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Appendix for “On the Interaction
Effects Between Prediction and Clustering”

A  Proofs

A.1 Theorem 3.1

We begin by introducing a key lemma about the minimization of function mixtures.

Lemma A.1. For functions a,b:© — R and « € [0, 1],

a(argmin(aa(f) + (1 — «)b(h)))
0cO

b(arg;ergin(aa(@) + (1 —«a)b(h)))

are monotonically decreasing and increasing, respectively, with respect to «.

Proof. Let A(0) =a(f) —b(h),1>j>i>0and

0; € argmin b(0) + iA(6)
0cO

0; € argminb(0) + jA(H)
0co

Then a is monotonically decreasing with respect to « if and only if a(6;) > a(;).
Case 1: 6; = 0;. Then a(6;) = a(6;), b(6;) = b(0;) and the statements holds.
Case 2: 0, # §;. Then both the following conditions must be true.
b(8;) —b(8;) +iA(0;) —iA(6;) >0 (8)
b(0;) — b(6:) + 5 A(0;) — jA(6:) <O (9)
If Eqg. (8) did not hold, then 6; would have been optimal at o = i, i.e. 6; € argmingcg b(6) + iA(F). Likewise, if
Eq. (9) did not hold, then 6; € argmingcg b(0) + jA(6).
Together, they imply

b(0;) — b(6;) 4 iA(6;) — iA(0:) > b(0;) — b(6;) + A(6;) — FA(6:)
iA(0;) —iA(0;) > JA( i) — 3A(0:)
(i —7)(A6;) — A(6:)) >
A(0;) — A(6;) <

since i — j < 0. Plugging this into Eq. (8),

b(0;) — b(6:) + iA(0;) — iA(6;) > 0
b(0;) — b(6;) > i(A(6:) — A(6;))
b((gj) — b(GZ) >0 (10)

which proves the second statement. Finally, plugging Eq. (10) into Eq. (9) concludes the proof.

(1 =7)(b(0;) = b(0:)) + j(a(6;) — a(6;)) <0
a(;) —a(8;) <0

The proof of Theorem 3.1 follows.
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Proof. Direction V to T We say f is optimal under its training distribution if

FCIT) € argminEq o p 0(f (2), ).
fer

Let fo, f1,..., fn be models learned at each level of dependency leakage, such that each model is optimal under
its training distribution, i.e.

fi € arfgel_r}l‘ln Em,wapT,pv (17i,i)€(f(x)’ y)
The sequence eg, €1, ..., e, is monotonically decreasing when

e;—e+1 >0 Vie{0,...,n—1}.
Starting from the definition of e and using the notational shorthand £p(f) = Ey 4 pl(f(2),v),
€; = Em,ywpvg(fi(x)v y)

=y (fi)

=/{p, (ar?erginEm)yNMpT)Pv (1_%,%)£(f(x), Y))

=/{p, <argmin iépv(f) + (1 - ;) fPT(f)>

fer N
(11)

By Lemma A.1, e is monotonically decreasing with respect to %, and thus also with respect to ¢ since n is a fixed
constant.

Direction 7 to V. In this direction, e will further be linear:

€0 = EmnyPv7T£P7—€(f(x‘T)’ y)
€n = Ex,yNPT,TQPTK(f(MT)’ v)
€i = Ex’yNMPT,PV (%’1*%)’T£PT€(f(m|T)’ y)

1

= (3) Bearrrt OG0+ (15 Bey e 0 IT)0)

n
i i
- () o + (1 - ) 0
n n
and e, < ey by the assumption that f is optimal under its training distribution. O

A.2 Theorem 3.2

We begin by introducing a lemma on the minimization of mixtures of convex functions.
Lemma A.2. For a € [0,1], let a,b: © — R be strictly convex and differentiable (where & denotes %) over

0" ={0¢ areg r(r_)lin(ab(ﬂ) +aA(0)} Vae|0,1]

={#ecg(a)} Vae][0,1] CO.
If% s convezx, decreasing over ©*, then

a(arg min(aa(0) + (1 — a)b(0)))
0cO

1S CONvVexr over «.

