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The goal of this document is to:
e detail the proof of the results provided in the main article,
e develop the multi-class extension,
e provide illustrations and results on all considered datasets,
e give numerical values used to plot the curves (for easier reproducibility).

For the sake of clarity, we will remind each statement before giving its proof. We also recall the
notations and the definitions that are used for our purpose.

In the body of the paper, the error profile of an hypothesis h as been defined as E(h) = (e1(h), e2(h)) =
(FN(h), FP(h)) . In the binary setting and using the previous notations, the F-Measure is defined
by:

(1+B%) (P —e)
(1+B%)P—e1+es

Fe) = (1)

1 Main results of the article

In this section, we provide all the proofs of the main article but only in the binary setting.

1.1 Pseudo-linearity of F-Measure

We aim to prove the following proposition, which plays a key role to provide a the bound on the
F-measure.

Proposition 1. The F-measure, F, is a pseudo-linear function.

Proof. We need to show that both F' and —F are pseudo-convex, i.e. that we have:

(VF(e), (e —e)) >0 = F(e) > F(e). (2)



The gradient of the F-measure is defined by:

1+ 32 (ﬁQP—i-eg)
(L+B2)P —e1 + e2)? P—e '

We now develop the left hand side of the implication :

VF(e) =—

(VE(e), (' —e))

[(B°P +e2)(e) —e1) + (P —e1)(eh —e2)] > 0,

Y
o

IEREY .
(1+ 5P — e +e2)?

S0,
—(B?P +eg)(ey —e1) — (P —er)(eh —ea) > 0,
_BQP(QII —e1) —€jea+creo + Pleg —eh) +ejeh —ejen > 0,
—BQP €] —e1)+ Ples —eh) +eres —elea > 0,
1 2 2 1
752Pe'1 + 52P61 + Pey — Pely + erey —elea > 0.
)

—62Pe'1 + Peg — e’lez > —BzPel + Pe’2 — 616'2.
Now we add —P(e; + €/) on both side of the inequality, so we have:

—B%Pe)| + Pey — eleg — P(eg +¢€)) > —B?Pey + Py — erely — —Pley + ¢}),
—(1+ B%)Pe} + Pey — éea — Pey > —(1+ %) Pey + Péy — e1ey — Pél.

Then, we add e;€} on both sides:

—(14 B?)Pey + Pély — erel, — Pe + e,
—(1+4 B8%)Pey — (P — e1)e} + (P — e1)éh.

—(1 + B%)Pé} + Pey — elea — Pey + ere}

>
—(1+ B2)Pe/1 —(P—é)er + (P —¢e))es >

Finally, by adding (1 + 8?)P? on both sides of the inequality and factorizing with the terms
—(1+ %) Pe} on the left (respectively —(1 + 3%)Pe; on the right), we get:

(14+BHP(P —¢}) —(P—eer +(P—e)es > (1+B*)P(P—e1)— (P —e)e) + (P —e1)eh,
(14+B)P(P —¢}) —(P—eer +(P—el)es > (1+B*)P(P—e1)— (P —ep)e) + (P —e1)eh,
(P—e)(1+B)P—e1+e) > (P—e)((145%)Pe) +eb),
1+ (P—e)((1+B)P—e1+e) > (1+ ) (P —er)((1+5°)Pe} +e3),
P-c)  _  (P-e
(1+ﬁ2)P—€,1+6/2 - (1—|—,32)P—€1+62’
+BP-¢) _  (1+F(P-e)
1+p2)P—¢\+¢ey, = (1+52)P—e1+e’

F(e) > F(e).

The proof is similar for —F'.
We have shown that both ' and —F are pseudo-convex so F' is pseudo-linear. O

We can now use this property to derive our bound. However, we have seen that the bound still
depends on to other parameters M,,;, and M,,,, that we should compute.



1.2 Computation of the values of M,,;, and M,,.,.

We aim to show how we can solve the optimization problems that define M,,;, and M,,., and show
how it can be reduced to a simple convex optimization problem where the set of constraints is a
convex polygon.

