
Local Saddle Point Optimization: A Curvature Exploitation Approach

Leonard Adolphs Hadi Daneshmand Aurelien Lucchi Thomas Hofmann
Department of Computer Science, ETH Zurich

Abstract

Gradient-based optimization methods are the
most popular choice for finding local optima
for classical minimization and saddle point
problems. Here, we highlight a systemic is-
sue of gradient dynamics that arise for saddle
point problems, namely the presence of unde-
sired stable stationary points that are no local
optima. We propose a novel optimization ap-
proach that exploits curvature information
in order to escape from these undesired sta-
tionary points. We prove that different opti-
mization methods, including gradient method
and Adagrad, equipped with curvature ex-
ploitation can escape non-optimal stationary
points. We also provide empirical results on
common saddle point problems which confirm
the advantage of using curvature exploitation.

1 INTRODUCTION

We consider the problem of finding a structured1 sad-
dle point of a smooth objective, namely solving an
optimization problem of the form

min
x∈Rk

max
y∈Rd

f(x,y). (1)

Here, we assume that f is smooth in x and y but
not necessarily convex in x or concave in y. This
particular problem arises in many applications, such
as generative adversarial networks (GAN) [15], robust
optimization [4], and game theory [37, 23]. Solving the
saddle point problem in Eq. (1) is equivalent to finding
a point (x∗,y∗) such that

f(x∗,y) ≤ f(x∗,y∗) ≤ f(x,y∗) (2)
1Throughout this work, we aim to find saddles that

satisfy a particular (local) min-max structure in the input
parameters.
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holds for all x ∈ Rk and y ∈ Rd. For a non convex-
concave function f , finding such a saddle point is com-
putationally infeasible. Instead of finding a global sad-
dle point for Eq. (1), we aim for a more modest goal:
finding a locally optimal saddle point, i.e. a point
(x∗,y∗) for which the condition in Eq. (2) holds true
in a local neighbourhood around (x∗,y∗).

There is a rich literature on saddle point optimization
for the particular class of convex-concave functions, i.e.
when f is convex in x and concave in y. Although this
type of objective function is commonly encountered
in applications such as constrained convex minimiza-
tion, many saddle point problems of interest do not
satisfy the convex-concave assumption. Two popular
examples that recently emerged in machine learning
are distributionally robust optimization [12, 38], as well
as training generative adversarial networks [15]. These
applications can be framed as saddle point optimiza-
tion problems which - due to the complex functional
representation of the neural networks used as models -
do not fulfill the convexity-concavity condition.

First-order methods are commonly used to solve prob-
lem (1) as they have a cheap per-iteration cost and
are therefore easily scalable. One particular method of
choice is simultaneous gradient descent/ascent, which
performs the following iterative updates,

(xt+1,yt+1) = (xt,yt) + ηt (−∇xft,∇yft) (3)
ft : = f(xt,yt),

where ηt > 0 is a chosen step size which can, e.g.,
decrease with time t or be a bounded constant (i.e.
ηt = η). The convergence analysis of the above iterate
sequence is typically tied to a strong/strict convexity-
concavity property of the objective function defining
the dynamics. Under such conditions, the gradient
method is guaranteed to converge to a desired saddle
point [3]. These conditions can also be relaxed to some
extent, which will be further discussed in Section 2.

It is known that the gradient method is locally asymp-
totically stable [26]; but stability alone is not sufficient
to guarantee convergence to a locally optimal saddle
point. Through an example, we will later illustrate that
the gradient method is indeed stable at some undesired
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stationary points, at which the structural min-max
property 2 is not met. This is in clear contrast to mini-
mization problems where all stable stationary points of
the gradient dynamics are local minima. The stability
of these undesired stationary points is therefore an ad-
ditional difficulty that one has to consider for escaping
from such saddles. While a standard trick for escaping
saddles in minimization problems consists of adding
a small perturbation to the gradient, we will demon-
strate that this does not guarantee avoiding undesired
stationary points.