Proof. 1f % is convex, decreasing then *Xb is also convex decreasing.

a . . .
gconvex, decreasing < Tconcave, increasing (12)
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A b—a

=A _ —1_4a
because Y == 1 7
Further, we know % > 0 because ¢ < 0 and b > 0 by Lemma A.1. Then _Ki’ is convex decreasing by the

composition of the convex, decreasing function % and the concave increasing %. Note in the case where A = 0,
g(a) is constant and the lemma holds.

At the minimum of b(6) + aA(6),

0=0b+aA
—b
o= —
A
Thus, g~1(0) = _Ai’ is convex, decreasing and g(«) is concave, increasing. Finally a(g(«)) is convex, decreasing
by the composition of a convex, non-increasing and concave function. O

The proof for Theorem 3.2 follows.

Proof. Direction 7 to V Holds by Theorem 3.1, as linearity implies convexity.
Direction V to 7 Starting from the definition of e and using the notational shorthand (p(f) = E, ,pl(f(x),y),

€, = Ew,yNPVK(fi(m)v y)

= Cp, (fi)
={p, (ar}genfl_inELyNMPTypv(1_%)%)6(]”(@, y))
—tp, (argmin Lo, (1) + (1= £) e, (1)
fer n n
(13)
By Lemma A.2,; e is convex with respect to %, and thus also with respect to ¢ since n is a fixed constant. O]

A.3 Proof of Theorem 5.1

Proof.

k
( ) J kn~Binomial(n,pi)w] ( n )

By the weak law of large numbers, %" 2 p;. Further, V; (k—") RN ¥ (p;) by the continuous mapping theorem.

Finally, E¢; ( %") ~ B, (p;) = 1j(p;) by the Portmanteau lemma. The matrix formed by ;(p;) is invertible by
the Unisolvence theorem when py, ..., ps are unique. O

A.4 Proof of Theorem 5.2
Proof. Let €’ be the solution to the sketched system Se’ = b. Then
Se' = Ade=1b
e =51 Ae
eh = (S71A)goeo + i(S‘lA)Oiei
i=1

66 — €9 = Z(SflA)Oiei.

i=1
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Let s’ be the first row of S~'. By the Cauchy-Schwarz inequality, for all ¢ > 1

[(S™HA)oi| = [s" - A4l
= |S/ . Ai — S/ . Sr(z)'
< [Is"H1-A4: = Sra)l

= ells']l.

Finally, by Theorem 3.1
e, —eol < (ST A)oiles
i=1

n
<3 dlls'le
=1

< en||s||eo-

B Connections to the Bernstein basis and Bézier curves

B.1 Bernstein basis

Recall that a Bernstein basis of degree n is defined as

bjn(z) = (?) 12" j=0,...,n (14)

and that this forms a basis for polynomials at most degree n. Then the Bernstein polynomial is defined as

Bu(x) =) Bibjn(z) (15)
=0

where B; are the Bernstein coefficients. The B3 estimator b; = Z?:o ejA;; is equivalent to solving for the

Bernstein coefficients e; = §;, where the Berstein basis is A;; = b; . (p;).

B.2 Bézier curves

Bézier curves are closely related to Bernstein polynomials, using slightly different notation

B(t) = zn: <T_L>tj(1 — )" IP,; (16)

|
Sa
3
—~

~
~—

i
<

(17)
§=0

where P; are the Bézier control points. Once again, A;; from the B3 estimator is equivalent to the Bernstein

basis function b; ,,(p;), and we solve for the Bézier control points Py, ..., P,

C Additional Experiments

C.1 Additions to Fig. 2

Due to space limitations, the Dota 2 and Parkinson’s experiments were excluded from Fig. 2. We include
them here in Fig. 4 to demonstrate the theoretical properties in Section 3 held across all datasets. The Dota 2
experiments had higher variance than others, though the monotonic and convex trend appears to hold true.
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Figure 4: Additions to Fig. 2. Empirical results show the loss is indeed convex and monotonically decreasing,

validating our theoretical results in Section 3. Note our methods are able to recover the full loss in addition to
the true OOC loss eg.

