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Abstract

We study the problem of distribution test-
ing when the samples can only be accessed
using a locally differentially private mecha-
nism and consider two representative testing
questions of identity (goodness-of-fit) and in-
dependence testing for discrete distributions.
First, we construct tests that use existing,
general-purpose locally differentially private
mechanisms such as the popular Rappor or
the recently introduced Hadamard Response
for collecting data and propose tests that are
sample optimal, when we insist on using these
mechanisms. Next, we allow bespoke mech-
anisms designed specifically for testing and
introduce the Randomized Aggregated Private
Testing Optimal Response (Raptor) mech-
anism which is remarkably simple and re-
quires only one bit of communication per
sample. We show that our proposed mecha-
nism yields sample-optimal tests, and in par-
ticular, outperforms any test based on Rap-
por or Hadamard Response. A distinguish-
ing feature of our optimal mechanism is that,
in contrast to existing mechanisms, it uses
public randomness.

1 Introduction

Locally differentially private (LDP) mechanisms have
gained prominence as methods of choice for sharing
sensitive data with untrusted curators. This strong no-
tion of privacy, introduced in [20, 27, 15] as a “local”
variant of differential privacy [18, 17], requires each
user to report only a noisy version of its data such that
the distribution of the reported data does not change
multiplicatively beyond a prespecified factor when the
underlying user data changes. With the proliferation
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of user data accumulated using such locally private
mechanisms, there is an increasing demand for design-
ing data analytics toolkits for operating on the collated
user data. In this paper, we provide algorithms for en-
abling such a toolkit comprising statistical tests for the
underlying user data distribution.

Specifically, we consider the following setting for hy-
pothesis testing under privacy constraints: Samples
X1, . . . , Xn generated independently from an unknown
distribution p on [k] = {1, . . . , k} are distributed across
n users, with user i having access to Xi. Each user de-
scribes its sample to a central curator using a (possibly
different) mechanismW , namely a channel which upon
observing an input x ∈ [k] sends z ∈ Z to the curator
with probability W (z | x).

However, users must maintain the privacy of their data
and are allowed to describe it only using ε-LDP mech-
anisms W , i.e., a W satisfying (cf. [27, 15])

max
z

max
x,x′

log W (z | x)
W (z | x′) ≤ ε. (1)

The parameter ε > 0 indicates the privacy level, with
smaller values of ε indicating stronger privacy guaran-
tees. In this work, we focus on the high-privacy regime
and assume throughout that ε ∈ (0, 1].

The central curator receives the outputs Z1, . . . , Zn of
ε-LDP mechanisms Wn = (W1, . . . ,Wn), where Wi is
the mechanism used by user i. At a high-level, we seek
to address the following question: How can the cura-
tor conduct statistical testing for p using observations
Zn = (Z1, . . . , Zn)?

In particular, we consider uniformity testing, which is
the prototypical identity testing (goodness-of-fit) prob-
lem where the curator seeks to determine if p = u, the
uniform distribution on [k], or if dTV(p, u) ≥ γ (where
dTV denotes the total variation distance). We seek al-
gorithms that are efficient in the number of LDP user
data samples required and can also be implemented
practically. Our main focus is the uniformity testing
problem, but we obtain results for independence test-
ing as well using similar techniques.

Our results are organized into two categories based on
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the choices of Wn: In the first category, each user
applies the same mechanism W , i.e., Wi = W for
1 ≤ i ≤ n, which is set to an existing LDP data release
mechanisms. In particular, we set W to the popular
Rappor mechanism of [19] and a recently introduced
mechanism called Hadamard Response (HR) [5]. Be-
cause these mechanisms have utility beyond our spe-
cific use-case of distribution testing – Rappor, for in-
stance, is already deployed in many applications – it is
natural to build a more comprehensive data analytics
toolkit using the data accumulated by these mecha-
nisms. To this end, we provide uniformity testing al-
gorithms with optimal sample complexity for both of
these mechanisms. Further, we provide an algorithm
for independence testing using HR and analyze its per-
formance.

In the next category, we allow the more general class
of public-coin mechanisms where the users can choose
mechanisms Wn = Wn

U as a function of public ran-
domness U which is available to each of them and also
to the curator. Note that since U is available to the
curator, for each fixed realization U = u, to maintain
privacy the mechanism Wi,u applied to Xi must sat-
isfy (1).

We note that ε-LDP mechanisms with constant (i.e.,
degenerate) public randomness U can be viewed as
private-coin mechanisms since private randomness is
required to implement any ε-LDP W . Rappor and
HR, too, are private-coin mechanisms, with the addi-
tional restriction that each user applies the same mech-
anism.

