
E{cient Bayes Risk Estimation for Cost-Sensitive Classi}cation

Daniel Andrade Yuzuru Okajima
Security Research Laboratories, NEC

s-andrade@cj.jp.nec.com
Security Research Laboratories, NEC

y-okajima@bu.jp.nec.com

Abstract

In some real world applications, acquir-
ing covariates for classi}cation can be cost-
intensive and should be limited as much as
possible. For example, in the medical set-
ting, a doctor cannot just perform all possi-
ble types of tests to classify whether the pa-
tient has diabetes or not. The decision of
classifying or acquiring more covariates be-
fore classifying is dependent on the costs of
new covariates and the expected optimal cost
of misclassi}cation (Bayes risk). However, es-
timating the latter is a formidable task due
to the estimation of a high dimensional prob-
ability density and intractable integrals. In
this work, we show that for linear classi}ers
this task can be considerably simpli}ed, lead-
ing to a one dimensional integral for which we
propose an e{cient approximation. Experi-
mental results on three datasets show consis-
tent improvements over previously proposed
methods for cost-sensitive classi}cation. We
also demonstrate that our proposed Bayes
risk estimation procedure can bene}t from
additional unlabeled data which can be help-
ful when only small amount of labeled data
is available.

1 Introduction

The traditional classi}cation and regression tasks as-
sume that all covariates can be provided at zero cost.
In such settings, reducing the number of covariates is
motivated by the increase in interpretability and re-
duction of model complexity (Tibshirani, 1996; Hastie
et al., 2015).
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However, in some applications acquiring covariates in-
cur costs which need to be balanced with the risk of
misclassi}cation. For example, in the medical setting,
a doctor cannot just perform all possible types of tests
to classify whether the patient has diabetes or not. In-
stead, depending on the observed symptoms of a pa-
tient, she might decide to conduct an additional blood
examination or, without further tests, she might de-
cide that the patient has no diabetes.

In such applications, the }nal goal is to minimize the
total costs of classi}cation, de}ned as the sum of the
acquired covariates’ costs and the expected misclas-
si}cation costs (Bayes risk). While the objective can
be stated formally rather straight forward (see Section
2), the optimization is complicated due to a combina-
torially hard selection problem and the evaluation of
a multi-dimensional integral for estimating the Bayes
risk. While the former problem has some similarity to
the problem of variable selection in (generalized) lin-
ear regression (see e.g. Tibshirani (1996); O’Hara et al.
(2009)), the latter problem is unique to this task. Here
in this work, we focus on the latter problem, and show
that for linear classi}ers the problem can be simpli}ed
to a one-dimensional integral for which we propose an
e{cient estimation. Compared to other methods, our
proposed method experimentally leads to a reduction
in total classi}cation costs. Furthermore, our proposed
method allows to include unlabeled data in a straight
forward way, which further reduces costs.

In the next section, we introduce the necessary ter-
minology and clarify the optimal classi}cation strat-
egy, followed by Section 3 where we introduce our pro-
posed method. In Section 4, we compare our proposed
method to several previous work on three standard
datasets for cost-sensitive classi}cation. In Section 5,
we summarize the previous work on cost-sensitive clas-
si}cation. Finally, in Section 6 we summarize our con-
clusions.
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2 A cost rational selection criteria

Let L := {l1, . . . , lc} denote the set of class labels, and
cy,y∗ the cost of classifying a sample as class y∗, when
the true label is y. A decision procedure δ∗ : Rp → L
for which

∀δ : Ex,y[cy,δ(x)] ≥ Ex,y[cy,δ∗(x)]

is called a Bayes procedure. The following procedure
δ∗ is a Bayes procedure (for a proof see, for example,
Theorem 6.7.1 in Anderson (2003)):

δ∗(x) = argmin
y∗∈L

∑
y∈L

p(y|x) · cy,y∗

= argmin
y∗∈L

Ey[cy,y∗ ] .
(1)

The expected mis-classi}cation cost of the Bayes pro-
cedure, i.e. Ex,y[cy,δ∗(x)] is called the Bayes risk.