C.2 Synthetic Experiments

As an initial exploratory experiment, we generated synthetic data according to a partition model with k = 2 parts,
m = 2n rows in A (i.e. levels of dependency leakage) and initial dependency leakage probability pg = 0.1. Our
learner is a linear regression model with mean squared error loss. Our exploratory synthetic results, presented in

the Figure 5 box plot, demonstrate that the basis function and matrix sketching estimators perform comparably
or better than baseline methods.
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Figure 5: Synthetic regression results.

D Experimental Details

In the sketching approximation, we formed & nearly equally sized groups of adjacent columns from A when forming
the sketched matrix S. Even after sketching, we found it beneficial to add some regularization comparable to
T4+mono, referred to as As (the regularization used in T4+mono is referred to as Ary). We found that other
approaches, including using k-medoids to group the columns of A, did not provide any benefits and were more
complicated. In all experiments we set k = 7.
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In the basis function approximation, we found that using simple, low-order polynomials was sufficient. Higher
order polynomials tended to be unstable. After observing b, we chose to use either a 2nd or 7th order polynomial,
depending on the curvature of b.

The whisker plots in Fig. 3 are generated over 10 independent trials, where the whiskers correspond to most
extreme values over those trials (i.e. no outliers removed).

The complete set of experimental parameters are shown in Table 2. We made an effort to limit fitting to a specific
dataset, and kept most parameters the same across all experiments. In the Dota 2 experiments, the availability
of sufficient training data allowed us to increase |T| to 1000. Further, after completing the Heart and Census
experiments, we reduced the number of rows m in A by an order of magnitude to speed up experimentation, and
correspondingly increased the regularization .
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Table 2: Parameters used in all experiments. n is the number of samples in the training set, |V| is the number of samples in the validation set, ¢ is the
number of resamples in Algorithm 1, A’s are the regularization strengths in the T4+mono and sketching method, m is the number of corruption levels
(i.e. the number of rows in A), k is the number of sketching groups and d is the number of features in the dataset.

Parameter

Dataset n |T| |V d t Ata  As s m k Latent Training Validation Features

cluster clusters clusters

Synthetic oo 15 1000 2 1000 0.1 001 7 30 10 - - - -

Heart 100 100 100 12 1000 10 0.1 7 200 7 Location Cleveland, Hungary age, sex, cp, trestbps, chol, fbs,
VA, Switzer- restecg, thalach, exang, oldpeak,
land slope, thal

1994 US 100 100 100 5 10000 10 0.1 7 200 7 Native United India, age, education_num,

Census® country States, El Canada hours_per_week, race, occu-
Salvador, pation
Germany,

Mexico,
Philippines,
Puerto Rico

Parkinson® 100 100 100 26 10000 1000 0.1 2 20 7 Subject 2,3,4, 1,5,9,. jitter_local, jitter_abs, jit-

6,7,8,... ter_rap, jitter_ppgb, jitter_ddp,
shimmer_local, shimmer_db,
shimmer_apq3, shimmer_apg5,
shimmer_apqll, shimmer_dda,
ac, nth, htn, median_pitch,
mean_pitch, std_dev, min_pitch,
max_pitch, pulses, periods,
mean_period, std_dev_period,
unvoiced, breaks, deg_breaks

Dota 2¢ 100 100 100 114 1000 1000 0.1 2 20 7 Type 1,2 3 hero0, herol, ..., herol12

“https://archive.ics.uci.edu/ml/datasets/heart+Disease
Phttps://archive.ics.uci.edu/ml/datasets/adult

“https://archive.ics.uci.edu/ml/datasets/Parkinson+Speech+Dataset+with++Multiple+Types+of+Sound+Recordings
“https:/ /archive.ics.uci.edu/ml/datasets/Dota2+Cames+Results