We present a new public-coin mechanism, Random-
ized Aggregated Private Testing Optimal Response
(Raptor), that only requires users to send a single
privatized bit indicating whether their data point is
in a (publicly known) random subset of the domain.
Using Raptor, we obtain simple algorithms for uni-
formity and independence testing that are sample-
optimal even among tests based on public-coin mech-
anisms.

We provide below a detailed description of our results,
followed by a brief discussion of the relevant literature
to put them in perspective. We remark at the outset
that the problems studied here have been considered
earlier in [31, 22]. However, [22] did not consider finite
sample performance analysis and the sample complex-
ity upper bounds shown in [31] are far from optimal.
Further, none of the prior works considered the role of
public randomness – an often available resource used
critically in our optimal test. Moreover, lower bounds
for sample complexity were not available prior to our
work. We fill this gap and establish tight lower bounds
for both our settings: when we restrict to Rappor or

HR for collecting data, and when no such restriction is
imposed and even public-coin mechanisms are allowed.

1.1 Algorithms and results

Consider uniformity testing using a locally private
mechanism. Given a public-coin ε-LDP mecha-
nism Wn with public randomness U ∈ U , a map-
ping τ : Zn × U → {0, 1} constitutes a uniformity
test using Wn if the output Zn of Wn satisfies
Pru[ τ(Zn, U) = 1 ] ≥ 2/3 and Prp[ τ(Zn, U) = 0 ] ≥
2/3 for every p such that dTV(p, u) ≥ γ.

We begin with the results for uniformity testing us-
ing Rappor and HR. We briefly describe these mech-
anisms here. The mechanism Rappor is given by
the channel WR with output alphabet Z = {0, 1}k
and such that for a given input x the output bits
Z(1), . . . , Z(k) are independent with Z(x) distributed
as Bern(αR + βR) and Z(x′), x′ 6= x, distributed as
Bern(βR), where

αR := eε/2 − 1
eε/2 + 1

= Θ(ε), βR := 1
eε/2 + 1

. (2)

It can be verified (cf. [19]) thatWR is ε-LDP, and that
E
[
Z(x)] = αRp(x) + βR for every x ∈ [k].

HR, on the other hand, is a generalization of the classic
Randomized Response (RR) [34] and can be described
as follows. Let (Cx)x∈[k] be a collection of sets each
of size k/2 such that every pair of sets overlap in ex-
actly k/4 elements. Note that such a set system can be
defined using the Hadamard code, and can be imple-
mented efficiently using a Hadamard matrix.1 HR is
given by a channel WH with output alphabet Z = [k]
and such that

WH(z | x) =
{

2
k ·

eε

eε+1 if z ∈ Cx,
2
k ·

1
eε+1 if z ∈ [k] \ Cx.

(3)

It was shown in [5] that WH is an ε-LDP mechanism.

We say that a test τ is a uniformity test using Rappor
(resp. HR) if the public randomness U is constant and
τ constitutes a uniformity test using Wn with each
Wi = WR (resp. WH).

We first propose a uniformity test using Rappor, de-
scribed in Algorithm 1 (a formal description is pro-
vided in Section 2.1). Moving now to uniformity test
using HR, denote by q∗ the output distribution of HR
when the underlying samples are generated from the
uniform distribution. Note that q∗ can be computed
explicitly. Invoking Parseval’s theorem, we show that
the `2 distance between the q∗ and the output distri-
bution of HR is roughly ε/

√
k times the `2 distance

1We assume here for simplicity of exposition that k is a
power of 2, and omit some technical details.
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Algorithm 1 Uniformity testing using Rappor
1: Obtain Z1, . . . , Zn using Rappor.
2: For each x in [k], compute the number Nx of k-bit

vectors Zi for which the x-th entry is 1.
3: Compute the test statistic T described in (5) which

is, in essence, a bias-corrected version of the colli-
sion statistic

∑
x(N2

x −Nx).
4: If T is less than roughly n2γ2ε2/k, declare uniform;

else declare not uniform.

between the uniform and the user data distributions.
This motivates our second uniformity test, described
in Algorithm 2. We analyze the sample complexity of

Algorithm 2 Uniformity testing using HR
1: Obtain Z1, . . . , Zn using HR.
2: Using an appropriate `2-test, test if the `2 distance

between the distribution of Zi’s and q∗ is less than
roughly γε/k; in this case declare uniform. Else
declare not uniform.

the tests above and show that it is order-wise optimal
among all uniformity tests using Rappor or HR.
Result 1 (Sample complexity of uniformity testing us-
ing Rappor). The tests described in Algorithm 1 and
Algorithm 2, respectively, constitute uniformity tests
using Rappor and HR for n = O(k3/2/(γ2ε2)) sam-
ples. Furthermore, any uniformity test using Rappor
or HR must use Ω(k3/2/(γ2ε2)) samples.