Throughout the paper, we will refer to a desired local
saddle point as a local minimum in x and maximum
in y. This characterization implies that the Hessian
matrix at (x,y) does not have a negative curvature
direction in x (which corresponds to an eigenvector
of ∇2

xf with a negative associated eigenvalue) and a
positive curvature direction in y (which corresponds
to an eigenvector of ∇2

yf with a positive associated
eigenvalue). In that regard, curvature information
can be used to certify whether the desired min-max
structure is met.

In this work, we propose the first saddle point opti-
mization that exploits curvature to guide the gradient
trajectory towards the desired saddle points that re-
spect the min-max structure. Since our approach only
makes use of the eigenvectors corresponding to the
maximum and minimum eigenvalue (rather than the
whole eigenspace), we will refer to it as extreme cur-
vature exploitation. We will prove that this type of
curvature exploitation avoids convergence to undesired
saddles–albeit not guarantees convergence on a general
non-convex-concave saddle point problem. Our contri-
bution is linked to the recent research area of stability
analysis for gradient-based optimization in general sad-
dle point problems. Nagarajan et al. [27] have shown
that the gradient method is stable at locally optimal
saddles. Here, we complete the picture by showing
that this method is unfavourably stable at some points
that are not locally optimal. Our empirical results
also confirm the advantage of curvature exploitation in
saddle point optimization.

2 RELATED WORK

Asymptotical Convergence In the context of op-
timizing a Lagrangian, the pioneering works of [20, 3]
popularized the use of the primal-dual dynamics to
arrive at the saddle points of the objective. The work
of [3] analyzed the stability of this method in contin-
uous time proving global stability results under strict
convex-concave assumptions. This result was extended

2This property refers to the function being a local mini-
mum in x and a maximum in y.

in [39] for a discrete-time version of the subgradient
method with a constant step size rule, proving that
the iterates converge to a neighborhood of a saddle
point. Results for a decreasing step size were provided
in [14, 25] while [32] analyzed an adaptive step size
rule with averaged parameters. The work of [7] has
shown that the conditions of the objective can be re-
laxed, proving asymptotic stability to the set of saddle
points is guaranteed if either the convexity or concav-
ity properties are strict, and convergence is pointwise.
They also proved that the strictness assumption can
be dropped under other linearity assumptions or as-
suming strongly joint quasiconvex-quasiconcave saddle
functions.

However, for problems where the function considered
is not strictly convex-concave, convergence to a saddle
point is not guaranteed, with the gradient dynamics
leading instead to oscillatory solutions [16]. These oscil-
lations can be addressed by averaging the iterates [32]
or using the extragradient method (a perturbed version
of the gradient method) [19, 13].

There are also instances of saddle point problems that
do not satisfy the various conditions required for con-
vergence. A notable example are generative adversarial
networks (GANs) for which the work of [27] proved
local asymptotic stability under certain suitable condi-
tions on the representational power of the two players
(called discriminator and generator). Despite these
recent advances, the convergence properties of GANs
are still not well understood.

Non-asymptotical Convergence An explicit con-
vergence rate for the subgradient method with a con-
stant stepsize was proved in [30] for reaching an approx-
imate saddle point, as opposed to asymptotically exact
solutions. Assuming the function is convex-concave,
they proved a sub-linear rate of convergence. Rates of
convergence have also been derived for the extragradi-
ent method [19] as well as for mirror descent [31].

In the context of GANs, [34] showed that a single-step
gradient method converges to a saddle point in a neigh-
borhood around the saddle point in which the function
is strongly convex-concave. The work of [24] studied
the theory of non-asymptotic convergence to a local
Nash equilibrium. They prove that–assuming local
strong convexity-concavity–simultaneous gradient de-
scent achieves an exponential rate of convergence near
a stable local Nash equilibrium. They also extended
this result to other discrete-time saddle point dynamics
such as optimistic mirror descent or predictive methods.