Computation of M4,

Now, we would like to give an explicit value for M,,,,. This value can be obtained by solving the
following optimization problem:

max e, —e' sit. Fg(e') > Fszle).
e/ CE(H) 2 1 s(e’) s(e)

In the binary case, setting e = (e1,e2) and €’ = (¢}, €5). We can write Fg(e’) > Fp(e) as:

(14 8%)(P—¢)) (1+ %) (P —e1)
(1+82)P—¢€,+ey " (1+P82)P—e1+er

Now we develop and reduce these expressions.
(P —€)[(1+ B*)P —e1 + e

>
(1+B%)P? = (14 B?)Pey + (P —¢))(ea —e1) >
(1+B%)P(er —€})) + Plea —e1 +¢€) —¢h) >

(P —e1)[(1+B%)P —¢€| +e)),
(1+ 597 = (1+ ) Per + (P — e1)(eh — €}),

/ / / /
ege] — e1€y + e —eje.

Now, we set;: e’1 =e1 + a7 and 6’2 = eg + ag. In other words, we study how much we have to change
€’ from e to solve our problem. We can then write:

—(1+52)Pa1+P(a1 —Oég) > 62(61—{—0[1) —61(624—0[2),
ar(—(14 )P+ P —e3) +aa(—P+ey) > 0,
(Xl(BQP—I—eQ) < —OéQ(P — 61).

Thus, the optimization problem can be rewritten as:

mar o9 — 1,
a
—OQ(P—el)
B2P + ey
o] € [—61,P— 61],

st. a1 <
a9 € [—eg,N — 62].

The optimization problem consists of maximizing a difference under a polygon set of constraints. In
the binary setting, the set of constraints can be represented as shown in Fig. [I| where the line D is
defined by the following equation:

_ _OZQ(P — 61) ‘

B2P + ey )



Figure 1: Geometric representation of the optimization problem. The rectangle represents the
constraint (ag, 1) € [—e2, N — eg] X [e1, P — e1]. The white area represents the set of value (ag, aq)
for which the inequality constraint holds. the four figures represent the four possibility for the
position of the line D on the rectangle. See the computation of M,,;, to see that cases represented
by the two figures at the bottom never happen.

To maximize the difference, we should maximize the value of s and minimize the value of aq, i.e.
the solution is located in the bottom right region of each figure. A quick study of these figures shows
that the lowest value of a; we can reach is —e;.

We shall now study where the line D intersects the rectangle to have the solution with respect to ao.

If D does not intersect the line of equation oy = —ey in the rectangle (i.e. it intersects with the right
side of the rectangle) then ag = N — ey. Else, it intersects with the bottom face of the rectangle,
(B*P + e3)es

then we determine the value of as using Eq. and o = iz

Finally, the solution of the optimization problem is:

(a1, 9) = (—617min (N — ea, M)) 7

P—el



and the optimal value M,,q, is defined by:

2p
M ox = €2 + min <N — e, M) .

P — €1
Computation of M,,;,
We now aim to solve the following optimization problem:
. / / /
min e, —ey s.t. Fg(e') > Fz(e).
/£ (H) 2 1 s(e’) s(e)
As it has been done and using the same notations as in the previous section, we can rewrite the
optimization problem as follows:
min Q9 — Qq,

a

_OZQ(P — 61)
B2P + e
a1 € [—el,P— 61],

st. o1 <
Q9 € [—eg,N— 62].

The constraints remain unchanged. However, to minimize this difference, we have to maximize the
value of a; and minimize the value of ao, i.e. we are interested in the upper left region of each
rectangles. In each cases represented in Fig|[ll we see that the minimum of «as is equal to —es.

If we have a look at the two figures at the bottom of Fig. [1| we see that the optimal value of «y is
equal to P — e;. However, this value is not in the image of the function of as defined by Eq . In

P—
fact, according to Eq. , the image of g = —ey is equal to M
B2P + ey

So the two figures at the bottom represent cases that never happen and the intersection of D with
the rectangle of constraint is on left part of the rectangle.

which is lower than P — e;.

Finally, the solution of the optimization problem is:

(041,062) = <e;§1;——i_212)’ —€2> )

and the optimal value M,,;, is defined by:

62(P — 61)

Mpin = —e1 — 7B2P+62 .

Now that we have provided all the details to compute and plot our bound, it remains to explain how
to compute the bound from |[Parambath et al.| (2014) with respect to any cost parameters ¢, ¢’ for a
fair comparison.



1.3 Rewriting the bound of Parambath et al.| (2014)

For the sake of clarity we restate the Proposition 5 of Parambath et al.| (2014]) for our purpose:

Proposition 2. Lett,t € [0,1] and €1 > 0. Suppose that it exists ® > 0 such that for all e, e’ € E(H)
satisfying F(€e') > F(e), we have:

F(e)) - F(e) > ®la(t'), e — €). (1)
Furthermore, suppose that we have the two following conditions

() lla(t) —a)l2 <2/t =t (i) (a(t).€) < e,@é%(d(t), e’) +e1

Let us also set M = mazx ||€”|2, then we have:
e/ CE(H)

F(e') < F(e) + ®ey + 4MO|t' —t|.