Thus, both tests proposed above provably cannot be
improved beyond this barrier of Ω(k3/2/(γ2ε2)) sam-
ples, as long as the mechanisms are restricted to Rap-
por and HR. Interestingly, this was conjectured by
Sheffet to be the optimal sample complexity of locally
private uniformity testing [31], although no algorithm
achieving this sample complexity was provided. Yet,
our next result shows that we can make do with much
fewer samples when public randomness is allowed.

We propose a new public-coin mechanism Raptor,
described in Algorithm 3. Note that Raptor can be

Algorithm 3 The Raptor mechanism
1: The curator and the users sample a uniformly ran-

dom subset S of [k] of cardinality k/2.
2: Each user computes the bit indicator Bi =
1{Xi∈S} and sends it using RR, i.e., flips it with
probability 1/(1 + eε) and sends the outcome to
the curator.

cast in our notation for public-coin mechanisms by set-
ting U = S and channels Wi, 1 ≤ i ≤ n, such that on
input xi the output is Zi = 1{xi∈S}. We call a unifor-
mity test using Wn a uniformity test using Raptor

with n samples.

To build a uniformity test using Raptor, we observe
that the bits Bi preserve the statistical distance be-
tween the two hypothesis classes, up to a shrinkage
factor of Ω(1/

√
k). Specifically, when the underlying

distribution is γ-far from uniform, the bias of Bi is
1/2 + Ω(γ/

√
k) with constant probability (over the

choice of S). Clearly, uniform distribution the bits
Bi are unbiased. Thus, we can simply test for unifor-
mity by learning the bias of the bits up to an accuracy
of γ/

√
k, which can be done using n = O(k/(γ2ε2))

samples from Raptor. In fact, we further show that
(up to constant factors) this number of samples cannot
be improved upon.
Result 2 (Sample complexity of locally private uni-
formity testing). There exists a uniformity test using
Raptor with O(k/(γ2ε2)) samples. Furthermore, any
uniformity test using a public-coin mechanism requires
Ω(k/(γ2ε2)) samples.

Although we have stated the previous three results for
uniformity testing, our proofs extend easily to identity
testing, i.e., the problem of testing equality of the un-
derlying distribution to a fixed known distribution q
which is not necessarily uniform. In fact, if we allow
simple preprocessing of user observations before apply-
ing locally private mechanisms, a reduction argument
due to Goldreich [23] can be used to directly convert
identity testing to uniformity testing. We defer the
details to the extended version of the paper [1].

Our final set of results are for independence testing,
where user data consists of two-dimensional vectors
(Xi, Yi) from [k] × [k]. We only state this problem
and the results informally here and leave the details to
the full version. We seek to ascertain if these vectors
were generated from a product distribution p1 ⊗ p2 or
a distribution that is γ-far in total variation distance
from every independent distribution. For this prob-
lem, a natural counterpart of Raptor which simply
applies Raptor to each of the two coordinate using
independently generated sets yields a sample-optimal
test – indeed, we simply need to test whether the pair
of indicator bits at the output of this mechanism are
independent. This can be done using O(k2/(γ2ε2)),
leading to the next result.
Result 3 (Sample complexity of locally private inde-
pendence testing). There exists an independence test
using Raptor with O(k2/(γ2ε2)) samples. Further-
more, any independence test using a public-coin mech-
anism requires Ω(k2/(γ2ε2)) samples.

For completeness, we also consider independence test-
ing using existing mechanisms and provide an inde-
pendence test using HR which requires O(k3/(γ2ε4))
samples. The proposed test builds on a technique in-
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troduced in [4] and relies on learning in χ2 divergence.
Although this result maybe suboptimal in the depen-
dence on the privacy parameter ε, it improves on sam-
ple complexity of both [31] and the testing-by-learning
baseline approach by a factor of roughly k. We sum-
marize all our results in Table 1 and compare them
with the best known prior bounds from [31].

Testing This work Previous [31]
Private-Coin Public-Coin Private-Coin

Uniformity O
(
k3/2

γ2ε2

)
Θ
(

k
γ2ε2

)
O
(

k2

γ2ε2

)
Independence O

(
k3

γ2ε4

)
Θ
(

k2

γ2ε2

)
O
(

k4

γ2ε2

)
Table 1: Summary of our results and comparison with
prior work. Private-coin result for uniformity testing is
achieved for both Rappor and HR and is optimal for
any test based on these mechanisms. The private-coin
result for independence testing uses HR.