Negative Curvature Exploitation The presence
of negative curvature in the objective function indicates
the existence of a potential descent direction, which is
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commonly exploited in order to escape saddle points
and reach a local minimizer. Among these approaches
are trust-region methods that guarantee convergence
to a second-order stationary point [8, 33, 6]. While a
naïve implementation of these methods would require
the computation and inversion of the Hessian of the
objective, this can be avoided by replacing the computa-
tion of the Hessian by Hessian-vector products that can
be computed efficiently in O(nd) [35]. This is applied
e.g. using matrix-free Lanczos iterations [9] or online
variants such as Oja’s algorithm [1]. Sub-sampling
the Hessian can furthermore reduce the dependence
on n by using various sampling schemes [18, 40]. Fi-
nally, [2, 41] showed that first-order information can
act as a noisy Power method allowing to find a negative
curvature direction.

In contrast to these classical results that "blindly"
try to escape any type of saddle-point, our aim is to
exploit curvature information to reach a specific type
of stationary point that satisfies the min-max condition
required at the optimum of the objective function.

3 PRELIMINARIES

Definition: Locally Optimal Saddles Let us de-
fine a γ-neighbourhood around the point (x∗,y∗) as

K∗γ = {(x,y)
∣∣ ‖x− x∗‖ ≤ γ, ‖y − y∗‖ ≤ γ} (4)

with a sufficiently small γ > 0. Throughout the paper,
we follow a common approach, see e.g. [26, 28], for this
type of problem and relax the condition of Eq. (2) to
hold only in a local neighbourhood.

Definition 1. The point (x∗,y∗) is a locally optimal
saddle point of the problem in Eq. (1) if

f(x∗,y) ≤ f(x∗,y∗) ≤ f(x,y∗) (5)

holds for ∀(x,y) ∈ K∗γ .

Assumptions For the sake of further analysis, we
require the function f to be sufficiently smooth, and its
second order derivatives with respect to the parameters
x and y to be non-degenerate at the optimum (x∗,y∗).

Assumption 2 (Smoothness). We assume that
f(z) := f(x,y) is a C2 function, and that its gra-
dient and Hessian are Lipschitz with respect to the
parameters x and y, i.e. we assume that the following

inequalities hold:

‖∇f(z)−∇f(z̃)‖ ≤ Lz‖z− z̃‖ (6)

‖∇2f(z)−∇2f(z̃)‖ ≤ ρz‖z− z̃‖ (7)
‖∇xf(z)−∇xf(z̃)‖ ≤ Lx‖z− z̃‖ (8)

‖∇2
xf(z)−∇2

xf(z̃)‖ ≤ ρx‖z− z̃‖ (9)
‖∇yf(z)−∇yf(z̃)‖ ≤ Ly‖z− z̃‖ (10)

‖∇2
yf(z)−∇2

yf(z̃)‖ ≤ ρy‖z− z̃‖ (11)

Moreover, we assume bounded gradients, i.e.

‖∇xf(z)‖ ≤ `x, ‖∇yf(z)‖ ≤`y, ‖∇zf(z)‖ ≤ `z (12)

Assumption 3 (Non-degenerate Hessian at (x∗,y∗)).
We assume that the matrices ∇2

xf(x∗,y∗) and
∇2

yf(x∗,y∗) are non-degenerate for all locally optimal
points (x∗,y∗) ∈ Rk+d as defined in Def. 1.

With the use of Assumption 3, we are able to establish
sufficient conditions on (x∗,y∗) to be a locally optimal
saddle point.

Lemma 4. Suppose that f satisfies assumption 3; then,
z∗ := (x∗,y∗) is a locally optimal saddle point on K∗γ
if and only if the gradient with respect to z∗ is zero, i.e.