Let us denote by V := {1, . . . , p} the index set of co-
variates with V ∩ L = ∅. We denote the Bayes proce-
dure for classifying a sample based only on the covari-
ates S ⊆ V by δ∗S : R|S| → L. That means

δ∗S(xS) = argmin
y∗∈L

∑
y∈L

p(y|xS) · cy,y∗ . (2)

When it is clear from the context, we drop the index
on δ∗S , and just write δ∗(xS) instead of δ∗S(xS).1

2.1 Optimal Procedure

The classical de}nition of Bayes procedure does not
consider the cost of covariate acquisition, and assumes
that all covariates are acquired at once. Therefore, let
us }rst formally extend the de}nition appropriately.

We use the following de}nition of a decision procedure.
De}nition 1. A function of the form

π : Rp × 2V → L ∪ V ,

which ful}lls, ∀x ∈ Rp, S ⊆ V :

π(x, S) = π(x� 1S , S) , (3)
π(x, S) ∈ L ∪ (V \ S) , (4)

is called a decision procedure.2

1Remark about our notation: we denote by bold font a
column vector, e.g. x ∈ Rp, and a column vector indexed
by a set A ⊆ V denotes the corresponding sub-vector, e.g.
xA ∈ R|A|.

2� denotes the Hadamard product, and 1S ∈ Rp is the
vector that is one in all positions indexed by S, and zero
otherwise.

The condition in Equation (3) means that a decision
procedure uses only the covariates that are indexed by
S; the condition in Equation (4) means that a decision
procedure cannot select a covariate that is already in
S. In summary, the decision procedure π(x, S) either
classi}es the current sample, or selects a new covariate
based on the observations xS . To simplify the nota-
tion, we write π(xS) instead of π(x, S). Furthermore,
we denote the cost of acquiring covariate i by ci.

Given a sample x with class label y, we denote the loss
of a decision procedure π as l((x, y), π). The loss can
be computed recursively as follows. Let l((x, y), π) :=
l((x, y), π, ∅), with

l((x, y), π, S) ={
cy,π(xS) if π(xS) ∈ L,

cπ(xS) + l((x, y), π, S ∪ {π(xS)}) else.

If not stated otherwise, we assume that all costs are
non-negative, i.e. ci ≥ 0, and cy,y′ ≥ 0.
Theorem 1. The decision procedure π∗ de}ned by

π∗(xS) =

argmin
i∈L∪(V \S)

{
Ey[cy,i|xS ] if i ∈ L ,

ci + ExV \S ,y

[
l((x, y), π∗, S ∪ {i})|xS

]
else.

is a Bayes procedure. That means for any other deci-
sion procedure π we have

Ex,y[l((x, y), π
∗)] ≤ Ex,y[l((x, y), π)] .

The proof is given in the supplement material. We
note that if the covariates are discrete, then we can
formulate the problem as a stationary Markov deci-
sion process (MDP) where every policy leads to a ter-
minal state (Zubek et al., 2004; Bayer-Zubek, 2004).
The Bayes procedure from Theorem 1 is then equiv-
alent to the optimal policy de}ned by the Bellman
updates with the discounting factor set to 1 (Russell
and Norvig, 2003).

For continuous covariates, implementing the exact de-
cision procedure π∗ is, in general, intractable. The
reason is that in order to recursively evaluate the loss,
we need to evaluate a sequence of interchanging mini-
mizations and expectations. Therefore, our }rst relax-
ation is to pull-out all minimizations which leads to an
upper bound:

Ex,y[l((x, y), π
∗)] ≤

=:U︷ ︸︸ ︷
min
S⊆V

(
ExS ,y[cy,δ∗(xS)] +

∑
i∈S

ci

)
In the following, we denote this upper bound by U .
However, evaluating this upper bound is still com-
putationally di{cult for two reasons: First, iterating
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over all subsets S ⊆ V is intractable for even moder-
ate number of covariates. Second, evaluation of the
expectation ExS ,y[cy,δ∗(xS)] requires to estimate the
probability density of xS and to solve an analytically
intractable integral of dimension |S|.

3 Adaptive Cost-sensitive Forward
Selection

For evaluating U , instead of considering all subsets S ⊆
V , we limit our search to S ∈ S = {S1, S2, . . . Sq},
which is such that S1 ⊆ S2 ⊆ S3 . . . Sq ⊆ V . Here we
assume that S is given, and helpful in the sense that
it leads to a tight upper bound of U . Later in Section
3.2, we explain a heuristic to }nd such a set of subsets.