Conceptually, our main contribution is a quantitative
characterization of how information constraints im-
posed by local privacy requirements affect the diffi-
culty of a testing problem. Our lower bounds rely on
the approach proposed in [2] (see [3] for more general
results) to analyze the contractions in chi-square dis-
tance due to such constraints. On the other hand,
our algorithms yield quantitatively optimal mitigation
for the information lost due to these contractions. For
tests based on Rappor and HR, this not only requires
a careful construction of test statistic based on sani-
tized samples, but also a non-trivial analysis that sheds
light on how these mechanisms modify data statistics.
The key message of our work is that public random-
ness can be used gainfully to optimally alleviate the
information loss by privacy constraints.

1.2 Proof techniques

We start by describing the analysis of our tests based
on existing ε-LDP mechanisms. Recall that a standard
(non-private) uniformity test entails estimating the `2
norm of the underlying distribution by counting the
number of collisions in the observed samples. When
applying the same idea on the data collected via Rap-
por, we can naively try to estimate the number of col-
lisions by adding the number of pairs of output vectors
with 1s in the x-th coordinate, for each x. However,
the resulting statistic has a prohibitively high variance
stemming from the noise added by Rappor. We fix
this shortcoming by considering a bias-corrected ver-
sion of this statistic that closely resembles the classic
χ2 statistic. However, analyzing the variance of this
new statistic turns out to be rather technical and in-
volves handling the covariance of quadratic functions

of correlated binomial random variables. Our main
technical effort in this part goes into analyzing this
covariance, which may find further applications.

For testing uniformity using HR, we follow a different
approach. In this case, we exploit the structure of
Hadamard transform and take recourse to Parseval’s
theorem to show that the `2 distance to uniformity
of the original distribution p is equal, up to an ε/

√
k

factor, to the `2 distance of the Fourier transformH(p)
to some (explicit) fixed distribution q. Further, it can
be shown that ‖q‖2 = O(1/

√
k). With this structural

result in hand, we can test identity of H(p) to q in the
Fourier domain, by invoking the (non-private) `2 tester
of Chan et al. [12] with the corresponding distance
parameter γε/

√
k. Exploiting the fact that q has a

small `2 norm leads to the stated sample complexity.

As mentioned above, our main results – the optimal
public-coin mechanisms for identity and independence
testing – are remarkably simple. The key heuristic un-
derlying both stems from the following claim: If p is
γ-far from uniform, then with constant probability a
uniformly random subset S ⊆ [k] of size k/2 will sat-
isfy p(S) = 1/2 ± Ω(γ/

√
k). On the other hand, if p

is uniform then p(S) = 1/2 always holds. Thus, one
can reduce the original testing problem (over alpha-
bet size k) to the much simpler question of estimating
the bias of a coin. This latter task is easy to perform
optimally in a locally private manner – for instance it
can be completed only using the classic randomized re-
sponse – and requires each player to send only one bit
to the server. Hence, the main technical difficulty is to
prove this quite intuitive claim. We do this by showing
anticoncentration bounds for a suitable random vari-
able by bounding its fourth moment and invoking the
Paley–Zygmund inequality. As a byproduct, we obtain
a more general version, Theorem 7, which we believe
to be of independent interest.

Our information-theoretic lower bounds are all based
on a general approach introduced recently by Acharya,
Canonne, and Tyagi [2] (see [3] for more general lower
bounds) that allows us to handle the change in dis-
tances between distributions when information con-
straints are imposed on samples. We utilize the by-
now-standard “Paninski construction” [29], a collec-
tion C of 2k/2 distributions obtained by adding a small
pointwise perturbation to the k-ary uniform distribu-
tion. In order to obtain a lower bound for the sample
complexity of locally private uniformity testing, fol-
lowing [2], we consider n noisy channels (Wj : [k] →
{0, 1}∗)j∈[n] and the distribution W(p) of the tuple
of n messages when the underlying distribution of
the samples is p. The key step then is to bound
the χ2 divergence between (i) W(u), the distribution
of the messages under the uniform distribution; and
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(ii) Ep∈C [W(p)], the average distribution of the mes-
sages when p is chosen uniformly at random among
the “perturbed distributions.”

Using the results of [2] (cf. [3]), this in turn is tanta-
mount to obtaining an upper bound for the Frobenius
norm of specific [k/2]×[k/2] matrices H1, . . . ,Hn that
capture the information constraints imposed by Wj ’s.
Deriving these bounds for Frobenius norms constitutes
the main technical part of the lower bounds and relies
on a careful analysis of the underlying mechanism and
of the LDP constraints it must satisfy. Due to lack
of space, we omit a more detailed discussion of lower
bound proofs.

1.3 Related prior work

Testing properties of a distribution by observing sam-
ples from it is a central problem in statistics and has
been studied for over a century. It has seen renewed
interest in the computer science community under the
broad title of distribution testing, with a particular
focus on sample-optimal algorithms for discrete dis-
tributions. This literature itself spans the last two
decades; we refer an interested reader to surveys and
books [30, 11, 24, 8] for a comprehensive review. Due
to lack of space, we only touch upon few results in this
area that are related directly to our paper.