∇f(x∗,y∗) = 0, (13)

and the second derivative at (x∗,y∗) is positive defi-
nite in x and negative definite in y 3, i.e. there exist
µx, µy > 0 such that

∇2
xf(x∗,y∗) � µxI, ∇2

yf(x∗,y∗) ≺ −µyI. (14)

4 UNDESIRED STABILITY

Asymptotic Scenarios There are three different
asymptotic scenarios for the gradient iterations in
Eq. (3): (i) divergence (i.e. limt→∞ ‖(xt,yt)‖ →
∞), (ii) being trapped in a loop (corresponding to
limt→∞ ‖∇f‖ > 0), and (iii) convergence to a station-
ary point of the gradient updates (i.e. limt→∞ ‖∇f‖ =
0). To the best of our knowledge, there is no con-
vergence guarantee for general saddle point optimiza-
tion. Typical convergence guarantees require convexity-
concavity or somewhat relaxed conditions such as
quasiconvexity-quasiconcavity of f [7]. This paper
focuses on the third outline case and investigates the
theoretical guarantees for a convergent series. We will
show that gradient-based optimization can converge
to some undesired stationary points and propose an
optimizer that uses extreme curvature information to
alleviate this problem. We specifically highlight that

3In the game theory literature, such point is commonly
referred to as local Nash equilibrium, see e.g. [24].
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we do not provide any convergence guarantee. Rather,
we investigate if a convergent sequence is guaranteed to
yield a valid solution to the local saddle point problem,
i.e., if it always converges to a locally optimal saddle
point as defined in Def. 1.

Local Stability A stationary point of the gradient
iterations can be either stable or unstable. The notion
of stability characterizes the behavior of the gradient
iterations in a local region around the stationary point.
In the neighborhood of a stable stationary point, suc-
cessive iterations of the method are not able to escape
the region. Conversely, we consider a stationary point
to be unstable if it is not stable [17]. The stationary
point z∗ = (x∗,y∗) (for which ∇f(z∗) = 0 holds) is a
locally stable point of the gradient iterations in Eq. 3,
if the Jacobian of its dynamics has only eigenvalues λi
within the unit disk, i.e.∣∣∣∣λi(I + η

[
−∇2

xf(z∗) −∇2
x,yf(z∗)

∇2
y,xf(z∗) ∇2

yf(z∗)

])∣∣∣∣ ≤ 1. (15)

Definition 5 (Stable Stationary Point of Gradient
Dynamics). A point z = (x,y) is a stable stationary
point of the gradient dynamics in Eq. (3) (for an
arbitrarily small step size η > 0) if ∇zf = 0 and if the
eigenvalues of the matrix[

−∇2
xf(z) −∇2

x,yf(z)
∇2

y,xf(z) ∇2
yf(z)

]
(16)

only have eigenvalues with negative real-part.

Random Initialization In the following, we will use
the notion of stability to analyze the asymptotic be-
havior of the gradient method. We start with a lemma
extending known results for general minimization prob-
lems that prove that gradient descent with random
initialization almost surely converges to a stable sta-
tionary point [22].
Lemma 6 (Random Initialization). Suppose that
assumptions 2 and 3 hold. Consider the gradi-
ent iterate sequence of Eq. (3) with step size η <

min
(

1
Lx
, 1
Ly
, 1√

2Lz

)
starting from a random initial

point. If the sequence converges to a stationary point,
then the stationary point is almost surely stable.

Undesired Stable Stationary Point If all stable
stationary points of the gradient dynamics would be lo-
cally optimal saddle points, then the result of Lemma 6
guarantees almost sure convergence to a solution of
the saddle point problem in Eq. (1). Previous work by
[26, 27] has shown that every locally optimal saddle
point is a stable stationary point of the gradient dy-
namics. While for minimization problems, the set of
stable stationary points is the same as the set of local

minima, this might not be the case for the problem we
consider here. Indeed, the gradient dynamics might
introduce additional stable points that are not locally
optimal saddle points. We illustrate this claim in the
next example.