Before we proceed, let us introduce our de}nition of
future costs. Let A ⊆ V and S ⊆ V \ A, then we
de}ne

FxA
(S) :=

(conditional) Bayes risk︷ ︸︸ ︷
ExS ,y

[
cy,δ∗(xA∪S)|xA

]
+

covariate costs︷ ︸︸ ︷∑
i∈S

ci . (5)

FxA
(S) is the expected total additional cost of classi-

}cation when we have already acquired the covariates
A, and are planning to acquire additionally the co-
variates S before classifying. In particular, the upper
bound U can be expressed as minS⊆V Fx∅(S).

Our approximation of the Bayes procedure π∗ from
Theorem 1 is given in Algorithm 1. First, we acquire
all covariates indexed by S1, and then check whether
acquiring any additional covariates from S2\S1, . . . Sq\
S1 reduces the total cost of classi}cation in expecta-
tion. If that is case, we acquire the covariates in S2\S1,
and proceed analogously. If the total cost of classi}ca-
tion is not expected to decrease with more covariates,
we stop and classify based on the covariates acquired
so far.

Algorithm 1: Adaptive Cost-sensitive Forward
Selection (AdaCOS) for classifying a test sample.
Input: S1, . . . , Sq

S0 := ∅
for i ∈ {1, . . . , q − 1} do

acquire xSi\Si−1

if ∀j ∈ {i+ 1, .., q} : FxSi
(Sj \ Si) ≥ FxSi

(∅)
then

output class δ∗(xSi
)

end
end

The algorithm is adaptive in the sense that the ex-
pected future costs FxA

(S) depend on the covariates

xA observed so far. Therefore, we see that the ezec-
tiveness of the Algorithm hinges on the non-trivial task
of calculating FxA

(S).

3.1 Bayes Risk Estimation

The main challenge in evaluating the future costs
is to estimate the multi-dimensional integral in
ExS ,y

[
cy,δ∗(xA∪S

)|xA

]
. By assuming that the condi-

tional class probability p(y|xA∪S) can be modeled by
a logistic regression model, we will show that it is pos-
sible to reduce the multi-dimensional integral into a
one-dimensional with an ezective approximation.

Let us denote, by β and τ , the regression coe{cients
and intercept, respectively, of the logistic regression
model for p(y|xA∪S). Furthermore, for simplicity, we
assume that there are only two class labels {0, 1}, and
c0,0 = c1,1 = 0.3

ExS ,y

[
cy,δ∗(xA∪S

)|xA

]
= ExS

[∑
y

cy,δ∗(xA∪S)p(y|xA∪S)|xA

]
= ExS

[
c0,δ∗(xA∪S)p(y = 0|xA∪S)|xA

]
+ ExS

[
c1,δ∗(xA∪S)p(y = 1|xA∪S)|xA

]
.

Since

δ∗(xA∪S) = argmin[p(y = 1|xA∪S) · c1,0,
p(y = 0|xA∪S) · c0,1] ,

we have

δ∗(xA∪S) = 1 ⇔ p(y = 1|xA∪S) · c1,0
p(y = 0|xA∪S) · c0,1

≥ 1

⇔ g(βTxA∪S + τ) · c1,0
(1− g(βTxA∪S + τ)) · c0,1

≥ 1

⇔ eβ
TxA∪S+τ ≥ c0,1

c1,0

⇔ βTxA∪S ≥ log(
c0,1
c1,0

)− τ

⇔ βT
SxS ≥ log(

c0,1
c1,0

)− τ − βT
AxA

⇔ z ≥ z∗ ,

where we de}ned z := βT
SxS , and z∗ := log(

c0,1
c1,0

) −
τ − βT

AxA. We see that δ∗(xA∪S) depends only on z
(random variable) and z∗ (}xed). In the following, to
simplify notation, let us denote by h(z) the conditional
distribution p(z|xA), and by g the sigmoid function.

3Extension for allowing non-zero costs for cy,y is
straight-forward, and omitted here.
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We thus have

ExS

[
c1,δ∗(xA∪S)p(y = 1|xA∪S)|xA

]
= ExS

[
c1,δ∗(xA∪S)g(β

T
AxA + βT

SxS + τ)|xA

]
= Ez

[
c1,δ∗(z,z∗)g(z + βT

AxA + τ)|xA

]
=

∫
c1,δ∗(z,z∗)g(z + βT

AxA + τ)h(z)dz

=

∫ z∗

−∞
c1,0g(z + βT

AxA + τ)h(z)dz

+

∫ ∞

z∗
c1,1g(z + βT

AxA + τ)h(z)dz

= c1,0

∫ z∗

−∞
g(z + βT

AxA + τ)h(z)dz

+ c1,1

∫ ∞

z∗
g(z + βT

SxA + τ)h(z)dz

= c1,0

∫ z∗

−∞
g(z + βT

AxA + τ)h(z)dz .