The sample complexity for uniformity testing was
shown to be Θ(k1/2/γ2) in [29], following a long line of
work. Several tests achieving this optimal sample com-
plexity are now available and even the optimal depen-
dence on error probability is known (cf. [25, 13]). We
remark that it is easy to extend our uniformity testing
results to the more general problem of identity testing
using a reduction argument from Goldreich [23]. In
fact, in a manner similar to [2], this reduction can be
used in conjunction with results from [9] to extend our
results to the instance-optimal setting of [32]. The op-
timal sample complexity for the independence testing
problem where both observations are from the same
set [k] was shown to be Θ(k/γ2) in [4, 14].

Moving now to distribution testing settings with pri-
vacy constraints, the setting of central differentially
private (DP) testing has been extensively studied.
Here the algorithm itself is run by a trusted curator
who has access to all the user data, but needs to en-
sure that the output of the test maintains differential
privacy; see [21, 28, 33] for a sampling of results on
identity and independence testing. Identity testing in
the finite sample setting has been considered in [10, 7],
with a complete characterization of sample complex-
ity derived in [6]. Interestingly, in several parameter
ranges of interest the sample complexity here matches
the sample complexity for the non-private case dis-

cussed earlier, showing that “privacy often comes at
no additional cost” in this setting. As we show in this
work, this is in stark contrast to what can be achieved
in the more stringent locally private setting.

Coming to the literature most closely related to our
work, locally private hypothesis testing was consid-
ered by Sheffet in [31] where, too, both identity and
independence testing were considered. However, as re-
marked earlier, this work did not consider the role
of public randomness, and even among private-coin
mechanisms the algorithms proposed in [31] have sub-
optimal sample complexity. Indeed, note that the
problem of learning the unknown k-ary distribution
up to an accuracy of γ in total variation distance in
the locally private setting has received a lot of atten-
tion, and its optimal sample complexity is known to
be Θ(k2/(γ2ε2)); see [16, 19, 35, 26, 5]. Clearly, the
testing problems we consider can be solved by pri-
vately learning the distributions (to accuracy γ). This
readily implies a sample complexity upper bound of
O(k2/(γ2ε2)) for locally private identity testing, and
of O(k4/(γ2ε2)) for independence testing. In this re-
spect the performance guarantees obtained in [31] are
not entirely satisfactory, since the same (and in some
cases even better) performance can be achieved by this
“testing-by-learning” approach.

Subsequent work. Recent results by a subset of the
authors [3], studying inference under general local in-
formation constraints (of which local differential pri-
vacy is an example), supersede the private-coin lower
bounds obtained in the current paper. Specifically, [3]
establishes an Ω(k3/2/(γ2ε2)) sample complexity lower
bound for all uniformity tests using private-coin LDP
mechanisms; thus showing that the sample complexity
of both Algorithms 4 and 5 is indeed order-wise opti-
mal among all such tests. Hence, all locally private
uniformity tests provided in the current paper (both
using public- and private-coin mechanisms) achieve
optimal sample complexity for the respective class of
mechanisms.

Organization. In the interest of space, in this ex-
tended abstract we only provide the statements and
main lemmata of our results. Omitted details, as well
as the sections on lower bounds and independence test-
ing, are deferred to the full version [1].

2 Locally Private Uniformity Testing
using Existing Mechanisms

In this section, we provide two locally private mech-
anisms for uniformity testing. As discussed earlier,
this in turn provides similar mechanisms for identity
testing as well. These two tests, based respectively on
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the private-coin mechanisms Rappor and HR, will be
seen to both have sample complexity O(k3/2/γ2ε2).
However, the first has the advantage of being based
on a widespread mechanism, while the second is more
efficient in terms of both time and communication.

2.1 A uniformity test using Rappor

Given n independent samples from p, let the output
of Rappor applied to these samples be denoted by
b1, . . . ,bn ∈ {0, 1}k, where bi = (bi1, . . . ,bik) for i ∈
[n]. The following fact is a simple consequence of the
definition of Rappor.
Fact 1. For i, j ∈ [n], and x, y ∈ [k],

Pr[ bix = 1,bjy = 1 ] =
(αRp(x) + βR)(αRp(y) + βR), if i 6= j,

αRp(x) + βR, if i = j, x = y,

(αRp(x) + βR)(αRp(y) + βR)− α2
Rp(x)p(y), o.w.,

where αR, βR are defined as in (2).