According to the authors, the point (i) is a consequence of a of being Lipschitz continous with
Lipschtiz constant equal to 2. The point (i) is just the expression of the sub-optimality of the
learned classifier.

Proof. For all e,e € E(H) and t,t’ € [0, 1], we have:
(a(t),e) = (a(t)—a(t)),&) + (at),€),
< Aa(t'),e) +2M|t' —t|.
Where we have successively applied the Cauchy-Schwarz inequality and (¢). Then:

min (a(t),e”y < min (a(t'),e") +2M|t' —t| = (a(t),€e’) + 2M|t' — |, (5)

e’cE(H) ’ T e’eE(H)
where €’ denote the error profile learned by the optimal classifier trained with the cost function a(t')
and is such that F(e’) > F(e). Then, writing (a(t'),e) = (a(t') — a(t), e) + (a(t),e) and applying
the Cauchy-Schwarz inequality, we have:

<a(t/)a 6> < <a(t)v e> + 2M‘t/ - t|’
< n {a(t),e’) +e1 + 2M|t' —t|,
< e,,@%)< (t),e") +e1 |t — ¢
< A{a(t),€)+e1 +4M|t' —t|,

where the second inequality comes from (iz) and the last inequality comes from Eq. . By plugging
this last inequality in inequality , we get the result.
Furthermore, the existence of the constant ® has been proved by the authors and is equal to

(8*P)~" 0

Remark. This bound can be used in both binary and multi-class setting.



2 The multi-class setting

For a given hypothesis h € H learned from X, the errors that h makes can be summarized in an
error profile defined as E(h) € R2L:

E(h) = (FNy(h),FPy(h),...,FNL(h),FPL(h)),

where FN;(h) (resp. FP;(h)) is the proportion of False Negative (resp. False Positive) that h yields
for class .

In a multi-class setting with L classes Py, k =1, ..., L denotes the proportion of examples in class k
and e = (e, e, ..., 21,1, €21 ) denotes the proportions of misclassified examples composing the error
profile.

The multi-class-micro F-measure, mcF'(e) with L classes is defined by:

(14841 =P — Yy en1)
(1+p%H)(1—P) - Eﬁ:z ear1+er

In this section, we aim to derive all the results presented in the binary case in a multi-class setting.

mcF(e) =

2.1 Pseudo-linearity

Proposition 3. The multi-class-micro F-measure, mcF', is a pseudo-linear function with respect to
e.

Proof. As in the binary cases, we have to prove that both mec The gradient of the multi-class-micro
F-measure,mcFg, is defined by:

VmcF(e) =

_(1 + ﬁ2) 1-P — Zé:Q eo_1 W.I.t. eq,
(1+82)1—P) =S gemn1+e |B(1-P)+e w.rt. e, Ve =2, ..., L.

The proof is similar to the proof of Proposition[I} The scheme is the same, we simply have to do the
following changes of notation in the proof:

L
€1 < Z €2k—1,
k=2

ey < e,
P <+ 1—P1.

2.2 Derivation of the bound

As it was done in the binary case, we will use the property of pseudo-linearity of mcF'(e) to bound
the difference of micro F-measure in terms of the parameters of our weighted function. First, we
introduce the definition of our weighted function a : R — R?! and express the difference of micro
F-measure of two error profiles in function of the two error profiles.

In this section, for the sake of clarity, we will set é = 2522 €2k_1-



First step: impact of a change in the error profile

Using the property of pseudo-linearity, we can show that it exists two functions a : R — R?L and
b: R — R defined by:
0= (a(mcF (e)), e) + b(meF(e)),

where:
1+8%2—t foreg_1, k=2,....L
at) =41t for eq, and b(t) = (t— 1)1+ 651 - P).

