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A Proofs

A.1 Theorem 3.1

We begin by introducing a key lemma about the minimization of function mixtures.

Lemma A.1. For functions a, b : ⇥! R and ↵ 2 [0, 1],

a(argmin
✓2⇥

(↵a(✓) + (1� ↵)b(✓)))

b(argmin
✓2⇥

(↵a(✓) + (1� ↵)b(✓)))

are monotonically decreasing and increasing, respectively, with respect to ↵.

Proof. Let �(✓) = a(✓)� b(✓), 1 � j > i � 0 and

✓i 2 argmin
✓2⇥

b(✓) + i�(✓)

✓j 2 argmin
✓2⇥

b(✓) + j�(✓)

Then a is monotonically decreasing with respect to ↵ if and only if a(✓i) � a(✓j).

Case 1: ✓i = ✓j . Then a(✓i) = a(✓j), b(✓i) = b(✓j) and the statements holds.

Case 2: ✓i 6= ✓j . Then both the following conditions must be true.

b(✓j)� b(✓i) + i�(✓j)� i�(✓i) > 0 (8)

b(✓j)� b(✓i) + j�(✓j)� j�(✓i) < 0 (9)

If Eq. (8) did not hold, then ✓j would have been optimal at ↵ = i, i.e. ✓j 2 argmin✓2⇥ b(✓) + i�(✓). Likewise, if
Eq. (9) did not hold, then ✓i 2 argmin✓2⇥ b(✓) + j�(✓).

Together, they imply

b(✓j)� b(✓i) + i�(✓j)� i�(✓i) > b(✓j)� b(✓i) + j�(✓j)� j�(✓i)

i�(✓j)� i�(✓i) > j�(✓j)� j�(✓i)

(i� j)(�(✓j)��(✓i)) > 0

�(✓j)��(✓i) < 0

since i� j < 0. Plugging this into Eq. (8),

b(✓j)� b(✓i) + i�(✓j)� i�(✓i) > 0

b(✓j)� b(✓i) > i(�(✓i)��(✓j))

b(✓j)� b(✓i) > 0 (10)

which proves the second statement. Finally, plugging Eq. (10) into Eq. (9) concludes the proof.

(1� j)(b(✓j)� b(✓i)) + j(a(✓j)� a(✓i)) < 0

a(✓j)� a(✓i) < 0

The proof of Theorem 3.1 follows.
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Proof. Direction V to T We say f is optimal under its training distribution if

f(·|T ) 2 argmin
f2F

Ex,y⇠PT `(f(x), y).

Let f0, f1, . . . , fn be models learned at each level of dependency leakage, such that each model is optimal under
its training distribution, i.e.

fi 2 argmin
f2F

Ex,y⇠MPT ,PV (1� i
n , i

n )
`(f(x), y).

The sequence e0, e1, . . . , en is monotonically decreasing when

ei � ei+1 � 0 8i 2 {0, . . . , n� 1}.

Starting from the definition of e and using the notational shorthand `P (f) = Ex,y⇠P `(f(x), y),

ei = Ex,y⇠PV `(fi(x), y)

= `PV (fi)

= `PV (argmin
f2F

Ex,y⇠MPT ,PV (1�
i
n , i

n )
`(f(x), y))

= `PV

 
argmin

f2F

i

n
`PV (f) +

✓
1�

i

n

◆
`PT (f)

!

(11)

By Lemma A.1, e is monotonically decreasing with respect to i
n , and thus also with respect to i since n is a fixed

constant.

Direction T to V. In this direction, e will further be linear:

e0 = E
x,y⇠PV ,T n⇠PT

`(f(x|T ), y)

en = E
x,y⇠PT ,T n⇠PT

`(f(x|T ), y)

ei = E
x,y⇠MPT ,PV (

i
n ,1� i

n ),T
n⇠PT

`(f(x|T ), y)

=

✓
i

n

◆
E
x,y⇠PT ,T n⇠PT

`(f(x|T ), y) +

✓
1�

i

n

◆
E
x,y⇠PV ,T n⇠PT

`(f(x|T ), y)

=

✓
i

n

◆
en +

✓
1�

i

n

◆
e0

and en  e0 by the assumption that f is optimal under its training distribution.

A.2 Theorem 3.2

We begin by introducing a lemma on the minimization of mixtures of convex functions.

Lemma A.2. For ↵ 2 [0, 1], let a, b : ⇥! R be strictly convex and di↵erentiable (where ȧ denotes
@a
@✓ ) over

⇥⇤ = {✓ 2 argmin
✓2⇥

(↵b(✓) + ↵�(✓))} 8↵ 2 [0, 1]

= {✓ 2 g(↵)} 8↵ 2 [0, 1] ✓ ⇥.

If
ȧ
ḃ
is convex, decreasing over ⇥⇤

, then

a(argmin
✓2⇥

(↵a(✓) + (1� ↵)b(✓)))

is convex over ↵.

Proof. If ȧ
ḃ
is convex, decreasing then �ḃ

�̇
is also convex decreasing.

ȧ

ḃ
convex, decreasing ,

��̇

ḃ
concave, increasing (12)
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because ��̇

ḃ
= ḃ�ȧ

ḃ
= 1� ȧ

ḃ
.

Further, we know ��̇

ḃ
� 0 because ȧ  0 and ḃ � 0 by Lemma A.1. Then �ḃ

�̇
is convex decreasing by the

composition of the convex, decreasing function 1

x and the concave increasing ��̇

ḃ
. Note in the case where �̇ = 0,

g(↵) is constant and the lemma holds.