First idea: Counting Collisions. A natural idea
would be to try and estimate ‖p‖2

2 by counting the
collisions from the output of Rappor. Since this
only adds post-processing to Rappor, which is LDP,
the overall procedure does not violate the ε-LDP con-
straint. For σxi,j defined as 1{bix=1,bjx=1}, x ∈ [k],
i 6= j, the statistic S :=

∑
1≤i<j≤n

∑
x∈[k] σ

x
i,j count-

ing collisions over all samples and differentially private
symbols can be seen to have expectation

E[S] =
(
n

2

)(
α2
R‖p‖

2
2 + 2αRβR + kβ2

R

)
� ε2n2‖p‖2

2 + k.

Up to the constant normalizing factor, this suggests
an unbiased estimator for ‖p‖2

2, and thereby also for
‖p− u‖2

2 = ‖p‖2
2 − 1/k. However, the issue lies with

the variance of this estimator. Indeed, it can be shown
that Var(S) ≈ n3k (for constant ε). Thus, if we use
this statistic to distinguish between ‖p‖2

2 = 1/k and
‖p‖2

2 > (1 + Ω(γ2))/k for uniformity testing, we need√
n3k � n2ε2·(γ2/k) i.e., n� k3/(γ4ε4). This sample

requirement turns out to be off by a quadratic order,
and even worse than the trivial upper bound obtained
by learning p.

An Optimal Mechanism. We now propose our test-
ing mechanism based on Rappor, which, in essence,
uses a privatized version of a χ2-type statistic of [12,
4, 32]. For x ∈ [k], let the number of occurrences of x
among the n (privatized) outputs of Rappor be

Nx :=
n∑
j=1

1{bjx=1} (4)

which by the definition of Rappor follows a
Bin(n, αRp(x) + βR) distribution. Set

T :=
∑
x∈[k]

((
Nx − (n− 1)

(αR
k

+ βR

))2
−Nx

)

+ k(n− 1)
(αR
k

+ βR

)2
. (5)

This T is a statistic, applied to the output of Rap-
por, which (as we shall see) is up to normalization
an unbiased estimator for the squared `2 distance of
p to uniform. The main difference with the naive ap-
proach we discussed previously lies in the extra linear
term. Indeed, the collision-based statistic of the previ-
ous section has the form S ∝

∑
x∈[k]

(
N2
x −Nx

)
, and

in comparison, keeping in mind that Nx is typically
concentrated around its expected value of roughly n/2,
our new statistic can be seen to take the form

T ≈
∑
x∈[k]

(
N2
x − nNx

)
+ Θ(kn2),

since βR ≈ 1/2. The fluctuations of the quadratic term
are reduced significantly by the subtracted linear term,
bringing down the variance of the statistic. This leads
to our algorithm based on Rappor, Algorithm 4, and
yields the main result of this section:
Theorem 2. The test described in Algorithm 4 con-
stitutes a uniformity test using Rappor for n =
O
(
k3/2/(γ2ε2)

)
samples.

Algorithm 4 LDP Uniformity Testing using Rappor
Require: Privacy parameter ε > 0, distance parame-

ter γ ∈ (0, 1), n samples
1: Set αR ← eε/2−1

eε/2+1 , βR ←
1

eε/2+1 as in (2).
2: Apply (ε-LDP) Rappor to the samples to obtain

(bi)1≤i≤n . Time O(k) per user
3: Compute (Nx)x∈[k], as per (4) . Time O(kn)
4: Compute T , as defined in (5) . Time O(k)
5: if T < n(n− 1)α2

Rγ
2/k return uniform

6: else return not uniform

2.2 A uniformity test using Hadamard
Response

Although the Rappor-based mechanism of Section 2.1
achieves a significantly improved sample complexity
over the naive learning-and-testing approach, it suffers
several shortcomings. The most apparent is its time
complexity: inherently, the one-hot encoding proce-
dure used in Rappor leads to a time complexity of
Θ(kn), with an extra linear dependence on the alpha-
bet size k, which is far from the “gold standard” of
O(n) time complexity. A more time-efficient proce-
dure can be obtained using HR. In fact, we describe
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a uniformity test using HR that has the same sample
complexity as the one using Rappor described above,
but is much more time-efficient.
Theorem 3. The test described in Algorithm 5
constitutes a uniformity test using HR for n =
O
(
k3/2/(γ2ε2)

)
samples. Moreover, the test runs in

time near-linear in the number of samples.2

Algorithm 5 LDP Uniformity Testing using HR
Require: Privacy parameter ε > 0, distance parame-

ter γ ∈ (0, 1), n samples
1: Set αH ← eε−1

eε+1 , K ← 2dlog(k+1)e

2: Apply HR (with parameters ε, K) to the samples
to get n samples in [K] . Time O(log k) per user

3: Invoke the testing algorithm Test-`2 of Theorem 5
on these n samples, with parameters b ← 1+αH√