0 otherwise,
From these definitions we can write:
(a(mcF(e)),e —€) = (a(mcF(€)),e)+ b(mcF(e)),
= (a(mcF(€')) — a(mcF(e)),e) — b(mcF(e)) + b(mcF(€')),
= (mcF(e') —mcF(e))(1+ %) (1 - )
+ (mcF(€') — mcF(e))e1 + (mcF(e) — mcF(€'))é,
= (mcF(e') —mcF(e)) (1+ ) (1 - P) —é+er).
We can now write the difference of micro-F-measure as:

mcF(e') —mcF(e) = ®.-(a(t),e—¢'),

where:
1

e = 1+ B2)(1—P) —é+er’

Second step: a bound on the micro F-measure mcF'(e)

We suppose that we have a value of ¢ for which a weighted-classifier with weights a(t) has been learned.
This classifier has an error profile e and a F-measure mcF(e). We now imagine a hypothetical
classifier that is learned with weights a(¢’), and we denote by €’ the error profile of this classifier. For
any value of ¢/, we derive an upper bound on the on the F-measure mcF'(e’) that this hypothetical
classifier can achieve.

mcF(e') — mcF(e)

e

e

(
(
(
e (
(
g
g

d
d
d
®
D -
P
P
¢

I
o]

a(t),e) +e1 — (a(t),e) +
(t' —t)(e1— &) +e1— (¥ —t)(e) —¢€)),
€1+ P - (61— —(ef — &N —1).

e

ININ A

In the previous development, we have used the linearity of the inner product and the definition of a.
The first inequality uses the sub-optimality of the learned classifier. We then use the definition of
the function a.



As in the binary cases, the quantity (¢} —¢é’) remains unknown. However, we are looking for a vector
€’ such that mcF(e') > mcF(e). So the last inequality becomes, if ¢’ < ¢:

mcF(€') —mcF(e) < ®eeq + Pe(ea — €1 — Mppaz) (' — 1),
and, if t/ > t:
mcF (') — mcF(e) < ®e €1 + Pe(ez — €1 — Mpin) (1 — 1).

2.3 Computation of M,,,, and M,,;, in a multiclass setting

To compute the value of both M4, and M,,;,, we use the same development as done in the binary
setting. We have to search how to modify the vector e in order to improve the F-Measure and to
maximize (or minimize) the difference: ¢ — S ¢_, eb, |, where €’ = e + a . As in the previous
section, « is the solution of the following optimization problem:

max al—E Qok—1,

B21—P)+e
st. o < — Z 02k —1 )
1-P - Zk;g €2k—1

ai € [—61,P1 —e1),
Qok—1 € [—eap—1, Pop—1 —ea—1], Vk=2,..., L.

Then we add the quantity e; — 2,5:2 ear—1 to this result to have the value M;,qz.
Similarly, we solve the following optimization problem:

min a1—§ Qok—1,
(0%

1 —Pi)+er
st. a1 < — Z Q2k—1 )
k=2 1—- Zk 2 €2k—1

ay € [—e1, P — 61]7

agk—1 € [—eap—1, Por—1 — ear—1], Yk =2,..., L.

Then we add the quantity e; — ZLQ esgr—1 to this result to have the value M,,;,.

3 Extended Experiments

This section is dedicated to the experiments. We provide all graphs and tables we were not able to
give in the main paper and for all datasets.

3.1 Illustrations of unreachable regions

In this section we provide the unreachable regions (see Fig. |2)) of both presented bounds, our vs. the
one obtained from Parambath et al. (2014). As it was noticed in the main paper, our result gives
a tighter bound on the optimal reachable F-measure. Moreover, we see that the more the data is



imbalanced, the tightest is our bound.

The fact that some points lie in the unreachable regions is explained by our setting. Indeed, we
recall that we made the assumption that £ = 0, i.e. we suppose that learned classifier is the optimal
one, in terms of 0 — 1 loss, but it is not the case in practice.

10
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Figure 2: Unreachable regions obtained from the same 19 (¢, F;) points corresponding to learning
weighted SVM on a grid of ¢ values. Cones are shown for all datasets. The bound from

(2014]) is represented on the left and our bound on the right.
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3.2 Theoretical bound versus ¢;

In this section we compare our bound with the one from [Parambath et al.| (2014)) with respect to e;.
The graphics presented in Fig. [3]show that the bound from [Parambath et al| (2014)) is uninformative
since the value of the best reachable F-measure is always equal to 1 except on AbalonelO dataset.
We see that our bound increase mostly linearly with 1. the evolution is not exactly linear because
the value of ®. depends on the error profile, so it depends on the value of the parameter ¢ in our cost
function a. Note that the best classifier reaches a best F-measure in some cases (on Letter dataset

for instance) which emphasize the need to look for an estimation of &7.
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Figure 3: Bounds on the F-measure as a function of €1, the unknown sub-optimality of the SVM

learning algorithm. Results are given on all datasets.
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3.3 Evolution of Bounds vs. iterations/grid size
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Figure 4: Comparison of our bound and the one from Parambath et al.| (2014 with respect to

the number of iteration/ the size of the grid. We also represent the evolution of both associated
algorithms.
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3.4 Test-time results and result tables of results