Example Consider the following two-dimensional
saddle point problem4

min
x∈R

max
y∈R

[
f(x, y) = 2x2 + y2 + 4xy +

4

3
y3 − 1

4
y4
]
(17)

with x, y ∈ R. The critical points of the function, i.e.
points for which ∇f(x, y) = 0, are

z0 = (0, 0) z1 = (−2−
√

2, 2 +
√

2)

z2 = (−2 +
√

2, 2−
√

2)
(18)

Evaluating the Hessians at the three critical points
gives rise to the following three matrices:

H(z0) =

[
4 4
4 2

]
H(z1) =

[
4 4

4 −4
√

2

]
H(z2) =

[
4 4

4 4
√

2

]
.

(19)

We see that only z1 is a locally optimal saddle point,
namely that ∇2

xf(z1) = 4 > 0 and ∇2
yf(z1) = −4

√
2 <

0, whereas the two other points are both a local min-
imum in the parameter y, rather than a maximum.
However, figure 1a illustrates gradient steps converg-
ing to the undesired stationary point z0 because it is
a locally stable point of the dynamics5. Hence, even
small perturbations of the gradients in each step can
not avoid convergence to this point (see Figure 1b).

5 EXTREME CURVATURE
EXPLOITATION

The previous example has shown that gradient itera-
tions on the saddle point problem introduce undesired
stable points. In this section, we propose a strategy to
escape from these points. Our approach is based on
exploiting curvature information as in [9].

Extreme Curvature Direction Let λx be the min-
imum eigenvalue of∇2

xf(z) with its associated eigenvec-
tor vx, and λy be the maximum eigenvalue of ∇2

yf(z)

4To guarantee smoothness, one can restrict the domain
of f to a bounded set.

5This can be easily shown by observing that the real-part
of the eigenvalues of the matrix in Eq. 16, evaluated at z0,
are all negative.
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(a) The contour lines correspond to the norm of
the gradient ‖∇f(x, y)‖.

(b) Optimization trajectory when adding Gaus-
sian noise from N (0, σ) to the gradient in every
step.

Figure 1: Optimization trajectory of the gradient method on the function f(x, y) in Eq. (17) with a step size of η = 0.001.
The method converges to the critical point (0,0), even though it is not a locally optimal saddle point, and therefore not a
solution to the problem defined in (17). We denote the set of locally optimal saddle points of the function f with Sf .

with its associated eigenvector vy. Then, we define

v(−)
z = 1{λx<0}

λx
2ρx

sgn(v>x∇xf(z))vx (20)

v(+)
z = 1{λy>0}

λy
2ρy

sgn(v>y∇yf(z))vy (21)

where sgn : R → {−1, 1} is the sign function. Using
the above vectors, we define vz := (v

(−)
z ,v

(+)
z ) as the

extreme curvature direction at z.

Algorithm Using the extreme curvature direction,
we modify the gradient steps as follows:

(xt+1,yt+1) = (xt,yt) + vzt + η(−∇xft,∇yft) (22)
ft : = f(xt,yt).

This new update step is constructed by adding the
extreme curvature direction to the gradient method of
Eq. (3). From now on, we will refer to this modified
update as the Cesp (curvature exploitation for the
saddle point problem) method. Note that the algorithm
reduces to gradient-based optimization in regions where
there are only positive eigenvalues in x and negative
eigenvalues in y as the extreme curvature vector is zero.
This includes the region around any locally optimal
saddle point.

