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Abstract

Machine learning systems increasingly de-
pend on pipelines of multiple algorithms
to provide high quality and well structured
predictions.  This paper argues interac-
tion effects between clustering and prediction
(e.g. classification, regression) algorithms can
cause subtle adverse behaviors during cross-
validation that may not be initially appar-
ent. In particular, we focus on the prob-
lem of estimating the out-of-cluster (OOC)
prediction loss given an approximate cluster-
ing with probabilistic error rate py. Tradi-
tional cross-validation techniques exhibit sig-
nificant empirical bias in this setting, and
the few attempts to estimate and correct
for these effects are intractable on larger
datasets. Further, no previous work has
been able to characterize the conditions un-
der which these empirical effects occur, and
if they do, what properties they have. We
precisely answer these questions by provid-
ing theoretical properties which hold in var-
ious settings, and prove that expected out-
of-cluster loss behavior rapidly decays with
even minor clustering errors. Fortunately, we
are able to leverage these same properties to
construct hypothesis tests and scalable esti-
mators necessary for correcting the problem.
Empirical results on benchmark datasets val-
idate our theoretical results and demonstrate
how scaling techniques provide solutions to
new classes of problems.

1 Introduction

With the increasing prevalence of machine learning
solutions, there is a growing concern over the inter-
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actions between algorithms in complex systems [1].
Leveraging multiple learning algorithms is a common
technique to optimize performance and incorporate
structured prior knowledge. For example, most au-
tonomous vehicles benefit from using separate mod-
els for perception of traffic lights, object detection
and tracking, localization, predicting actor behavior
and ultimately planning an optimal trajectory. Al-
though attempting to directly map from visual inputs
to control outputs is simpler, this approach is known
to achieve inferior performance. Breaking the larger
problem into a sequence of smaller problems may be
advantageous for many reasons, but it can create ad-
ditional challenges which must be addressed.

In this paper, we address the class of interaction effects
between clustering and prediction algorithms when at-
tempting to estimate the out-of-cluster (OOC) loss.
In the self-driving vehicle example, this encompasses
pixel and LIDAR point segmentation (i.e clustering
tasks) and prediction tasks based on these segmenta-
tions (e.g. object type classification, current and fu-
ture state regression). We observe this is often also
a concern in domains including online shopping, med-
ical systems and census statistics, which are further
explored in the experimental section.

To elucidate the potential behavior induced by inter-
action effects between clustering and prediction algo-
rithms, consider the problem of predicting heart dis-
ease from a collection of medical records. Each patient
may have several records due to multiple hospital visits
but it is unlikely we are able to collect multiple records
for every patient. Thus, we must find a learner which
generalizes well to new patients not in our training set.
The typical approach is to match records belonging
to the same individual using some record linkage (i.e.
clustering) algorithm. Then the records are split by
patient into a training and validation sets, such that
all records for a single patient end up in either the
training or validation set. This provides an unbiased
estimate of the learner’s error on new patients, i.e. the
out-of-cluster loss.

The underlying challenge in this example is that we
do not have access to the oracle clustering (i.e. the
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mapping from medical records to patients), but only
a noisy approximation of it from the record linkage
algorithm. Even in relatively low-noise domains like
medical and census, these algorithms are known to be
imperfect [2, 3, 4]. If we instead take the approach of
splitting the dataset according to the approrimated pa-
tient clustering, this effectively causes samples to spill
across the true training and validation folds. Some
samples which should have been grouped with a vali-
dation patient may have ended up with a training pa-
tient, and vice versa, without our knowledge. In other
words, the training and validation sets are no longer
conditionally independent, leading to a problem called
dependency leakage [5]. This allows the learner to over-
fit to patient-specific features and optimistically biases
our OOC loss estimate. For example, if a patient’s
records are incorrectly clustered and samples are par-
titioned into both the training and validation sets, the
learner is rewarded for predicting whether a patient
has heart disease based on their name — which clearly
will not generalize to new patients. This overfitting
need not be so blatant. The learner may overfit to
subtle patterns in a chest x-ray, a form of bias which
is hard to identify even by experienced radiologists.