And, analogously, we have

ExS

[
c0,δ∗(xA∪S)p(y = 0|xA∪S)|xA

]
= c0,1

∫ ∞

z∗
h(z)dz − c0,1

∫ ∞

z∗
g(z + βT

AxA + τ)h(z)dz .

Thus the remaining task is to evaluate the following
integral∫ b′

a′
g(z + βT

AxA + τ)h(z)dz

=

∫ b′+βT
AxA+τ

a′+βT
AxA+τ

g(u)h(u− βT
AxA − τ)du . (6)

We assume that h(z) = p(z|xA) can be well approx-
imated by a normal distribution with mean µz and
variance σ2. We defer the explanation of how to esti-
mate µz and σ2 to Section 3.1.1.

The integral in Equation (6) has no analytic solution.
One popular strategy is to approximate the sigmoid
function g by the cumulative distribution function of
the standard normal distribution Φ, as in Gaussian
process classi}cation (Rasmussen and Williams, 2006).
However, it turns out that this approximation is not
applicable here, since a′ or b′ is bounded in our case.
Instead, we use here the fact that the sigmoid function
can be well approximated with only a few number of
linear functions. In order to facilitate notation, let us
introduce the following constants:

a := a′ + βT
AxA + τ ,

b := b′ + βT
AxA + τ ,

µ := µz + βT
AxA + τ .

Then we can write the integral in Equation (6) as∫ b

a

g(u)
1√
2πσ2

e−
1

2σ2 (u−µ)2du . (7)

Let us de}ne the following piecewise linear approxima-
tion of the sigmoid function:

g(u) ≈
ξ+2∑
t=1

(
1[bt−1,bt](u)

(
mtu+ vt

))
,

where for 1 ≤ t ≤ ξ + 1, we set bt := −10 + 20
ξ (t− 1) ,

and for 1 ≤ t ≤ ξ, we set

mt+1 :=
g(bt+1)− g(bt)

bt+1 − bt
, vt+1 := g(bt)−mt+1bt ,

and

b0 := −∞ , m1 := 0 , v1 := g(b1) ,

bξ+2 := +∞ , mξ+2 := 0 , vξ+2 := g(bξ+1) ,

and ξ is the number of linear approximations, which is,
for example, set to 40. A comparison with the approx-
imation Φ(

√
π
8u) is shown in Figure 1. That means

for a relatively few number of linear approximations,
we can achieve an approximation that is more accu-
rate than the Φ-approximation. More importantly, as
we show below, this allows for a tractable calculation
of the integral in Equation (7), which is not the case
when using the Φ-approximation. Then we have∫ b

a

g(u)
1√
2πσ2

e−
1

2σ2 (u−µ)2du

=

∫ b

a

ξ+2∑
t=1

(
1[bt−1,bt](u)

(
mtu+ vt

)) 1√
2πσ2

e−
1

2σ2 (u−µ)2du

=

ξ+2∑
t=1

mt

∫ min(b,bt)

max(a,bt−1)

u
1√
2πσ2

e−
1

2σ2 (u−µ)2du

+ vtΦ
min(b,bt)
max(a,bt−1)

,

where we denote by Φo
l :=

∫ o

l
1√

2πσ2
e−

1
2σ2 (u−µ)2du

which can be well approximated with standard imple-
mentations. The remaining integral can also be ex-
pressed by Φ using the substitution u − µ := r, we
have∫ o

l

u
1√
2πσ2

e−
1

2σ2 (u−µ)2du

=

∫ o−µ

l−µ

r
1√
2πσ2

e−
1

2σ2 r2dr + µ

∫ o−µ

l−µ

1√
2πσ2

e−
1

2σ2 r2dr

=
σ√
2π

(
e−

1
2σ2 (l−µ)2 − e−

1
2σ2 (o−µ)2

)
+ µΦo

l .
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Figure 1: Comparison of Sigmoid function approxima-
tions. For the linear function approximation and the
discrete bin approximation (Ji and Carin, 2007) we
set ξ = 40. For the normal CDF approximation we
use Φ(

√
π
8u).

