Two-temperature logistic regression based on the Tsallis divergence

A Verification of Iterative Algorithms
for Computing G;

In this section, we verify that the iterative algorithm for
computing G, is going to converge in the binary case.
The proof for the multiclass case follows immediately
as a simple extension. We only need to verify that a,
converges to the corresponding a of a such that the
value of (G; normalizes the sum.

First of all, given a, since t > 1 and Z(a) > 1, it is
clear that 0 < @ < a. On the domain of 0 < u < a,
it is easy to verify that Z(u)!~*a — u is a monotoni-
cally decreasing function and it crosses at 0 only at a.
Therefore, when El(k) > a, d(k+1) < &(k); when &(k) < a,
A(k+1) > Q(k)-

We then prove that a) is a monotonically decreasing
sequence. We prove this by mathematical induction.
Since ay = a, agy < a = a(o) Next assume that
in the k-th iteration, a) < a(;~C 1. Since Z(aw) >
Z(a(k—1)), we have @41y < G(x). Therefore, it follows
that () is monotonically decreasing and it is lower
bounded by a. Furthermore, limg_, o a(z) exists.

Finally,
li ay = i
k—iI-QI-loo ak) lc—gr-l a(kJrl)
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= kgriloo Z(a( )) a

=Z( lim ag))' a,
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(A1)

where (A.1) holds because Z(u)!~* is continuous in w.
Therefore, it follows that limy_, o a(x) = a.

For the binary case when ¢ = 2, note that

expy(z) = (1 —2)"" and log,(z)=1—az"".

The value Gy(a) needs to satisfy

L= expy(5 — Gol@) + expy(—3 — Gi(a))
1 1
+ 1 —af2+ Gi(a)

149k + Gia)
__ 2(1+Gi(a))
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which yields

2

(L+Gil@) = =

2 (14 Gy(a)).

By cancelling the terms from both sides, we have

2
Gia)? =2 +1.

4
Ve fa+ 1.

Since Gt(a) > 0, we have Gi(a) =

B Proof of Remark [1|

For the surrogate loss

&2 (a) = —log,, expy,(a/2 — Gy, (a)),
we have
afff (a) A to—t, (1
i = il (- 06u@)
*&2(@) s
a2~ DPe (@)™ x (B.1)

0*Gy,(a) — (ty —t1) Pr,(a)27? <; — Gy, (a))zl ;

where we define py,(a) = exp,(a/2 — Gy,(a)) and
0G4, (a) and 9*Gy,(a) are given as follows.

(B.2)

2

t)2cexpy, (50— G (a)** 7 [§ —0Gu ()]

0*Gy,(a) = 2
() >, oxby, (-G (a))1
(B.3)
For to = t1 > 1, we have
9%¢;2 (a)
Toaz 82Gt2(a) >0,

which can be verified from (B.3)). Moreover, for ¢; > 1
and t; > to, we have

PGia) 1
> puy(a)

2
> #Gu(0) + (1~ ) @) (3 - Gula))
> 0°Gy,(a) > 0.

Thus, the loss is convex, similar to the latter case.
Now, consider the case to > ¢;. Suppose p,(—a) =
(1 —pr,(a)) = AP, (a) for some A > 0. Substituting for

Pt,(—a) in (B.2) and (B.3), we can write (B.1)) as

P&ia) 1
Toar PR ey

() - ).

For sufficiently small (respectively, large) value of A,

2t2a 2 a
922 (a) ft1(><0) The

we have —51— > 0 (respectively,
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inflection point happens when to(1+ §) = (t2 —t1)(1+

92¢t2
Atz), e, 5 g,

Finally, we show the case t; < 1. We only need to
consider the case to < t; < 1. Note that for the binary
case,

expy, (a/2 — Gy, (a)) + expy, (—a/2 — G, (a)) = 1.
(B.5)
Using the definition of exp,,, we can write (B.5) as

[+ (1 —t2) (/2 — Gy ()] 7
F+ (=) (a2 = Gu(@)Y 7 = 1. (B6)

For a =0, yields

_ 1
L+ (1= 1) (=G (O = 5.
From t; < 1, we have (1 — t3) > 0 and there-
fore, G¢,(0) > 0. From convexity and symmetry
(G, (a) = Gy, (—a)) conditions, we conclude Gy, (a) >
Gt,(0) > 0,Va. Consequently, for values of a <

—(1_%2), Gi,(a) = —% satisfies (B.5). This implies
that for a < 7(1_71@), we have py,(a) = 0 and thus,

&2(a) = —log, (0) = —1_—1tl is a constant. From (B.4)),
we conclude that the loss is convex for a > —(1_71)52) and

is a constant for a < _(lfltz) Thus, it is quasi-convex.
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