This interaction between clustering errors and a pre-
diction algorithm is particularly dangerous because
our learner may appear to be doing well on the val-
idation set, but does far worse when we deploy it in
the real world on new patients. Note that this bias
is undetectable during standard cross-validation pro-
cedures unless an explicit attempt is made to estimate
and correct for it, which is the primary focus of this
paper. Saeb et al. note that over half of selected med-
ical studies failed to account for any clustering, allow-
ing records for the same patient to occur in both the
training and validation datasets, a significant statisti-
cal mistake [6].

The contributions and organization of the remainder
of this paper is as follows. We begin in Section 2 by
formalizing the problem and notation. In Section 3, we
present theoretical properties of out-of-cluster predic-
tion loss given an approximate clustering. In Section 4,
we demonstrate how these properties can be used to
construct a simple hypothesis test for the presence of
bias in cross-validation results.

Computational scalability is a significant barrier to es-
timate bias in cross-validation results, as previous re-
sults typically scale O(n?) [5]. In Section 5, we sys-
tematically alleviate these concerns by proposing func-
tion approximation and matrix sketching techniques
which have constant computational complexity rela-
tive to the dataset size n. Interestingly, our matrix
sketching technique is able to reduce the number of
columns in a key structured matrix, unlike other ma-

trix sketching techniques which typically reduce the
number of rows. Note this does not preclude also ap-
plying standard matrix sketching techniques.

Finally, we conducted empirical studies on Parkin-
son’s, heart disease, 1994 US Census and Dota 2 video
game data, and provide results in Section 6 which
demonstrate the practical behavior of interaction ef-
fects closely aligns with our theoretical results. Fur-
ther, we deploy our scalability techniques to previously
intractable problem classes, while maintaining similar
error levels on smaller problems.

Broader Impacts Accurate estimates of generaliza-
tion error are necessary for safely deploying machine
learning systems in the real world. Many of the do-
mains where the OOC loss is appropriate involve hu-
man records (e.g. medical, census) with extreme conse-
quences (e.g. patient misdiagnosis and misguided pub-
lic policy decisions).

2 Problem Statement

More formally, let X = zi1,...,2,, be the n, ob-
served samples, y be the corresponding labels, and
c:{1,...,nz} — {1,..., k} be the oracle clustering al-
gorithm which partitions the data into k clusters (e.g.
k is the number of patients, n, is the number of med-
ical records). Our high level goal is to train a predic-
tion algorithm f which generalizes to new clusters, i.e.
has low out-of-cluster loss. The leave-one-cluster-out
(LOCO) estimator

— 1
Errpoco = ﬁ Z f(yj7f($j | xal—lyyal—l))a (1)
1 1

S

is an unbiased estimator of the OOC loss!. Here,
T = (Xél—l,}/él—l) and V = (chl,ifc;l) denote the
training and validation sets, where c; ! and Ei_l de-
note all sample indices belonging and not belonging
to cluster 4, respectively. In other words, all samples
belonging to one cluster form the validation set, and
samples from the remaining clusters form the train-
ing set. Without loss of generality, we have arbitrarily
chosen to leave the first cluster out.

The key question here is: how will errors in the cluster-
ing algorithm ¢ effect our ability to train and validate
the predictor f? By examining the LOCO estimator
used to train and validate f, we see that errors in ¢
result in noisy training and validation sets 7 and ]A/,
where some samples have flipped between 7 and V.

We assume that clustering errors are made proba-

bilistically with independent rate py, an assumption

! An unbiased estimate of training on k — 1 clusters. It
is slightly biased compared to training on all k clusters.
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similar to one used in analyzing standard supervised
learning with noisy class labels [7, 8]. If the clus-
tering algorithm provides uncertainty estimates (e.g.
Bayesian methods), we believe it would be possible to
incorporate this uncertainty via importance weight-
ing. Further, we consider the unidirectional leakage
scenario where samples move from V to T to create
V and T, such that 7 ~ Mp, p,(1 — po,po), where
M, 1 (wq,wp) denotes the mixture distribution of @ and
b with weights w, and w; and pg is the leakage prob-
ability (a function of ¢’s error). Our results apply to
the other unidirectional leakage scenario where sam-
ples move from 7T to V, and it may be possible to ex-
tend them to the bidirectional leakage scenario using
similar techniques as [5].