3.1.1 Estimation of µz and σ2

Recall that we assumed that p(z|xA) is a normal den-
sity with mean µz and variance σ2. In order to es-
timate µz and σ2, we propose to model z given xA

as a regression problem with additive noise, where z
is the response variable, and xA are the explanatory
variables. In detail, for learning the regression model
from the training data {x(k)}nk=1, we prepare a collec-
tion of response and explanatory variable pairs of the
form {(z(k),x(k)

A )}nk=1, where z(k) = βT
Sx

(k)
S . The im-

portant point to note is that for training the regression
model, we do not require the class label y. As a conse-
quence, additional to the class-labeled training data,
we can exploit unlabeled training data (if available).

For our experiments, we use a standard Bayesian lin-
ear regression model with a scaled inverse χ2 distri-
bution prior on the noise variance (Gelman et al.,
2013). However, we note that our choice is not limited
to linear regression models, and we could also apply
a non-parametric probabilistic regression model like
Gaussian process regression (Rasmussen and Williams,
2006).

3.2 Subset Selection

Finally, we describe our heuristic for }nding a sequence
of subsets S1 ⊆ S2, . . . Sq ⊆ V for which the expected
total cost of classi}cation is minimal. We suggest to
set q := p + 1, and use greedy forward selection as
outlined in Algorithm 2.

Algorithm 2: Cost-sensitice forward selection
(COS) for }nding subsets S1 ⊆ S2, . . . Sp+1 ⊆ V .
Input: {x(k)}nl+nu

k=nl+1, {(y(k),x(k))}nl

k=1

S1 := ∅
for i ∈ {1, . . . , p} do

Si+1 := argminj∈V \Si
ExSi

[FxSi
({j})]

end

Note that from the de}nition in Equation 5, we have

ExS
[FxS

({j})] = ExS

[
Exj ,y[cy,δ∗(xS∪{j})|xS ]

]
+

∑
i∈S

ci .

In case, where unlabeled data {x(k)}nl+nu

k=nl+1 is avail-
able, we estimate ExS

[FxS
({j})] using

ExS

[
Exj ,y[cy,δ∗(xS∪{j})|xS ]

]
= ExS∪{j}

[
Ey[cy,δ∗(xS∪{j})|xS∪{j}]

≈ 1

nu

nl+nu∑
k=nl+1

∑
y∈L

c
y,δ∗(x

(k)

S∪{j})
p(y|x(k)

S∪{j}) , (8)

where the conditional class probability model
p(y|xS∪{j}) is learned with the labeled data
{(y(k),x(k))}nl

k=1. Otherwise, we use a 10-fold cross-
validation estimate:

ExS

[
Exj ,y[cy,δ∗(xS∪{j})|xS ]

]
≈ 1

|Af |
∑
k∈Af

∑
y∈L

c
y,δ∗(x

(k)

S∪{j})
pf (y|x(k)

S∪{j}) ,

where Af ⊆ {1, . . . , nl} and pf is trained with
{1, . . . , nl} \ Af . Note that we expect the estimate
using the unlabeled data to perform better due to the
fact that it uses more data to approximate the joint
probability p(x, y).

4 Experiments

We evaluate our method on three datasets that are
frequently used for cost-sensitive classi}cation: Pima
Diabetes dataset (p = 8, n = 768), MiniBooNE parti-
cle identi}cation dataset (p = 50, n = 130065), and the
Wisconsin Breast Cancer dataset (p = 10, n = 683),
all available at the UCI Machine Learning repository4.
All datasets are binary classi}cation tasks.

For the Diabetes and Breast Cancer datasets we use 5-
fold crossvalidation; for the MiniBooNE dataset, from
the whole dataset, we sample 5 random sets which are
then split into labeled training data (500), test data

4https://archive.ics.uci.edu/ml/index.html
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(1000), and unlabeled training data (10000).5 In or-
der to compare our method with previous work, we use
a symmetric misclassi}cation cost ci,j = cj,i, which is
varied in the range between 100 and 1000. For the
MiniBooNE and Breast Cancer dataset we set the co-
variate acquisition costs to 1, and the costs of correct
classi}cation ci,i to 0. For Diabetes, in order to com-
pare our results to the ones reported in (Ji and Carin,
2007; Dulac-Arnold et al., 2012), we use the same co-
variate costs, and set the costs of correct classi}cation
to −50.