For the sake of clarity, only a small number of algorithms have been chosen to be represented
graphically in Fig.
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Figure 5: F-measure value with respect to the number of iterations or the size of the grid of four

different algorithms, all of them are based on SVM.
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To complete the results given in the main article, we provide two tables below. Table [1| gives the
value of the F-measure for all experiments with SVM or Logisitic Regression based algorithms.
Because we compare our method to some which uses a threshold to predict the class of an example
(Narasimhan et al.| [2015; |[Koyejo et al. |2014)), we also provide a thresholded version of all algorithms
in Table 21

Table 1: Classification F-Measure for § = 1 with SVM algorithm. SVMg are reproduced from
(Parambath et al| |2014)) and the subscript ; . is used for the classifiers trained with a cost depending
on the Imbalance Ratio. The subscript p corresponds to the bisection algorithm presented in
(Narasimhan et al., [2015). Finally the ¢ stand for our wrapper CONE. The presented values are
obtained by taking the mean F-Measure over 5 experiments (standard deviation between brackets).

Dataset | SVM | SVMrr | SVMe | SVMc || LR | LRim | LRs | LRe | LRc

Adult 62.5 (0.2) | 64.9 (0.3) | 66.4 (0.1) | 66.5 (0.1) || 63.1 (0.1) | 66.0 (0.1) | 66.6 (0.1) | 66.5 (0.1) | 66.5 (0.1)

Abalonel0 0.0 (00) | 30.9 (1.2) | 324 (@1.3) | 32.2 (0.8) 0.0 (0.0) | 31.9 (.4 | 31.6 (06) | 31.7 (0.7) | 30.9 (1.9

Satimage 0.0 (0.0) | 23.4 (43) | 20.4 (5.3) | 20.6 (5.6) 0.5 (0.9) | 24.2 (5.3) | 21.4 (46) | 20.7 (4.8) | 20.5 (5.0

IJCNN 44.5 (0.4) | 53.3 (0.4) | 61.6 (0.6) | 61.6 (0.6) || 46.2 (0.3) | 51.6 (0.3) | 59.2 (0.3) | 58.2 (0.2) | 582 (0.3)

Abalonel2 0.0 (0.0) | 16.8 (2.7) | 16.8 (4.2) | 18.3 (3.3) 0.0 (0.0) | 18.0 @35 | 17.7 3.7 | 17.2 3.1) | 184 (2.3)

Pageblocks || 48.1 (5.8) | 39.6 (47) | 66.4 (3.2) | 62.8 (3.9) || 48.6 (3.3) | 424 (5.2) | 55.7 (5.7) | 62.8 (8.2) | 59.4 (7.5)

Yeast 0.0 (0.0) | 29.4 (2.9) | 38.6 (7.1) | 39.0 (7.5) 2.5 (5.0) | 29.0 3.5) | 35.4 (15.6) | 39.1 (10.1) | 39.5 (9.3)

Wine 0.0 (0.0) | 15.6 (5.2) | 20.0 (6.4) | 22.7 (6.0) 0.0 (00) | 14.6 3.2) | 18.3 (7.2) | 18.7 (4.5) | 21.1 (5.2)

Letter 75.4 (0.7) | 749 (0.8) | 80.8 (0.5) | 81.0 (0.4) 82.9 (0.3) | 82.9 (03) | 74.9 (0.5) | 82.9 (0.2) | 82.9 (0.3)

News20 90.9 (o0.1) | 91.0 (0.2) | 91.1 (0.1) | 91.0 (0.1) || 90.6 (0.1) | 90.6 (0.1) | 89.4 (0.2) | 90.6 (0.2) | 90.6 (0.2)

Average [ 321 (07) [ 44.0 (23 [ 495 (29 [ 49.6 (28 [ 334 (.0) [ 45.1 (2.3 [ 47.0 (39) [ 48.8 (3.2) | 48.8 (32)

Table 2: Classification F-Measure for 5 = 1 with thresholded SVM algorithm. SVMg are
reproduced from (Parambath et al., 2014) and the subscript ; g, is used for the classifiers trained with
a cost depending on the Imbalance Ratio. The subscript p corresponds to the bisection algorithm
presented in (Narasimhan et al., 2015). Finally the ¢ stand for our wrapper CONE. The presented
values are obtained by taking the mean F-Measure over 5 experiments (standard deviation between
brackets).