If the clustering is perfect (i.e. ¢ = ¢), then pg = 0. Let
e; be the expected loss at some other p = ¢/n fraction
of corrupted samples (we use the notational shorthand
e(p) to denote ey, ). The expected OOC loss is equiva-
lent to e (i.e. zero dependency leakage, p = 0), but we
only observe the empirical loss at some pg > 0. Thus,
our specific goals are to characterize the behavior of
the interaction effects e and to efficiently estimate eg
in order to train and validate f.

3 Theoretical Properties

In this section, we present theoretical results on inter-
action effects between prediction and clustering algo-
rithms. First, we prove that under mild conditions,
the sequence of losses e = eg, eq,...,e, is monotoni-
cally decreasing due to dependency leakage. Second,
under slightly stronger conditions, the sequence will
be convex with respect to p. Intuitively, errors in
the clustering algorithm allows the prediction algo-
rithm to ‘peak’ at samples in the validation distribu-
tion, which will improve its performance with dimin-
ishing returns. Monotonicity has previously been con-
jectured, but never proven, and the conditions where
it holds were uncertain. To the authors knowledge, no
previous work has discussed whether e is convex.

We say a learner f is optimal under its training distri-
bution if

fCIT) € argminEq o p (f (), ). (2)
feF

Generally speaking, this tends to be true for large |7,
small model complexity of F or sufficient regulariza-
tion in £. This does not imply f is overfit to the train-
ing set, but in fact that it generalizes well across Pr.

Theorem 3.1. The sequence eg,eq,...,e, 1S Mono-
tonically decreasing if f is optimal under its training
distribution.

Proof. See Appendix A.1. O

Remark This theorem implies that the interaction
will always optimistically bias our cross-validation re-
sults. This is in fact the most dangerous type of bias,
as our heart disease classifier will perform well on the
off-line hold-out set, but then perform worse when we
deploy it in the real world on new patients or at new
hospitals.

If f is not optimal among F, it is possible to construct
counterexamples such that eg, ..., e, is not monoton-
ically decreasing.

In our second theoretical result, we show that the ex-
pected loss is convex with respect to the strength of
interaction effect p. Let ¢p(f) = Eqg ypl(f(x),y) be
the expected loss of the learner f under distribution
P. Then the following theorem holds.

Theorem 3.2. The sequence eg,eq,...,€e, 1S convex
if f is optimal under its training distribution and £p,
and p, are strictly conver and differentiable over f.

Proof. See Appendix A.2 O

Strictly convex and differentiable loss functions hold
for a wide class of problems, including support vector
machines and linear or ridge regression.

Remark The convexity of e compounds the mono-
tonic behavior in Theorem 3.1, as it implies that even
a small amount of error in our clustering ¢ can cause
large amounts of cross-validation bias in f.

In Section 6, we empirically demonstrate both these
properties hold on all examined datasets.

4 Hypothesis Testing

A principal question for data scientists is whether an
interaction effect exists between their clustering and
prediction algorithms. Here, we show how to use
the theoretical properties from Section 3 to quickly
construct a two-sample t-test for dependency leakage,
which avoids the complexity of constructing an esti-
mator for the OOC loss €.

Consider the alternative hypothesis H, : eg > e(po),
where py > 0 is the unknown leakage probability and
eo is the OOC loss with zero leakage (i.e. no interac-
tion effect). By Theorem 3.1, we can use a one sided
test because e(pg) > e(pp). First, form ny training
folds each of size n’ from 7. Additionally, form n’
training folds of size n’ and ny + n/- validation folds
of size ny from V.
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Train and validate f on the disjoint ny + n’- train-
ing folds and corresponding validation folds. Let
Z2=21,...,2n, and 2/ = 24,.. ., z;,T be the validation

loss of f trained on the folds from 7 and Vv, respec-
tively. Let z and Z’ be the mean of these two sequences.
Then

Z— 2 ~ N(e(po) — e(pn),0*(2) + 0*(2))

and the two-sample t-test statistic is

P
z—Zz
T f2f (3)
51 52
nr n-

where s2 and s3 are the sample variances of z and 2/,
respectively.