K
,

γ′ ← 2αHγ
kK and q∗ being the explicit distribution

from Theorem 4 . Time O(n log k + n logn)
4: if Test-`2 accepts return uniform
5: else return not uniform

To describe the intuition behind this algorithm, sup-
pose we feed inputs from an input distribution p ∈
∆([k]) to the HR mechanism, whose output then fol-
lows some induced distribution q ∈ ∆([K]), where
∆(X ) denotes the set of distributions on the set X . It
is natural to expect that whenever p is uniform (over
[k]), then q is uniform (over [K]), too; and that con-
versely if p is not uniform, then q is neither, and that
the distance to uniformity is preserved. This is not ex-
actly what we will obtain. However, we can get some-
thing close to it in the next result, which suffices for
our purpose.3

Theorem 4. Let ε ∈ (0, 1], K = O(k) be a power of
2, and denote by q the output distribution over [K].
Then, we have

‖q − q∗‖2
2 = α2

H

K
· ‖p− u‖2

2 �
ε2

k
‖p− u‖2

2 , (6)

where αH := eε−1
eε+1 , and q∗ ∈ ∆([K]) is an explicit

distribution, efficiently computable and independent of
p, with ‖q∗‖2 ≤ (1 + αH)/

√
K. Moreover, q∗ can be

sampled in time O(logK).

Thus, when p = u, we get q = q∗. Otherwise when
dTV(p, u) > γ, then

‖q − q∗‖2
2 >

4α2
Hγ

2

kK
= Θ

(
ε2

k2 γ
2
)
. (7)

2We say that a complexity is near-linear in a parameter
t if it is of the form O(tpoly(log t)).

3To see that our desired statement cannot hold as stated
above, note that for p = u, the definition of HR (cf. (3))
implies q(z1) = 1+αH

K
, since |Dz1 | = k as the first column

of HK is the all-one vector. Thus the squared `2 distance
of q to uniform is at least α2

H/K.

The observation above suggests that if we can esti-
mate the `2 distance between q and q∗, we can get our
desired uniformity test. We facilitate this by invoking
the result below, which follows from the `2-distance es-
timation algorithm of [12, Proposition 3.1], combined
with an observation from [14, Lemma 2.3]:
Theorem 5 (Adapted from [12, Proposition 3.1]). For
two unknown distributions p, q ∈ ∆([k]), there exists
an algorithm Test-`2 that distinguishes with proba-
bility at least 2/3 between the cases ‖p− q‖2 ≤ γ/2
and ‖p− q‖2 > γ by observing O(min(‖p‖2, ‖q‖2)/γ2)
samples from each. Moreover, this algorithm runs in
time near-linear in the number of samples.

We apply the algorithm of Theorem 5 to our case by
generating desired number of samples from q∗, which
can simply be obtained by passing samples from the
uniform distribution via HR, and using them along
with the samples observed from q at the output of
HR. We need to distinguish between the cases q =
q∗ and ‖q − q∗‖2 > γ′/

√
K, which by the previous

result can be done using O(‖q∗‖2K/γ
′2) samples where

γ′ := 2αHγ/
√
k. Substituting K = O(k) and ‖q∗‖2 =

O(1/
√
K), the number of samples we need is

O

(
1√
K
·K ·

(√
k

γε

)2)
= O

(
k3/2

γ2ε2

)
,

which is our claimed sample complexity.

The time complexity follows from the efficiency of
Hadamard encoding (see [5, Section 4.1]), which al-
lows each player to generate their private sample in
time O(logK) = O(log k), and to send only O(log k)
bits.4 After this, running the Test-`2 algorithm takes
time O(n logK+n logn), the first term being the time
required to generate n samples from q∗. Thus, to con-
clude the proof of Theorem 3, it only remains to es-
tablish Theorem 4, which we do in the full version.

3 Optimal Locally Private Uniformity
Testing

In the foregoing treatment, we saw that existing
(private-coin) mechanisms such as Rappor and HR
can perform uniformity testing using O(k3/2/(γ2ε2))
samples at best. In this section, we describe our
public-coin mechanism, Raptor,5 and use it to design
an algorithm for testing uniformity that requires only
O(k/(γ2ε2)) samples and constant communication per
sample. Our algorithm builds upon the following folk-
lore fact:

4This is significantly better than the O(k) time and
communication per player of Algorithm 4.

5Which stands for Randomized Aggregated Private Test-
ing Optimal Response.
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Fact 6. For ε ∈ (0, 1], an estimate of the bias of a coin
with an additive accuracy of γ can be obtained using
O
(
1/(γ2ε2)

)
samples via ε-LDP RR.

Specifically, we use public randomness to reduce the
uniformity testing problem for an arbitrary k to that
for k = 2, albeit with γ replaced with γ/

√
k; and then

apply the algorithm above.