As baseline classi}er, we use logistic regression with l2-
regularization, where the regularization is determined
using 10-fold cross-validation on the training data.
The “full model” refers to the baseline classi}er using
all covariates. Due to the limited amount of labeled
data, we found that for all datasets this baseline per-
formed better than non-linear classi}ers like SVM with
RBF-Kernel.

The method COS refers to the method which selects
one subset of covariates Si∗ ∈ S from Algorithm 2,
for which the expected total cost of classi}cation is
minimal. The set of covariates Si∗ is then }xed at test
time.

The proposed method (AdaCOS) uses the sequence of
covariate sets S, and decides at test time whether to
follow the sequence (ask for more covariates) or classify
by estimating the total costs as described in Algorithm
1.

We also run two other methods for cost-sensitive classi-
}cation, namely GreedyMiser (Xu et al., 2012) and its
extended version (Nan and Saligrama, 2017) for which
the source code is publicly available and executable on
a Linux environment.6 The latter requires the speci}-
cation of a high accuracy classi}cation model for which
we use the full model.

As evaluation measure, we use the average total cost
of classi}cation, de}ned as

avg total cost := 1

nt

nt∑
k=1

(
cyk,y∗

k
+

∑
i∈Sk

ci
)
,

where nt is the number of test samples; yk and y∗k is
the k-th true test class and predicted test class, respec-
tively; Sk is the set of covariates that were used by the
prediction model for classifying the k-th sample.

The results are shown in Figures 2 and 3. In Table 1
we also compare all methods to the results reported

5Due to the small size of the Diabetes and Breast Cancer
datasets, we did not prepare unlabeled training sets for
those.

6Available at http://kilian.cs.cornell.edu/code/
code.html and https://github.com/fnan/AdaptApprox.

Table 1: Additional comparisons with methods
DWSM (Dulac-Arnold et al., 2012) and POMDP (Ji
and Carin, 2007). Total costs on Diabetes dataset
when the misclassi}cation costs are set to 400 and 800,
respectively.

400 800
AdaCOS 71.3 (8.95) 164.78 (14.78)
COS 74.7 (16.35) 170.34 (29.94)
Full Model 98.94 (5.7) 190.09 (10.77)
GreedyMiser 91.36 (14.43) 200.96 (31.93)
AdaptGbrt 90.41 (5.87) 200.92 (17.9)
DWSM 74.0 (-) 181.0 (-)
POMDP 75.0 (-) 180.0 (-)

in (Ji and Carin, 2007; Dulac-Arnold et al., 2012). On
all three datasets the proposed method AdaCOS shows
the smallest total classi}cation cost.

In Figure 2, right-hand side, we also analyzed the im-
pact of unlabeled data for the MiniBooNE data. The
results suggest that a considerable reduction in total
classi}cation costs can be achieved by using the esti-
mator in Equation 8.

We also investigated the average costs of covariates,
i.e. 1

nt

∑nt

k=1

∑
i∈Sk

ci that were acquired by each
method. As shown in Figure 4, more (expensive) co-
variates are selected when the costs of wrong classi}-
cation get higher. Furthermore, we can conclude that
AdaCOS tends to select similar or less (expensive) co-
variates than other methods while achieving better ac-
curacy.

5 Related Work

Here, we brie~y summarize various previous works for
cost-sensitive classi}cation.

Markov Decision Process (MDP) Framework
The MDP formulation and solution using an action-
utility representation (Q-learning) in (Zubek et al.,
2004; Bayer-Zubek, 2004) is closest to our approach.
Their method also leads to a Bayes procedure, how-
ever, they do not provide a formal proof and consider
only discrete covariates. The work in (Dulac-Arnold
et al., 2011, 2012; Karayev et al., 2013) also uses the
MDP framework. However, their proposed method
cannot incorporate the uncertainty about the covari-
ate distributions. The work in (Ji and Carin, 2007)
tries to model such uncertainties by modeling the cost-
sensitive classi}cation problem as a partial observable
Markov decision process (POMDP). However, their
POMDP formulation can lead to repeatedly selecting
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Figure 2: Average total cost of classi}cation on MiniBooNE dataset for user-speci}ed misclassi}cation costs 200,
400, 600, and 800. Comparison between several methods (left), and comparison with and without unlabeled data
(right).
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Figure 3: Average total cost of classi}cation on Diabetes (left) and Breast cancer (right) datasets for user-speci}ed
misclassi}cation costs 200, 400, 600, and 800.

the same covariates, and as a consequence they need
to adapt the stopping criteria.