Rejecting the null hypothesis H : e(po) < e(p,) when
T > t1_q, is a level o test, where ¢;_, ,, is the critical
value of the t-distribution with v degrees of freedom.
Further, by Theorem 3.1 and Theorem 3.2, e(pg) #
e(pn) = eo # e(po) so long as pg > 0. Thus, rejecting
the null hypothesis Hy : eg # e(po) when T' > t1_q4.4
is also a level « test.

There are two takeaways to consider when using this
test. The first powerful property is that it does not
require actually knowing the clustering error or leakage
probability pg a priori, only that it is not perfect (a
very weak assumption). Second, the Type II error rate
of this test largely depends on the convexity of e. If
po < 0.5 and e is linear, then e(pg) —e(pn) > eo—e(po)
and the Type II error rate will actually be lower than
if we could directly test eq # e(pg). Conversely, the
Type II error rate becomes larger as e becomes more
strongly convex.

5 Scalable Estimators

Existing asymptotically unbiased estimators for the
OOC loss are limited by their need to solve a linear
system of n variables, where n is the size of the boot-
strap training set [5]. In this section, we present two
approaches for dramatically improving the computa-
tional efficiency of the unidirectional, known pg vari-
ant of the Binomial Block Bootstrap (B3) estimator,
which is the core method of other variants.

We begin by recapping the Binomial Block Bootstrap
(B3) estimator for the OOC loss, shown in Algorithm 1
[5]. The method leverages the fact that a resample
with replacement from 7 can be written as a binomial
expectation over e (see row 1 of Eq. (4)), by definition
of the binomial distribution. Second, by adding addi-
tional corruption into 7 in the form of samples from
V, it effectively increases the clustering error py to p;
(see row 2 of Eq. (4)). Repeated operation of these

Algorithm 1 B3: Binomial Block Bootstrap

1: procedure B3(f,T,V,p,n’,t)

2 b« 0

3 for p; in p do

4: p %

5: for < 1totdo

6 T) ~ My 5(1—=p',p)
7 1/; < VAT

8 b; < \71” Z(z,y)evj’, Uy, f(z | T)))
9: Bz — Bl + %

10: end for

11: end for

12: A;j < P(Binomial(n/, p;) = j)

13: é,residual + A(ATA)"TATDH

14: return ég, residual

15: end procedure

principles allows constructing the fully defined linear
system

o1 - - n
Do < Binomial pmf —
n :
. el=1»b (4)
1 + Binomial pmf —
Al(po) e = b
where matrix A € R™*("+1) ig defined by
A;; = P(Binomial(n, p;) = j). (5)

Vector b is formed by the average empirical loss of re-
peatedly sampling with replacement from 7 and V at
m increasing levels of corruption pg, p1,...,1. The in-
sight of this method is that by increasing dependency
leakage by further mixing 7 and V and thus increas-
ing p from pg towards 1, one can extrapolate the loss
at zero clustering error, using the structured matrix A.
Although the B3 estimator is asymptotically unbiased,
solving the linear system has O(n?) cost, and forming
the loss estimate b has O(n) computational cost. If
the prediction algorithm f has an expensive training
procedure (e.g. deep neural networks), the latter term
may outweigh the former due to a large fixed constant.

5.1 Basis Function Approximation

Perhaps the most straightforward approach to scal-
ing these estimators is through function approxima-
tion, which also conveniently provides a natural form
of regularization. We parameterize e by a set of s basis
functions 1, . ..,%s, such that

ei = &1 (i) + Eatha (i) + ... 4 Ests(4) (6)
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where £1,...,& = & € R® are the s parameters. Then
e = V¢ where ¥ € R(™HXs js the matrix of basis
values.