Stability Extreme curvature exploitation has already
been used for escaping from unstable stationary points
(i.e. saddle points) of gradient descent for minimiza-
tion problems [9]. In saddle point problems, curvature
exploitation is advantageous not only for escaping un-
stable stationary points but also for escaping undesired
stable stationary points of the gradient iterates. The

upcoming two lemmas prove that the set of stable sta-
tionary points of the Cesp dynamics and the set of
locally optimal saddle points are the same – therefore,
the optimizer only converges to a solution of the lo-
cal saddle point problem. The issue of gradient based
optimization as well as the theoretical guarantees of
the Cesp method are visualized in the Venn diagram
in figure 2: while for minimization problems the set
of stable points of gradient descent equals the set of
local minima, we see that for saddle point problems
gradient-based optimization introduces additional sta-
ble points outside of the set of locally optimal solutions.
However, by exploiting extreme curvatures with our
proposed Cesp method, all points outside of the set of
locally optimal saddles become non-stationary. Hence,
every convergent sequence of the Cesp method yields
a solution to the local saddle point problem.

Lemma 7. A point z := (x,y) is a stationary point
of the iterates in Eq. (22) if and only if z is a locally
optimal saddle point.

We can conclude from the result of Lemma 7 that every
stationary point of the Cesp dynamics is a locally
optimal saddle point. The next Lemma establishes the
stability of these points.

Lemma 8. Suppose that assumptions 2 and 3 hold.
Let z∗ := (x∗,y∗) be a locally optimal saddle point, i.e.

∇f(z) = 0, ∇2
xf(z∗) � µxI, ∇2

yf(z∗) � −µyI, (23)

(µx, µy > 0)

Then the iterates of Eq.(22) are stable in K∗γ for

γ ≤ min{µx/(
√

2ρx), µy/(
√

2ρy)}. (24)
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Figure 2: This Venn diagram summarizes the issue of gradient-based optimization that introduces undesired stable points.
This problem is unique to saddle point optimization and solved by the proposed Cesp method. [Best viewed in color.]

Escaping From Undesired Saddles Extreme cur-
vature exploitation allows us to escape from undesired
saddles. In the next lemma, we show that the optimiza-
tion trajectory of Cesp stays away from all undesired
stationary points of the gradient dynamics.

Lemma 9. Suppose that z∗ := (x∗,y∗) is an undesired
stationary point of the gradient dynamics, namely

∇f(z∗) = 0, ‖vz∗‖ > 0. (25)

Consider the iterates of Eq. (22) starting from z0 =
(x0,y0) in a γ-neighbourhood of z∗. After one step the
iterates escape the γ-neighbourhood of z∗, i.e.

‖z1 − z∗‖ ≥ γ (26)

for a sufficiently small γ = O(‖vz∗‖).

Implementation with Hessian-vector products
Since storing and computing the Hessian in high dimen-
sions is very costly, we need to find a way to efficiently
extract the extreme curvature direction. The most
common approach for obtaining the eigenvector corre-
sponding to the largest absolute eigenvalue, (and the
eigenvalue itself) of ∇2

xf(z) is to run power iterations
on I− β∇2

xf(z) as

vt+1 = (I− β∇2
xf(z))vt (27)

where v0 is a random vector and vt+1 is normalized
after every iteration. The parameter β > 0 is cho-
sen such that I − β∇2

xf(z) � 0. Since this method
only requires implicit Hessian computation through
a Hessian-vector product, it can be implemented as
efficiently as gradient evaluations [35]. The results of
[21] provide a bound on the number of required iter-
ations to extract the extreme curvature: for the case
λmin(∇2

xf(z)) ≤ −γ, 1
γ log(k/δ2)Lx iterations suffice

to find a vector v̂ such that v̂>∇2
xf(z)v̂ ≤ −γ2 with

probability 1− δ (cf. [22]).

Comparison to second-order optimization We
would like to draw the attention of the reader to the

fact that the Cesp method only uses extreme curvature
which makes it conceptually different from second-order
Newton-type optimization. Although there is a rich
literature on second-order optimization for variational
inequalities and convex-concave saddle point problems,
to the best of our knowledge, there is neither theoretical
nor practical evidence for success of these methods on
general smooth saddle point problems.

