
Supplementary material: Forward Amortized Inference for
Likelihood-Free Variational Marginalization

A: Hyperparameter optimization

In the reversed KL approach the joint-contrastive loss
can be optimized simultaneously with respect to both
q and p. In the case of FAVI it is not possible to di-
rectly optimize the loss with respect to p since k(x)
cannot be evaluated in closed-form. This problem can
be overcome by rewriting the FAVI loss as an adversar-
ial minimax problem using the log-density-ratio trick
Tran et al. [2017]:
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where D∗1(x) is the logit output of a nonparametric
logistic regression trained to classify k(x) samples from
p(x) samples:

D∗1(x) =

arginfD
[
Ep(x)[log σ(D1(x))]− Ek(x)[log (1− σ(D1(x)))]

]
.

(2)

Analogously, D∗2(x|z) is the logit output of a condi-
tional (nonparametric) logistic regression trained to
classify q(z|x) samples from p(z|x) samples:

D∗2(x) = arginfD
[
Eq(z|x)p(x)[log σ(D2(x))]

− Ep(z|x)p(x)[log (1− σ(D2(x)))] . (3)

In practice, the FAVI is approximated by restricting
D(x) to be a parametrized function such as a deep
network. The gradient of the resulting loss is given
by:

∇pDKL(q‖p) = ∇pEp(x)[D
∗
1(x)]+∇pEp(x,z)[D

∗
2(z|x)] ,

which can be optimized by back-propagating through
the p(x) samples without requiring any direct evalua-
tion of the density p(x).

B: Details of the network for variational
Bayesian forecasting

The variational predictive distribution was
parametrized by a kernel mexture network. The
weights of the output kernel were given by the output

of a deep network comprised 6 of dilated convolution
layers with 30 one-dimensional kernels of length three
and rectified linear units. The initial dilation factor
was 1 and it was doubled after each layer. The
wights were obtained from the activations of the
last convolutinal layer by applying a fully connected
layer. We initialized the bias terms to zero and the
weights to samples drawn from a scaled Gaussian
distribution. The resulting Bayesian variational
forecaster was trained for 5000 iterations using the
adaptive optimizer Adam. At each iteration a batch
of 100 simulated training pairs was generated by
integrating the Lorentz dynamical system. This
procedure assures that the gradient of the network is
unbiased since the batches are sampled from the real
distribution.

C: Details of the meta-learning network

The diagram of the architecture of our meta-classifier
is shown in Fig. 1. In order to be able to adapt to dif-
ferent classification problems as specified by the dif-
ferent models in the ensemble, the network needs to
receive feedback concerning the labels of the previous
data points. This feedback is encoded as a vector of
length P × C, where P is the number of predictors
and C is the numbers of classification classes. The
feedback vector of the n-th sample takes the following
form: fn+1 = (yn1x

n , ... , ynCx
n), where ync is the

c-th component of the one-hot encoded label vector
of the n-th sample. This feedback vector is fed to a
layer of LSTM units through a dense linear map. The
output of this first LSTM layer is fed via a dense lin-
ear map to another smaller intermediate LSTM layer.
The outputs of these two LSTM layers are concate-
nated together with the current vector of predictors
xn+1 and fed into a non-recurrent hidden layer via a
dense linear map followed by an entry-wise Swish acti-
vation function. Finally, the probability vector of the
current label is obtained with a softmax output layer.

D: Details of the meta-learning ensemble

The performance of our approximate Bayes classifier
on real-world data relies on the choice of the ensemble
of models. Our aim is to define an ensemble prior that
is appropriate for weakly structured classification tasks
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Figure 1: A. Architecture of the recurrent meta-classifier.

where we do not have any prior information about
the structure of the predictors and of the statistical
relationship between predictors and class labels. We
used an ensemble of decision trees as methods based
on these models tend to have the highest performance
in these settings. We further increased the flexibility
of the ensemble by using differentiable probabilistic
decision trees. In these models, each split is deter-
mined by the inner product of the predictor with a
vector of weights: w>x. This allows for diagonal de-
cision rules at each split. Instead of using a determin-
istic decision rule we send the data to the left branch
with probability σ(w>x + b) and to the right branch
with probability 1− σ(w>x + b). Each leaf node was
labeled with a random label. The depth of the tree
was randomly sampled from 1 to 15. The weights and
the biases at each node were sampled from a spherical
normal distribution with mean 0 and variance 1. In
order to further increase the flexibility of our ensem-
ble we used a second family of classification models
alongside the differentiable trees. In this second fam-
ily, the classification dataset was generated as a set of
samples normally distributed along the vertices of a
10-dimensional hypercube. Each class then comprised
the samples associated with half of the vertices of the
hypercube. These datasets were created using Scikit-
learn toolbox (v0.18).

References

D. Tran, R. Ranganath, and David M. Blei. Hierar-
chical implicit models and likelihood-free variational
inference. arXiv preprint arXiv:1702.08896, 2017.