Instead of solving the linear system Ae = b, where
A e R+ and we choose m > n, we can now
solve A'U¢ = b where A’ € R™ *(5+1) and we choose
m' > s. Note the size of this system no longer depends
on the number of samples n. Instead, it depends on the
number of parameters in our approximation of e, which
will be a fixed constant. This new linear system is well
behaved, depending on the choice of basis function .

Theorem 5.1. Let iy, ..., s be a set of s unisolvent,
bounded and continuous functions over [0,1] and let

e = oty <;) bt s (;) .

Then AW is invertible as n — 00.
Proof. See Appendix A.3. O

5.2 Matrix Sketching

Second, we propose a new matrix sketching technique
which reduces the number of columns in the structured
matrix A. Unlike typical matrix sketching techniques,
which reduce the number of rows, we are able to reduce
the number of columns and thus the dimensionality of
the solution e by leveraging the structure in A and
properties of e from Theorem 3.1. After reducing the
number of columns, one could further apply standard
matrix sketching techniques to also reduce the num-
ber of rows. Our algorithm guarantees recovering eg
within a linear factor of the true value.

Consider the setting where m < n and the system
Ae = b is underdetermined. This is especially rel-
evant for large datasets, where it is computationally
infeasible to sample at m > n levels of leakage or per-
haps even solve for n unknowns. Let § € R™*(k+1),
m > k be our sketching matrix, where S is formed
such that the first column of S equals the first col-
umn of A, i.e. Sop = Ap. Partition the remaining n
columns of A into k sets, for example using k-medoids
or simply grouping adjacent columns together (since
by the definition of A, these will be close together).
Let r: {0,...,n} — {0,...,k} be the resulting parti-
tion, where r(0) = 0 is the singleton partition of the
first column. Finally, form the remaining columns of
S from the medoids of the k + 1 sets. Each column in
A is within an e-ball of at least one column in S, i.e.

= Ai - Sr 7
€ iefﬁ?’fn}” oLl
Theorem 5.2. Let €' be the solution to the sketched

system Se/ = b and s be the first row of s~1. The error

between the true and sketched solution is bounded by

eh — eol < enls'leo. (7)

Proof. See Appendix A .4 O

5.3 Connection to Bézier curves and
Bernstein polynomials

The B3 estimator in Eq. (4) has close ties to the Bern-
stein basis and Bézier curves which have not previ-
ously been realized. Notice that each column of A
corresponds to a Bernstein basis function evaluated at
at pg,...,1. Thus, the B3 estimator is equivalent to
solving for the Bernstein coefficients or Bézier control
points e, where the system is constructed through the
B3’s bootstrapping process. A more detailed mathe-
matical connection is provided in Appendix B.

6 Empirical study

Finally, we conducted an empirical, finite-sample
study which validates the theoretical properties in Sec-
tion 3 and demonstrates the computational speed-ups
provided in Section 5. For comparison, we consider
three benchmark estimators for the OOC loss — IID,
LOCO and the B3 estimator with a fourth order trend
filter and monotonic regularizers (T4+mono). The lat-
ter is the empirical state-of-the-art method, though
suffers from computational scalability issues. IID is
the typical cross-validation split, where samples are
uniformly randomly split into training and validation
sets, which does not account for the latent clustering.
LOCO is the leave-one-cluster-out estimator described
in Eq. (1) using an approximated clustering ¢ with an
error of pg = 0.1.

In all experiments, we used a linear SVM as the pre-
dictor f. This is a best-case scenario, as interaction
effects depend on the predictor f’s ability to overfit to
mistakes from the clustering algorithm ¢. Thus, as the
complexity of the predictor class increases, the inter-
action effect worsens.

Note that in order to compute the error of our estima-
tors, we are required to use a dataset where the oracle
clustering is indeed available. For many of these ex-
periments, we used data collected in very controlled
settings to guarantee no clustering error in the ground
truth. In more practical scenarios, this information
would not be available. We formed the training and
validation sets by splitting the approximate clusters
according to Section 2, and we controlled clustering
errors by flipping samples from V to T with uniform,
i.id. rate according to pg. Complete experimental
details are provided in Appendix D.



