
Optimizing over a Restricted Policy Class in MDPs

A Queuing Problem: 4-Queues

Consider a system with four queues, each with capacity L = 9, shown in Figure 5. This problem has been studied
in several papers (e.g., Chen and Meyn 1999; Kumar and Seidman 1990; de Farias and Van Roy 2003). There
are two servers in the system: Server 1 serves queue 1 and 4 with rates r1 and r4, and Server 2 serves queue 2
and 3 with rates r2 and r3. Each server serves only one of its associated queues at each time. Jobs arrive at
queue 1 and 3 with rate �. A job leaves the systems after being served at either queue 1 and 2 or queue 3 and 4.
The state of the system is denoted by a 4-dimensional vector [x1, x2, x3, x4], where x

i

represents the number of
jobs in queue i at each time. A controller can choose a 4-dimensional action from {0, 1}4 such that a1 + a4  1
and a2 + a3  1. The cost at each time is equal to the total number of jobs in the system: c(x) =

P4
i=1 xi

.

� x1 x2

x3x4 �

server 1 server 2

r1 r2

r3r4

Figure 5: A system with four queues and two servers

Assume r1 = r2 = 0.12, r3 = r4 = 0.28, and � = 0.08. We choose our base policies from a family of policies for
which server i serves its longer queue w.p. p

i

and its shorter queue w.p. 1� p
i

, i = {1, 2}. Five base policies and
their associated costs are shown in Table 2.

Table 2: Base Policies for the 4-Queue problem.

p1 p2 cost

1 0.9 0.9 16.2950
2 0.9 0.7 17.3926
3 0.8 0.8 15.1535
4 0.7 0.9 13.6525
5 0.7 0.7 14.3266

Solving this problem in the space of policies using policy gradient will result in the optimal weight vector
w⇤ = [0, 0, 0, 1, 0], i.e., giving all the weight to the policy with the lowest cost. Therefore, the cost of the
mixture policy will be J(⇡⇤) = 13.6525. Interestingly, if we solve the problem in the dual space (space of
stationary distributions) using policy gradient and Eq. 3, after 200 iterations, the optimal resulting policy will
have cost J(⇡

✓

) = 12.84 with ✓ = [�0.32,�0.68,�0.4, 2.16, 0.24] (note that based on the definition of ⇥, this
vector can have negative values). In either of the spaces, in order to approximate the gradient surface for the
policy gradient method, we need to compute the cost of each mixed policy a couple of times (depending on the
number of base policies) in each iteration. Computing the cost involves an eigen-decomposition of the transition
matrix, which makes the whole process computationally costly. Using our stochastic sub-gradient method, we
can approximate the cost very fast and e�ciently. Our method needs only one eigen-decomposition for the
final mixing weights. Therefore, the computational cost is much lower (in this particular example 1/(8 ⇥ 200)
of the policy gradient method, where 8 is the number of points we use for approximating the gradient surface
and 200 is the number of iterations). The policy resulted from our method will have cost J(⇡

✓

) = 13.00 with
✓ = [�0.23,�1.28, 0.09, 1.54, 0.88]. Figure 6 shows the di↵erence between the costs of policy gradient and the
stochastic sub-gradient method at each iteration.



Ershad Banijamali, Yasin Abbasi-Yadkori, Mohammad Ghavamzadeh, Nikos Vlassis

0 50 100 150 200
iteration

12.5

13

13.5

14

14.5

15

15.5

16

16.5

17

17.5

co
st

Policy Gradient (Primal Space)
Policy Gradient (a) (Dual Space)
Policy Gradient (b) (Dual Space)

Figure 6: Cost per iteration for the primal and dual spaces. The policy gradient (b) for the dual space is the
method described in Algorithm 1. Horizontal dashed lines are the costs of the base policies.