At the minimum of b(✓) + ↵�(✓),

0 = ḃ+ ↵�̇

↵ =
�ḃ

�̇

Thus, g�1(✓) = �ḃ
�̇

is convex, decreasing and g(↵) is concave, increasing. Finally a(g(↵)) is convex, decreasing
by the composition of a convex, non-increasing and concave function.

The proof for Theorem 3.2 follows.

Proof. Direction T to V Holds by Theorem 3.1, as linearity implies convexity.

Direction V to T Starting from the definition of e and using the notational shorthand `P (f) = Ex,y⇠P `(f(x), y),

ei = Ex,y⇠PV `(fi(x), y)

= `PV (fi)

= `PV (argmin
f2F

Ex,y⇠MPT ,PV (1� i
n , i

n )
`(f(x), y))

= `PV

 
argmin

f2F

i

n
`PV (f) +

✓
1�

i

n

◆
`PT (f)

!

(13)

By Lemma A.2, e is convex with respect to i
n , and thus also with respect to i since n is a fixed constant.

A.3 Proof of Theorem 5.1

Proof.

(A )ij = E
kn⇠Binomial(n,pi)

 j

✓
kn

n

◆

By the weak law of large numbers, kn
n

p
! pi. Further,  j

�
kn
n

� p
!  j(pi) by the continuous mapping theorem.

Finally, E j

�
kn
n

�
 E j(pi) =  j(pi) by the Portmanteau lemma. The matrix formed by  j(pi) is invertible by

the Unisolvence theorem when p0, . . . , ps are unique.

A.4 Proof of Theorem 5.2

Proof. Let e0 be the solution to the sketched system Se
0 = b. Then

Se
0 = Ae = b

e
0 = S

�1
Ae

e
0
0
= (S�1

A)00e0 +
nX

i=1

(S�1
A)0iei

e
0
0
� e0 =

nX

i=1

(S�1
A)0iei.
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Let s0 be the first row of S�1. By the Cauchy-Schwarz inequality, for all i � 1

|(S�1
A)0i| = |s

0
·Ai|

= |s
0
·Ai � s

0
· Sr(i)|

 ks
0
kkAi � Sr(i))k

= ✏ks
0
k.

Finally, by Theorem 3.1

|e
0
o � e0| 

nX

i=1

|(S�1
A)0i|ei



nX

i=1

✏ks
0
kei

 ✏nks
0
ke0.

B Connections to the Bernstein basis and Bézier curves

B.1 Bernstein basis

Recall that a Bernstein basis of degree n is defined as

bj,n(x) =

✓
n

j

◆
x
j(1� x)n�j

j = 0, . . . , n (14)

and that this forms a basis for polynomials at most degree n. Then the Bernstein polynomial is defined as

Bn(x) =
nX

j=0

�jbj,n(x) (15)

where Bj are the Bernstein coe�cients. The B3 estimator bi =
Pn

j=0
ejAij is equivalent to solving for the

Bernstein coe�cients ej = �j , where the Berstein basis is Aij = bj,n(pi).

B.2 Bézier curves

Bézier curves are closely related to Bernstein polynomials, using slightly di↵erent notation

B(t) =
nX

j=0

✓
n

j

◆
t
j(1� t)n�jPj (16)

=
nX

j=0

bj,n(t)Pj (17)

where Pj are the Bézier control points. Once again, Aij from the B3 estimator is equivalent to the Bernstein
basis function bj,n(pi), and we solve for the Bézier control points P0, . . . ,Pn

C Additional Experiments

C.1 Additions to Fig. 2

Due to space limitations, the Dota 2 and Parkinson’s experiments were excluded from Fig. 2. We include
them here in Fig. 4 to demonstrate the theoretical properties in Section 3 held across all datasets. The Dota 2
experiments had higher variance than others, though the monotonic and convex trend appears to hold true.
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Figure 4: Additions to Fig. 2. Empirical results show the loss is indeed convex and monotonically decreasing,
validating our theoretical results in Section 3. Note our methods are able to recover the full loss in addition to
the true OOC loss e0.

C.2 Synthetic Experiments

As an initial exploratory experiment, we generated synthetic data according to a partition model with k = 2 parts,
m = 2n rows in A (i.e. levels of dependency leakage) and initial dependency leakage probability p0 = 0.1. Our
learner is a linear regression model with mean squared error loss. Our exploratory synthetic results, presented in
the Figure 5 box plot, demonstrate that the basis function and matrix sketching estimators perform comparably
or better than baseline methods.
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Figure 5: Synthetic regression results.

D Experimental Details

In the sketching approximation, we formed k nearly equally sized groups of adjacent columns fromA when forming
the sketched matrix S. Even after sketching, we found it beneficial to add some regularization comparable to
T4+mono, referred to as �s (the regularization used in T4+mono is referred to as �T4). We found that other
approaches, including using k-medoids to group the columns of A, did not provide any benefits and were more
complicated. In all experiments we set k = 7.
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In the basis function approximation, we found that using simple, low-order polynomials was su�cient. Higher
order polynomials tended to be unstable. After observing b, we chose to use either a 2nd or 7th order polynomial,
depending on the curvature of b.

The whisker plots in Fig. 3 are generated over 10 independent trials, where the whiskers correspond to most
extreme values over those trials (i.e. no outliers removed).

The complete set of experimental parameters are shown in Table 2. We made an e↵ort to limit fitting to a specific
dataset, and kept most parameters the same across all experiments. In the Dota 2 experiments, the availability
of su�cient training data allowed us to increase |T | to 1000. Further, after completing the Heart and Census
experiments, we reduced the number of rows m in A by an order of magnitude to speed up experimentation, and
correspondingly increased the regularization �.
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