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A Proofs

A.1 Proof of Proposition 3.2

Given infinite samples per intervention I 2 I, G⇤

is recovered up to its I-Markov equivalence class.
Hence, the resulting entropy after placing an infinite
number of samples at each intervention is equal to
log2 |EssI(G)| when the true DAG is G. Since the
true DAG is unknown, this entropy must be aver-
aged over our prior distribution on G, which is uni-
form. Hence, the entropy after observing an infi-
nite number of samples per intervention in I equals
1
|G|

P
G2G log2 |EssI(G)|. Minimizing this entropy over

all possible interventions sets of size at most K com-
pletes the proof.

A.2 Proof of Theorem 3.4

Let

I1 := {I 2 I⇤ :
1X

b=1

|Ĩ 2 ⇠b : Ĩ = I| = 1 µ⇤a.s.},

where ⇠b denotes the interventions selected at batch b
by Uf

M.I. Since I⇤ is finite, I1 is non-empty. When
|I1| > 1, I1 is a conservative family of targets since
I⇤ is a family of single-node interventions. Hence,
we identify the I1-MEC of G⇤ in the limit of an
infinite number of batches and samples (Hauser and
Bühlmann, 2012). Assume |I1| > 1. If f(G) is iden-
tifiable in EssI

1
(G⇤), then

P (f(G) | DB)
µ
⇤ a.s.����! 1(f(G) = f(G⇤)).

Hence, it su�ces to show that the interventions Uf

M.I
selects infinitely often identifies f(G) in the limiting
interventional essential graph EssI

1
(G⇤). Suppose to-

wards a contradiction that f(G) were not fully iden-
tifiable in EssI

1
(G⇤). By definition of almost sure

convergence, there exists some b⇤ < 1 such that any
Ĩ 2 I⇤ \I1 is never selected again after batch b⇤ with
probability one since I⇤ is finite. Maximizing Uf

M.I. is
equivalent to minimizing the conditional entropy,

Hb

⇠
(f | Y⇠) := Ey⇠P(y|Db,⇠) H(f | Db, Y = y). (16)

If b > b⇤, then

argmin
⇠2ZI⇤\Cb

Hb

⇠
(f | Y⇠) = argmin

⇠2ZI1\Cb

Hb

⇠
(f | Y⇠) (17)

since any batch b after b⇤ never selects an interven-
tion in Ĩ 2 I⇤ \ I1. Since f is not identifiable in
EssI

1
(G⇤), that implies

lim
b!1

Hb

⇠1(f | Y⇠1) ! L > 0.

Figure 5: Each box represents the members of the
interventional Markov equivalence classes. For G⇤

given in the bottom left box, the observational Markov
equivalence class has no edges oriented. The top
box represents the essential graph of the observational
Markov equivalence class. The interventional Markov
equivalence class for an intervention at node one con-
sists of two DAGs given in the bottom box.

Since I⇤ consists of all single-node interventions, I⇤

can identify f(G) (Hauser and Bühlmann, 2012).
Hence, there must be some Ĩ 2 I⇤ \ I1 and ✏ > 0
such that

lim
b!1

Hb

⇠1[Ĩ1
(f) < L� ✏, (18)

where Ĩ1 denotes selecting Ĩ infinitely many times.
But Eq. (18) implies that there must exist some batch
b > b⇤ such that the conditional entropy of the de-
sign ⇠̃ = {Ĩ} is uniformly smaller than the conditional
entropy of any ⇠ 2 ZI1

. But this is a contradiction be-
cause then Ĩ would be selected again after some batch
b > b⇤ and Eq. (17) would no longer hold.

For |I1| = 1, we no longer have a conservative family
of targets. However, a nearly identical argument works
by noting that, in the limit, we learn the observational
equivalence class of the I1 mutilated graph of G⇤.

A.3 Consistency Counterexample

Suppose we know the Markov equivalence class of
G⇤ and the goal is to fully recover G⇤. Suppose
Cb = {⇠ : k⇠k0 = K}, where k · k0 counts the num-
ber of unique interventions in ⇠. Since there is no
constraint on the number of samples, only on the num-
ber of unique interventions, we may allocate an infinite
number of samples per intervention within each batch.
This constraint is equivalent to the one examined in
Ghassami et al. (2018). The scores in both Ness et al.
(2018) and Ghassami et al. (2018) select interventions
by maximizing the expected number of oriented edges
in the interventional Markov equivalence classes. In
particular, the utility function in Ness et al. (2018) is
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equivalent to maximizing,

U(I;D) =
X

G2G
A(EssI(G))P(G), (19)

where A(EssI(G)) equals the additional number of
edges oriented relative to the observational Markov
equivalence class. Suppose G⇤ equals the graph in
Fig. 5 and thatK = 1 unique interventions are allowed
within each batch. Assume that I⇤ = {{1}, · · · , {4}}
and that we start with a uniform prior over G.
Then, since all arrows are undirected in the obser-
vational Markov equivalence class, symmetry implies
U({j}; ;) = U({j}; ;) for all i, j 2 1, · · · , 4. Without
any loss of generality suppose intervention one is se-
lected in batch one. We show that every subsequent
batch will select intervention {1}. If only {1} were
selected, U(I;D) would not be consistent since the
{;, {1}}-MEC(G⇤) contains two graphs, as shown at
the bottom of Fig. 5. After batch one, the posterior is
supported on these two graphs since an infinite num-
ber of samples are allocated to the intervention at node
one.