To enable the aforementioned reduction, we need to
show that the probabilities of a randomly generated
set differ appropriately under the uniform distribution
and a distribution that is γ far from uniform in to-
tal variation distance. To accomplish this, we prove a
more general result which might be of independent in-
terest. We say that random variables X1, X2, . . . , Xk

are 4-symmetric if E[Xi1Xi2Xi3Xi4 ] depends only on
the number of times each element appears in the mul-
tiset {i1, i2, i3, i4}. The following result constitutes a
concentration bound for Z =

∑
i∈[k] δiXi for a proba-

bility perturbation δ.
Theorem 7 (Probability perturbation concentra-
tion). Consider a vector δ such that

∑
i∈[k] δi = 0.

Let random variables X1, . . . , Xk be 4-symmetric and
Z =

∑
i∈[k] δiXi. Then, for every α ∈ (0, 1/4),

Pr
[(

E
[
X2

1
]
− E[X1X2]

)
−
√

38α
1− 2αE[X4

1 ]

≤ Z2

‖δ‖2
2
≤ 1

1− 2α

(
E
[
X2

1
]
− E[X1X2]

)]
≥ α.

The proof requires a careful evaluation of the second
and the fourth moments of Z and is deferred to the
full version [1]. As a corollary, we obtain the result
below, which is at the core of our reduction argument.
Corollary 8. Consider a distribution p ∈ ∆([k]) such
that dTV(p, u) > γ. For a random subset S of [k] dis-
tributed uniformly over all subsets of [k] of cardinality
k/2, it holds that Pr

[ ∣∣p(S)− 1
2
∣∣ > γ√

5k

]
> 1

477 .

Armed with this result, we can divide our LDP testing
problem into two parts: A public-coin ε-LDP mecha-
nism releases 1-bit per sample to the curator, and the
curator applies a test to the received bits to accomplish
uniformity testing. This specific mechanism suggested
by the previous corollary is our Raptor (see Algo-
rithm 3 for a description). While in this paper we
have only considered its use for testing uniformity and
independence, since it provides locally private 1-bit
outputs that in essence preserve the `2 distance of
the underlying distribution from any fixed one, we can
foresee many other use-cases for Raptor and pose it
as a standalone mechanism of independent interest.

Recall that in Raptor the curator and the users pick a

random subset S of size k/2 from their shared random-
ness, and each user sends the indicator function that
its input lies in this set S using ε-LDP RR. This is
precisely the 1-bit information from samples required
to enable the estimator of Fact 6. Note that when
the underlying distribution p is uniform, the proba-
bility p(S) of user bit being 1 is exactly 1/2. Also,
by Corollary 8 when p is γ-far from uniform we have
p(S) = 1/2 ± Ω(γ/

√
k) with a constant probability

(over the choice of S); by repeating the protocol a
constant number of times,6 we can ensure that with
high constant probability at least one of the choices
of S will indeed have this property. Therefore, we ob-
tain an instance of the uniformity testing problem for
k = 2, namely the problem of privately distinguish-
ing a Bern(1/2) from Bern

(
1/2± c1γ√

k

)
. Thus, when

we apply Raptor to the samples, the curator gets
the 1-bit updates required by Fact 6 to which it can
apply the estimator prescribed in Fact 6 to solve the
underlying uniformity testing instance for k = 2 using

O
( k
γ2

(eε + 1)2

(eε − 1)2

)
samples. Since we used ε-LDP RR to send each bit,
Raptor, too, is ε-LDP and thereby so is our overall
uniformity test. This leads to the following theorem.

Theorem 9. The test described in Algorithm 6 con-
stitutes a uniformity test using Raptor with n =
O(k/(γ2ε2)) samples.

Algorithm 6 LDP Uniformity Testing using Raptor
Require: Privacy ε > 0, distance γ ∈ (0, 1), n = mT

samples
1: Set c← 1

477 , δ ←
c

2(1+c) , γ
′ ← γ√

5k , T ← Θ(1)
2: for t from 1 to T do . In parallel
3: Generate u.a.r. St ⊆ [k] of cardinality k/2
4: Apply Raptor using St to each sample in the

mini-batch of m samples
5: Use the estimator of Fact 6 to test with prob-

ability of failure δ if p(St) = 1/2 (unbiased) or
|p(St)− 1/2| > γ′ (biased)

6: end for
7: Let η denote the fraction of the T outcomes that

returned unbiased
8: if η > 1− (δ + c

4 ) return uniform
9: else return not uniform

6To preserve the symmetry of our mechanism, we note
that this can be done “in parallel” at each user. That
is, each user considers the same T = Θ(1) many random
subsets, and sends their corresponding T privatized (with
parameter ε′ = ε/T ) indicator bits to the curator.
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