On the Interaction Effects Between Prediction and Clustering

T4+mono
Basis

Sketch *
104L | ¥ Failed

Solution time (s)

ot ‘ ‘ ‘ ‘
10" 102 102 104 10°
Training samples n

Figure 1: Computational scalability results on syn-
thetically generated datasets. Our methods (Sketch,
and in particular, Basis) are significantly faster than
existing methods (T44mono). “Failed” indicates the
SDPT3 solver failed to find an accurate solution.

Table 1: Computational timing results demonstrate
our methods, and in particular the basis func-
tion approximation technique, are significantly faster
than the previous state-of-the-art B3 estimator with
fourth order trend filter and monotonicity constraint
(T44+mono). Results shown in seconds.

Method
Dataset T44+mono  Sketching Basis
1994 US Census 0.5662 0.4059 7.822e-5
Heart 0.5847 0.4105 6.582e-5
Parkinson’s 0.6194 0.4338 2.043e-5
Dota 2 1.0965 0.4678 1.946e-5

Computational Scalability The proposed approx-
imation techniques, and especially the basis func-
tion approximation technique, are faster than existing
OOC estimators and are tractable on larger problem
classes. To compare performance across a large range
of dataset sizes, we generated increasingly large syn-
thetic training sets and compared solution times in
Section 6. All methods used only 10 corruption levels
(i.e. the number of rows in A), the smallest reason-
able number required to find an accurate solution. We
observed that increasing the number of rows in A expo-
nentially increased solution times. Thus, these results
are likely the largest datasets appropriate for existing
methods. In particular, notice that the solver failed
to find accurate solutions on the largest problem class
for all methods except for with the basis approxima-
tion technique.

Timing results on real world datasets (described in the
following sections) are reported in Table 1. Similarly,
we find the basis approximation technique is the fastest
by several orders of magnitude.

Constrained linear programs (e.g. T4-+mono, sketch-
ing) were solved using SDPT3’s infeasible path-
following algorithm, for unconstrained linear systems
we took advantage of fast QR solvers (a major rea-
son the basis method is so efficient). All optimiza-
tions were performed using an Xeon Gold 6152 CPU @
2.10GHz and 754 GB RAM. We found that T44mono,
and to a lesser extent, the sketching approximation,
required the majority of this memory for the largest
problem classes.

Interaction Characteristics Fig. 2 demonstrates
that interaction effects between the clustering and pre-
diction algorithm cause the cross-validation error e
to decay monotonically and convexly, as predicted by
Theorem 3.1 and Theorem 3.2. This visually demon-
strates the expected adverse behavior — if our clus-
tering algorithm makes even a few mistakes, we may
think our predictor has a low error rate, but when
we deploy it in the real world on new clusters, it will
perform far worse. Empirically, the interaction biases
cross-validation results by upwards of 25%, but our
methods are largely able to correct for this bias. Note
our methods not only recover the true OOC loss ey,
but also the entire curve ey, es, ..., e,.

Estimator Error Finally, we empirically test
whether the approximations introduce any additional
error into the OOC estimate. Fig. 3 shows that the
approximations perform comparably to the previous
state-of-the-art T4+mono estimator, at significantly
reduced computational cost. The specific experiments
are briefly described below, see Appendix D for details.

Parkinson’s  In the first experiment, we attempted
to predict whether a patient has Parkinson’s disease
based on multiple voice recordings featurized accord-
ing to doctor specifications [9]. Here, each cluster cor-
responds to an individual, and each cluster contains
multiple voice recordings. The OOC error corresponds
to the ability to predict Parkinson’s on new individuals
not in the training set.

