

and C 00:

�T  T/SC 0
(1 + logS) + C 0pST log T .

To bound �T =

PT
t=1

�⇡ � c(xt,⇡(xt)), we first decom-
pose the cost terms as follows. Let ⌃⇡ be the steady-
state covariance, and let ⌃t be the covariance of xt. Let
Dt = ⌃

1/2
t (M + K>NK)⌃

1/2
t and �t = tr(Dt). We

have

�⇡ � c(xt,⇡(xt)) = �⇡ � �t + �t � c(x⇡
t ,⇡(x

⇡
t ))

= tr((⌃⇡ � ⌃t)(M +K>NK))

+ tr(Dt)� u>
t Dtut

where ut ⇠ N (0, In). We show that the second termPT
t=1

tr(Dt)� u>
t Dtut scales as

p
T with high probabil-

ity using the Hanson-Wright inequality. The first term can
be bounded by tr(H⇡) tr(⌃⇡) as follows. Note that

⌃⇡ � ⌃t = �(⌃⇡ � ⌃t�1

)�

>
= �

t
(⌃⇡ � ⌃

0

)(�

t
)

>.

Hence we have

TX

t=0

tr((M +K>NK)(⌃⇡ � ⌃t))

=

TX

t=0

tr

�
(M +K>NK)�

t
(⌃⇡ � ⌃

0

)(�

t
)

>�

 tr(⌃⇡ � ⌃
0

) tr

✓ 1X

t=0

(�

t
)

>
(M +K>NK)�

t

◆

= tr(⌃⇡ � ⌃
0

) tr(H⇡) . (12)

The bound on ↵T =

PT
t=1

c(xt, at)� �⇡t is similar; how-
ever, in addition to bounding the cost of following a policy,
we need to account for the cost of random actions, and the
changes in state covariance due to random actions and pol-
icy switches.

Theorem 3.2 is a consequence of Lemma 5.2. The proof of
Theorem 3.1 is similar and is obtained by different choice
of constants.

6 EXPERIMENTS

We evaluate our algorithm on two LQ problem instances:
(1) the system studied in Dean et al. (2017) and Tu and
Recht (2017), and (2) the power system studied in Lewis
et al. (2012), Example 11.5-1, with noise W = I . We start
all experiments from an all-zero initial state x

0

= 0, and
set the initial stable policy K

1

to the optimal controller for
a system with a modified cost M 0

= 200M . For simplicity
we set ⇠ = 0 and Ts = 10 for MFLQV1. We set the
exploration covariance to ⌃a = I for (1) and ⌃a = 10I for
(2).

In addition to the described algorithms, we also evaluate
MFLQV3, an algorithm identical to MFLQV2 except that
the generated datasets Z include all data, not just random
actions. We compare MFLQ to the following:

• Least squares policy iteration (LSPI) where the policy
⇡i in phase i is greedy with respect to the most re-
cent value function estimate bQi�1

. We use the same
estimation procedure as for MFLQ.

• A version RLSVI Osband et al. (2017) where we ran-
domize the value function parameters rather than tak-
ing random actions. In particular, we update the mean
µQ and covariance ⌃Q of a TD estimate of G after
each step, and switch to a policy greedy w.r.t. a param-
eter sample bG ⇠ (µQ, 0.2⌃Q) every T 1/2 steps. We
project the sample onto the constraint G �

�
M 0

0 N

�
.

• A model-based approach which estimates the dynam-
ics parameters (

bA, bB) using ordinary least squares.
The policy at the end of each phase is produced by
treating the estimate as the true parameters (this ap-
proach is called certainty equivalence in optimal con-
trol). We use the same strategy as in the model-free
case, i.e. we execute the policy for some number of
iterations, followed by running the policy and taking
random actions.

To evaluate stability, we run each algorithm 100 times and
compute the fraction of times it produces stable policies in
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Figure 1: Top row: experimental evaluation on the dynamics of Dean et al. (2017). Bottom row: experimental evaluation
on Lewis et al. (2012), Example 11.5.1.

all phases. Figure 1 (left) shows the results as a function
of trajectory length. MFLQV3 is the most stable among
model-free algorithms, with performance comparable to
the model-based approach.

We evaluate solution cost by running each algorithm until
we obtain 100 stable trajectories (if possible), where each
trajectory is of length 50,000. We compute both the average
cost incurred during each phase i, and true expected cost of
each policy ⇡i. The average cost at the end of each phase
is shown in Figure 1 (center and right). Overall, MFLQV2
and MFLQV3 achieve lower costs than MFLQV1, and the
performance of MFLQV1 and LSPI is comparable. The
lowest cost is achieve by the model-based approach. These
results are consistent with the empirical findings of Tu and
Recht (2017), where model-based approaches outperform
discounted LSTDQ.

7 DISCUSSION

The simple formulation and wide practical applicability of
LQ control make it an idealized benchmark for studying
RL algorithms for continuous-valued states and actions.
In this work, we have presented MFLQ, an algorithm for
model-free control of LQ systems with an O(T 2/3+⇠

) re-

gret bound. Empirically, MFLQ considerably improves
the performance of standard policy iteration in terms of
both solution stability and cost, although it is still not cost-
competitive with model-based methods.

Our algorithm is based on a reduction of control of MDPs
to an expert prediction problem. In the case of LQ con-
trol, the problem structure allows for an efficient imple-
mentation and strong theoretical guarantees for a policy it-
eration algorithm with exploration similar to ✏-greedy (but
performed at a fixed schedule). While ✏-greedy is known
to be suboptimal in unstructured multi-armed bandit prob-
lems (Langford and Zhang, 2007), it has been shown to
achieve near optimal performance in problems with special
structure (Abbasi-Yadkori, 2009, Rusmevichientong and
Tsitsiklis, 2010, Bastani and Bayati, 2015), and it is worth
considering whether it applies to other structured control
problems. However, the same approach might not general-
ize to other domains. For example, Boltzmann exploration
may be more appropriate for MDPs with finite states and
actions. We leave this issue, as well as the application of
✏-greedy exploration to other structured control problems,
to future work.
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