6 CURVATURE EXPLOITATION
FOR LINEAR-TRANSFORMED
GRADIENT STEPS

Linear-Transformed Gradient Optimization
Applying a linear transformation to the gradient up-
dates is commonly used to accelerate optimization for
various types of problems. The resulting updates can
be written in the general form

zt+1 = zt + ηAzt(−∇xft,∇yft), ft = f(zt) (28)

where Az =

[
A 0
0 B

]
is a symmetric, block-diagonal

((k+d)× (k+d))-matrix. Different optimization meth-
ods use a different linear transformation Az. Table
1 in section B in the appendix illustrates the choice
of Az for different optimizers. Adagrad [11], one of
the most popular optimization methods in machine
learning, belongs to this category.

Extreme Curvature Exploitation We can adapt
Cesp to the linear-transformed variant:

zt+1 = zt + vzt
+ ηAzt

(−∇xft,∇yft). (29)

where we choose the linear transformation matrix Azt

to be positive definite. This variant of Cesp is also able
to filter out the undesired stable stationary points of
the gradient method for the saddle point problem. The
following lemma proves that it has the same properties
as the non-transformed version.
Lemma 10. The set of locally optimal saddle points
as defined in Def. 1 and the set of stable points of the
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linear-transformed Cesp update method in Eq. (29) are
the same.

A direct implication of Lemma 10 is that we can also
use curvature exploitation for Adagrad. Later, we will
experimentally show the advantage of using curvature
exploitation for this method.

7 EXPERIMENTS

7.1 Escaping From Undesired Stationary
Points of the Toy Example

Previously, we saw that for the two dimensional saddle
point problem on the function of Eq. (17), gradient
iterates may converge to an undesired stationary point
that is not locally optimal. As shown in Figure 3, Cesp
solves this issue. In this example, simultaneous gradient
iterates converge to the undesired stationary point
z0 = (0, 0) for many different initialization parameters,
whereas our method always converges to the locally
optimal saddle point. A plot of the basin of attraction of
the two different optimizers on this example is presented
in Figure 6 in the appendix.

7.2 Robust Optimization

Although robust optimization [4] is often formulated
as a convex-concave saddle point problem, we consider
robust optimization on neural networks that do not
fulfill this assumption. The optimization problem that
we target here is an application of robust optimization
in empirical risk minimization [29], namely solving

min
x

sup
P∈P

[
f(X;x,P)

=
{
EP [l(X; θ)] : D(P‖P̂n) ≤ ρ

n

} ]
(30)

where l(X;x) denotes the cost function to minimize, X
the data, and D(P‖P̂n) a divergence measure between
the true data distribution P and the empirical data
distribution P̂n.
We use this framework on the Wisconsin breast cancer
data set, which is a binary classification task with 30
attributes and 569 samples, and choose a multilayer
perceptron with a non-convex sigmoid activation as
the classifier. Due to the relatively small sample size,
we can compute the gradient exactly in this case. We
choose the objective f(X;x,P) in this setting to be

f(X;x,P)

=−
n∑
i=1

p∗i [yi log(ŷ(Xi)) + (1− yi) log(1− ŷ(Xi))]

− λ
n∑
i=1

(p∗i −
1

n
)2 (31)

where we add a regularization term with λ > 0 to
enforce the divergence constraint. Figure 4 shows
the comparison of the gradient method (GD) and
our CESP optimizer on this problem in terms of the
minimum eigenvalue of ∇2

xf(X;x,P). Note that f is
concave with respect to P and therefore its Hessian is
constant negative. The results indicate the anticipated
behavior that Cesp is able to more reliably drive
a convergent series towards a solution where the
minimum eigenvalue of ∇2

xf(X;x,P) is positive.

