
Semi-Analytic Nonparametric Bayesian Inference for Spike-Spike
Neuronal Connectivity

A Causal covariance functions

The causal covariance function used in this paper
induces three main features: temporal localization,
causality and smoothness. In the frequency domain,
temporal localization can be implemented by inducing
correlations between the Fourier coefficients of neigh-
boring frequencies. We induce these spectral correla-
tions with a squared exponential covariance function:

KSE(ω1, ω2) = e−ϑ
(ω2−ω1)2

2 +its(ω2−ω1) = e−ϑ
ζ2

2 +itsζ ,
(1)

where ζ = ω2 − ω1. In order to enforce causality, we
take the Hilbert transform of this squared exponential
covariance function. The resulting causal covariance
function is given by

KC(ζ) = KSE(ζ) + iHKSE(ζ) . (2)

Finally, smoothness is obtained by discounting high
frequency components. We use the following discount-
ing function:

f(ω1, ω2) = e−ν
ω2
1+ω2

2
2 . (3)

Our final covariance function is

K(ω1, ω2) = f(ω1, ω2) (KSE(ζ) + iHKSE(ζ)) . (4)

B Causal connectivity using Gaussian
processes

Consider a set of observable frequencies {uu}u. The
GP weights in the frequency domain are given by:

Ŵ = Γ̂j

(∑
i

Γ̂iK̂Γ̂∗
i + σ2I)−1 , (5)

whereK is has entries [K̂f ]uv = K(ωu, ωv) [Rasmussen,

2006]. The matrices Γ̂i are diagonal with the entries
given by γj(ωu). The weights can be transformed back
to the time domain by multiplying Eq. 5 with a matrix
of Fourier basis functions from the left.

C Simulation procedure

Each coupling structure is denoted by an adjacency
matrix A = {aij} with elements aij either 0 indicat-
ing the absence of a connection, or 1,−1 for excitatory

and inhibitory connections, respectively. The adja-
cency matrix is multiplied with a connection strength
w, which is varied to investigate the effect on the recon-
struction of causal influence for increasingly stronger
coupling. For the true causal response function we
use a canonical EPSP (IPSP) [Koch, 2004]. With the
causal response structure given, action potentials are
simulated according to the generative model described
in the main text, using the following biologically plau-
sible parameter settings: threshold φ = −53mV, gain
a = 0.5mV−1, maximum firing rate b = 200Hz and
membrane time constant τ = 15ms. With this pro-
cedure, we generated 200 random trials for each of
the five coupling structures. Effect sizes for estimated
connections are obtained as the mean estimated causal
response function divided by its standard deviation, at
the point of the peak of the EPSP (IPSP). For absent
connections, this timing is indicated with a dashed line
in the figures.

Estimated connectivity for one connection âij is deter-
mined by

âij = (p-value < p-threshold)× sign(z-score) , (6)

with Â = {âij}, with z-scores and p-values determined
over (bootstrapped) trials at time point of the peak of
the true EPSP in the case of present directed connec-
tivity, and at the halfway point for absent connections.
The p-values were obtained using a simple z-test, with
p-threshold = 0.005/m, with m = N(N − 1) the num-
ber of potential edges in the network, to correct for
multiple comparisons. Subsequently, the root-mean-
squared-error is computed between the actual adja-
cency matrix A and the estimated matrix Â.

D Data acquisition

The CRCNS.org hc-3 data set Mizuseki et al. [2014,
2013] consists of multi-unit recordings measured in
multiple hippocampal regions of rats performing differ-
ent behavioral tasks. Here we analyze four recordings
of animal ec012, acquired for two behavioral tasks;
in the first condition the rat walks freely in an open
square of 180 by 180cm (sessions ec012ec.228 and

229), in the second condition the rat walks in a lin-
ear maze (sessions ec012ec.239 and 240). The pro-
vided recordings are readily preprocessed into spike
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trains via KlustaKwik Kadir et al. [2014] and Klusters
(http://neurosuite.sourceforge.net/). The pipeline de-
tects and groups spikes into neuronal sources, with
spikes looking similar expected to stem from the same
neuron. To apply our inference method on the pro-
vided spike trains, the spike-sorted data was down-
sampled from 20kHz to 1kHz. Subsequently, we se-
lected the three most-active neuronal clusters within
this recording session for further analysis: Two of the
selected neuronal clusters are located in region entorhi-
nal cortex layer three (EC3) and one in region entorhi-
nal cortex layer five (EC5). The clusters are labeled as
ECa.b.c, where a denotes the entorhinal cortex layer
number, b is the electrode number and c the iden-
tified cluster. Finally, for each considered session the
first 50 000 time points of the selected neuronal clusters
are partitioned into 200 samples, each of 250ms length,
which results in data dimensions similar to those used
in the simulations.

E Deep networks architecture

In our experiments, the conditional variational distri-
butions q(mj , |sk) were Gaussian distributions with
diagonal covariance matrix. The means and log vari-
ances of these distributions were determined by the
output of a network comprised 8 of dilated convolu-
tion layers with 60 one-dimensional kernels of length
three and rectified linear units. The dilation factors of
the first two layers were one and doubled after every
subsequent layer. The number of convolution layers
was chosen to be the largest possible value such that
the receptive field length of the last convolution layer
was less than the signal length. The output of the net-
work was given by two fully connected layers, one de-
termining the means of the Gaussian µ and the other
the log variances l. We initialized the bias terms to
zero and the weights to samples drawn from a scaled
Gaussian distribution. We used Adam with initial α =
0.001, β1 = 0.9, β2 = 0.999, ε = 10−8 and a mini-batch
size of 100 to train the network for 20,000 epochs by
iteratively minimizing a the stochastic variational loss.

F: Estimated causal response functions

Figures 1 and 2 show the estimated causal response
functions for each of the five considered network struc-
tures, for both variants of SGP CaKe as well as both
variants of the Hawkes process.
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Figure 1: Estimated connectivity for networks 1 and 2.
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Figure 2: Estimated connectivity for networks 3, 4 and 5.