Reinforcement Learning Approaches Janisch
et al. (2017) suggests to use deep reinforcement learn-
ing with Q-learning. In contrast to MDP, a discrim-
inative decision maker is learned which does not re-
quire an environmental model. Their method per-
forms promising in the domain where huge amounts of
labeled training data is available. Alternatively, the
work in (Benbouzid et al., 2012) suggests the use of
SARSA. The method in (Contardo et al., 2016) also
addresses this problem with reinforcement learning.

Discriminative Decision Approach The work in
(Wang et al., 2015) proposes an intriguing method for
}nding a decision procedure that is guaranteed to con-

verge to the Bayes risk given su{cient enough training
data. Their idea is to create a Bayes optimal classi}er
for all possible subsets of covariates, and a directed
a-cyclic graph that connects them. They formulate
the problem as an empirical risk minimization (ERM)
problem, and show that with in}nitely many training
samples the loss at each node converges to the Bayes
risks. However, their method cannot incorporate unla-
beled data. The work in (Trapeznikov and Saligrama,
2013; Wang et al., 2014b) uses a similar framework but
restricted to a }xed sequential order.

Cost-sensitive Tree Construction The work in
(Xu et al., 2012; Nan et al., 2015, 2016; Nan and
Saligrama, 2017; Peter et al., 2017) learns a random
forest subject to budget constraints on the features. In
particular, the methods in (Nan and Saligrama, 2017;
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Figure 4: Costs of selected covariates (top row) and accuracy (bottom row) on Diabetes (left) and Breast cancer
(right) and MiniBooNE (bottom).

Peter et al., 2017) are considered state of the art for
this task. Their usage of gradient boosted decision
trees (Friedman, 2001) makes them in particular ef-
fective for very large training data. Cost-sensitive de-
cision trees for discrete covariates are also considered
in (Sheng and Ling, 2006), and extended to Bayesian
Networks in (Bilgic and Getoor, 2007).

Tree of Classi}ers The work in (Kusner et al.,
2014; Xu et al., 2013) proposes to learn a tree of clas-
si}ers that minimizes a convex surrogate loss subject
to budget constraints. Wang et al. (2014a) assumes a
}xed number of pre-trained classi}ers and the goal is
to learn a policy that selects one of those classi}ers.

Entropy-Based Approaches The work in (Kanani
and Melville, 2008; Gao and Koller, 2011; Kapoor and
Horvitz, 2009) optimizes a criteria that combines the
costs of features with an estimate of the class entropy
of the resulting classi}er. As such their objective func-
tion is dizerent from ours.

Others The work in (Greiner et al., 2002) extends
the Probably Approximately Correct (PAC) frame-
work to prove the existence of a cost-sensitive classi}er
that is with high probability optimal in the sense of
providing minimal average total costs. However, they
assume a probability distribution over only discrete co-
variates. The method in (Lakkaraju and Rudin, 2017)
is additionally focused on interpretability, and, as a

consequence, optimizes an objective function that is
dizerent from ours. Imitation learning is also applied
to this task by He et al. (2012), but their de}nition of
loss is dizerent from minimizing the total classi}cation
costs that we consider here. The work in (Nan et al.,
2014) assumes a margin-based classi}er and uses a k-
nearest neighbor approach to estimate the accuracy of
the classi}er.

6 Conclusions

In this article, we showed how the optimal covariate ac-
quisition and classi}cation decision could be achieved,
in principle (Theorem 1), and proposed an approxima-
tion (AdaCOS) which enables an e{cient estimation
of the Bayes risk. Although our approach is based on
strong assumptions (linear sequence of covariates sets,
logistic regression model), we con}rmed experimen-
tally that our proposed approach outperforms several
previous methods. Furthermore, in contrast to previ-
ous work, our framework allows to exploit unlabeled
data for the Bayes risk estimation. Our experiments
con}rmed that this can help to further reduce the total
cost of classi}cation.
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