The utility function in Eq. (19) scores interventions
relative to the observational equivalence class, which
causes the consistency issue. In particular, the poste-
rior in batch two is only supported on the two DAGs
given in the bottom box of Fig. 5. The score of {1}
equals 5 in batch two while the scores of interventions
{2}, {3}, {4} equal 4, 3, 4, respectively. Hence, in batch
two, intervention {1} will be selected again, but the
posterior will remain the same since the {;, {1}} in-
terventional Markov equivalence class of G⇤ is already
known.

An easy way to fix Eq. (19) (for this given counterex-
ample) would be to only select interventions not se-
lected in previous batches. This modification would
fix the issue with the counterexample, namely prevent
intervention one from being selecting infinitely often.
However, when one can only allocate a finite number of
samples per batch, this modification would not lead to
a consistent estimator. In particular, if a certain inter-
vention is done in some batch, and that intervention
must be conducted in order to identify f , then only
placing finitely many samples to that intervention in
that batch and never placing any more samples in sub-
sequent batches will not lead to a consistent method.

A.4 Proof of Theorem 4.1

Definition A.1. (Soma and Yoshida, 2016) Let E be
a finite set. A function f : ZE ! R is diminishing

returns submodular (DR-submodular) if for x  y

f(x+ �e)� f(x) � f(y + �e)� f(y), x, y 2 ZE (20)

where e 2 E and �e is the ith unit vector.

Lemma A.2. Ũf

M.I.(⇠;D) is DR-submodular.

Proof. f(G) = G so we omit f in Ũf

M.I. to simplify
notation. Since the sum of submodular functions is
submodular, it su�ces to show

E
y|G,✓̂

G
MLE,⇠

ŨM.I.(y, ⇠;D) = H(G)�H(G | Y⇠)

= I((G, ✓̂GMLE), Y⇠)
(21)

is DR-submodular, where I is the mutual information.
Consider an A ✓ B 2 ZI⇤

. Take any C 2 I⇤. Since
entropy decreases with more conditioning,

H(YC | YA)�H(YC | (G, ✓̂GMLE)) �
H(YC | YB)�H(YC | (G, ✓̂GMLE)).

(22)

By conditional independence,

H(YC | (G, ✓̂GMLE)) = H(YC | (G, ✓̂GMLE), YA)

= H(YC | (G, ✓̂GMLE), YB).
(23)

Hence, Eq. (22) may be rewritten as,

I((G, ✓̂GMLE), YC | YA) =

H(YC | YA)�H(YC | (G, ✓̂GMLE), YA) �
H(YC | YB)�H(YC | (G, ✓̂GMLE), YB) =

I((G, ✓̂GMLE), YC | YB).

(24)

Eq. (24) implies

I((G, ✓̂GMLE), YA + YC)� I((G, ✓̂GMLE), YA)

� I((G, ✓̂GMLE), YB + YC)� I((G, ✓̂GMLE), YB)
(25)

as desired.

The proof of Theorem 4.1 then follows directly from
Lemma A.2 and Soma et al. (2014, Theorem 2.4).

A.5 Proof of Proposition 4.2

For each graph G 2 GT , compute the associated edge
weights ✓̂GMLE. Computing each ✓̂GMLE takes O(p3)
time using the formula given in Hauser and Bühlmann
(2012, pg. 17). Since there are T DAGs, the total time
to compute the MLE estimates of the edge weights
of each DAG is O(Tp3). Sampling from a multi-
variate Gaussian with bounded indegree with known
adjacency matrix takes O(p) time. Ûf

M.I. requires a
total of |I⇤|MNbT 2 samples. Hence, the total com-
putation time of sampling all the ymt in Eq. (14) is
O(|I⇤|MNbpT 2). Evaluating Ûf

M.I. takes O(MT 2)
time using these samples, which is of lower compu-
tational complexity than computing Ûf

M.I.. Hence, the
total runtime is O(p3 + |I⇤|MNbpT 2).
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A.6 Constraint on the Number of Unique

Interventions

If we are only allowed to allocate at most K unique
interventions per batch, we modify Algorithm 3 by al-
locating Nb

K
samples per intervention in Algorithm 2.

Once an intervention is selected, that intervention is
removed from I⇤ and another one is greedily selected
from the remaining set. With this strategy, Algo-
rithm 2 will terminate after K iterations. Hence, there
will be at most K unique interventions as desired.

A.7 DREAM4 Supplementary Figures

We applied our targeted experimental design strategy
towards learning the downstream pathways of select
genes from a 10-node network from the DREAM4 chal-
lenge. We observed a modest improvement over the
random strategy for some central genes in the net-
work (Fig. 6, top). However, the results are subject to
high variations (Fig. 6, bottom), which we surmise to
be due to the small size of the observational dataset.
Nevertheless, these preliminary results illustrate the
promise of applying targeted experimental design to
real, large-scale biological datasets.



Targeted Causal Structure Discovery

Figure 6: Performance of intervention strategies on predicting the descendants of genes 6 (top) and 8 (bottom).
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