Heart Disease  In the second experiment, we use
medical records from four hospitals in Switzerland;
Hungary; Cleveland and Long Beach, USA [9]. Given
a patient medical record, including vital signs and de-
mographics, the task is to train a heart disease clas-
sifier which performs well at new, previously unseen
hospitals. Since we do not have access to multiple
records per patient, we instead choose the related task
of generalizing across hospital clusters.
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Figure 2: Empirical results show the loss is indeed convex and monotonically decreasing, validating our theoretical
results in Section 3. Note our methods are able to recover the full loss in addition to the true OOC loss eg. Plots
for the remaining experiments are provided in Appendix C

1994 US Census In the third experiment, we con-
sider the issue of machine learning bias against certain
populations in the 1994 US Census due to interaction
effects [9]. Given a person’s occupational, educational
and demographic information, our task is to predict
whether a person’s income is greater than US$50k per
year (finer resolution income data cannot be publicly
disclosed). In particular, we wish to train a classi-
fier which performs well across people from all origin
countries. We arbitrarily chose Indian and Canadian
immigrants as our leave-one-out clusters, and natural
born citizens, Salvadoran, German, Mexican, Filipino
and Puerto Rican immigrants as our training set?.

Our results, presented in Fig. 3c, validates our claim
that interaction effects can bias our learner against cer-
tain populations. The SVM classifier learns attributes
specific to the corrupted samples which spilled from
the validation set into the training set, even though
they do not generalize to all immigrants.

Dota 2 In the final experiment, we attempt to pre-
dict the winner of a Dota 2 video game based on the
heroes each team selects at the beginning of the game.
This is equivalent to learning an undiscounted value
function for a binary, sparse reward function in rein-
forcement learning. Here, clusters correspond to the
type of game played, and we wish to learn a predictor
f which generalizes across new game types.

ZWe left out two clusters due to a small number of im-
migrants from some countries in the dataset.

7 Previous Work

Previous work has studied various aspects of learning
with dependent data, beginning with the necessity of
independence for the naive bootstrap [10]. Subsequent
work has proceeded along two directions: most promi-
nently for time-series data, but also for cluster data.
In time-series data, a stochastic process defines the
data dependency, which usually decreases over larger
time intervals [11, 12]. The common approach to lim-
iting dependency and thus controlling estimator bias
and variance is to form blocks of data which are suffi-
ciently spaced in the time domain [13].

In the clustering setting, bootstrap methods have
been proposed for a variety of problem formulations,
roughly categorized into model-based and model-free
methods [14]. The first, model-based line of work
directly models the within-cluster error correlation,
a relatively strong data assumption. The second,
model-free line of work performs post-estimation bias-
correction for least squares [15], small or unbalanced
number of clusters [16] and non-linear settings [17].
Other authors have shown asymptotic analysis re-
sults for the residual bootstrap [18], randomized clus-
ter bootstrap, two-stage bootstrap [19] and multi-way
bootstrap [20, 21]. The fundamental difference in our
work is we do not assume samples in different clusters
¢ are independent.

In Section 5, we built off the work of [5], who intro-
duced the first asymptotically exact estimator of the
OOC loss with clustering errors. However, they failed
to characterize the behavior of the interaction effect,
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Figure 3: Estimating the OOC loss eg.
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Our function approximation and novel matrix sketching techniques

perform comparably to existing methods at significantly reduced computational cost.

and their estimator scaled O(n?).

8 Conclusion

We argued that interaction effects between clustering
and prediction algorithms can cause dangerous and
elusive behavior when estimating the out-of-cluster
loss in machine learning systems. We theoretically
characterized when and how this interaction behav-
ior is exhibited, and demonstrated these properties
hold in practice on all examined datasets. In partic-
ular, we showed the out-of-cluster loss bias is convex
and monotonically decreasing — implying that even a
small clustering error can significantly and optimisti-
cally bias cross-validation results. Further, these theo-
retical properties are necessary to construct the statis-
tical hypothesis test in Section 4, an important prac-
tical takeaway to detect for OOC bias. Our newly in-

troduced estimators are able to correct for this bias at
significantly reduced computational cost compared to
existing estimators, making the proposed approaches
scalable to a wide range of practical applications.

The interaction between clustering and prediction al-
gorithms is one common instance of an interaction
effect. [1] discussed several other issues in complex
machine learning systems, including hidden feedback
loops and undeclared data dependencies, which may
warrant further exploration.
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