7.3 Generative Adversarial Networks

This experiment evaluates the performance of the Cesp
method for training a Generative Adversarial Network
(GAN), which reduces to solving the saddle point prob-
lem

min
x

max
y

[
f(x,y) = Eθ∼pd log(Dx(θ))

+ Ez∼pz log(1−Dx(Gy(z)))
]

(32)

where the functions D : Rn → [0, 1] and G : Rm → Rn
are represented by neural networks parameterized with
the variables x and y, respectively. We use the MNIST
data set and a simple GAN architecture with 1 hidden
layer and 100 units. More details about the network
architecture and parameters are summarized in table 2
in the Appendix.

We investigate the advantage of curvature exploitation
for Adagrad, which is a member of the class of linear-
transformed gradient methods often used for saddle
point problems. Moreover, we make use of Power itera-
tions as described in section 5 to efficiently approximate
the extreme curvature vector. Note that since we’re
using mini batches in this experiment, we do not have
access to the correct gradient information but also rely
on an approximation here.
As before, we evaluate the efficacy of the negative cur-
vature step in terms of the spectrum of f at a (approx-
imately) convergent solution z∗. We compare Cesp to
the vanilla Adagrad optimizer. Since we are inter-
ested in a solution that gives rise to a locally optimal
saddle point, we track (an approximation of) the small-
est eigenvalue of ∇2

xf(z∗) and the largest eigenvalue of
∇2

yf(z∗) through the optimization. Using these esti-
mates, we can evaluate if a method has converged to a
locally optimal saddle point. The results are shown in
figure 5. The decrease in terms of the squared norm of
the gradients indicates that both methods converge to
a solution. Moreover, both fulfill the condition for a lo-
cally optimal saddle point for the parameter y, i.e. the
maximum eigenvalue of ∇2

yf(z∗) is negative. However,
the graph of the minimum eigenvalue of ∇2

xf(z∗) shows
that Cesp converges faster, and with less frequent and
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(a) (b)

Figure 3: Comparison of the trajectory of GD and the Cesp proposal on the function in Eq. (17) from the starting point
(−3,−1). The background in the right plot shows the vector field of the extreme curvature, as defined in Eq. (20). Note
that for the function in Eq. (17) the curvature in the x-dimension is constant and positive, and therefore v

(−)
z is always

zero.

Figure 4: The left plot shows the minimum eigenvalue of
∇2

xf(X;x,P) and the right plot the squared gradient norm.
The solid line shows the mean value whereas the blurred
area indicates the 90th percentile. The Cesp optimzer
is superior in this example because for convergent series
where the gradientnorm ≈ 0 the minimum eigenvalue of
∇2

xf(X;x,P) > 0; for gradient-based optimization this is
not the case.

severe spikes, to a solution where the minimum eigen-
value is zero. Hence, the negative curvature step seems
to be able to drive the optimization procedure to re-
gions that yield points closer to a locally optimal saddle
point.

Even though this empirical result highlights the ben-
efits of using curvature exploitation, we observe zero
eigenvalues of ∇2

xf(z∗) for convergent solutions, which
violates the conditions required for our analysis. This
observation is in accordance with recent empirical ev-
idence [36] showing that the Hessian is actually de-
generate for common deep learning architectures. The
phenomenon itself as well as approaches to address it
are left as future work. One potential direction would
be to investigate if high-order derivatives could be used
at points where the Hessian is degenerate.

Figure 5: The first two plots show the minimum eigenvalue
of ∇2

xf(x,y) and the maximum eigenvalue of ∇2
yf(x,y),

respectively. The third plot shows ‖∇f(zt)‖2. The trans-
parent graph shows the raw computed values, whereas the
solid graph is smoothed with a Gaussian filter.

8 CONCLUSION

We focused our study on reaching a solution to the
local saddle point problem. First, we have shown that
gradient methods have stable stationary points that
are not locally optimal, which is a problem exclusively
arising in saddle point optimization. Second, we pro-
posed a novel approach that exploits extreme curvature
information to avoid the undesired stationary points.
We believe this work highlights the benefits of using
curvature information for saddle point problems and
might open the door to other novel algorithms with
stronger global convergence guarantees.
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