Dataset H SVM l SVM; g. l SVMg l SVMe H LR l LR1.g. [ LR¢a l LRc

Adult 65.6 (0.3) | 66.1 (0.2) | 66.4 (0.2) | 66.4 (0.1) || 66.5 (0.1) | 66.5 (0.1) | 66.5 (0.1) | 66.5 (0.1)
Abalonel0 27.8 (1.2) | 30.7 (2.0) | 31.9 (0.6) | 31.8 (1.9 30.8 (2.2) | 30.7 (1.9) | 30.7 (1.9) | 30.8 (2.1)
Satimage 26.7 (4.9 | 29.2 (26) | 31.6 (.7 | 30.9 (20 | 21.2 (11.1) | 28.6 (1.9) | 25.3 (12.7) | 25.6 (12.8)

IJCNN 63.2 (0.6) | 57.4 (0.3) | 62.4 (0.5 | 62.6 (0.4) || 59.4 (0.5) | 56.5 (0.3) | 59.3 (0.4) | 59.3 (0.2)
Abalonel2 10.2 @36) | 16.6 (2.7) | 14.5 (3.2) | 16.3 3.0) || 15.5 (3.1) | 17.0 3.3) | 15.5 (3.2) | 16.2 (3.5)
Pageblocks || 66.6 (4.3) | 57.5 (6.6) | 66.7 (5.2) | 67.6 (4.0) || 59.2 (8.1) | 55.9 (6.4) | 62.6 (7.6) | 59.0 (7.8)

Yeast 36.2 (12.9) | 27.2 (8.5) | 38.6 (12.1) | 37.4 (10.1) || 39.9 (6.5) | 27.6 (6.8) | 39.3 (4.3) | 37.9 (4.8)
Wine 11.0 (6.1) | 24.7 (2.0) | 14.2 (9.3) | 19.3 (7.9) || 21.5 3.7) | 25.2 (45) | 18.6 (5.8) | 22.4 (6.4)
Letter 75.4 (0.7) | 749 (0.8) | 80.8 (0.5 | 81.0 (0.4) || 82.9 (0.3) | 82.9 (0.3) | 82.9 (0.2) | 82.9 (0.2)

News20 90.9 (0.1) | 91.0 (0.2) | 91.1 (0.1) | 91.0 (0.1) || 90.6 (0.1) | 90.6 (0.1) | 90.6 (0.2) | 90.6 (0.2)
Average [[ 474 (35) [ 475 (26) | 498 (37) [ 50.4 3.0) [[ 48.8 (3.6) | 482 (26) | 49.1 (3.6) [ 49.1 (38

Finally, we give here exhaustive tabular results, giving test-time F-measure results obtained by
different methods when varying the budget (when meaningful) from 1 to 18 call to the weight
classifier learning algorithm to complete the previous graphs.
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Table 3: Mean F-Measure over 5 experiments and limiting the number of iterations/grid steps
to 1 (standard deviation between brackets).

Datasets H SVN[ ‘ SVM[ARA l SVMG ‘ SVNIC H LR ‘ LRI,R_ l LRB ‘ LRG l LRC

Adult 62.5 (0.2) | 64.9 (0.3) | 65.0 (0.4) | 65.0 (0.9) || 63.1 (0.1) | 66.0 (0.1) | 66.6 (0.1) | 66.1 (0.1) | 66.1 (0.1)

Abalonel0 0.0 (0.0) | 30.9 (.2 0.0 (0.0) 0.0 (0.0) 0.0 (.0) | 31.9 (@.4) | 31.6 (06) | 24.4 (1.2) | 24.4 (1.3)

Satimage 0.0 (0.0) | 23.4 (4.3) 0.9 (1.9 0.0 (0.0 0.5 (0.9) | 24.2 (5.3) | 21.4 (4.6) 3.5 (6.9) 3.5 (6.9)

IJCNN 44.5 (0.4) | 53.3 (0.4) | 61.6 (0.5) | 61.6 (0.5) || 46.2 (0.3) | 51.6 (0.3) | 59.2 (0.3) | 583 (0.3) | 58.3 (0.3)

Abalonel2 0.0 (0.0) | 16.8 (2.7) 0.0 (0.0 0.0 (0.0 0.0 (0.0) | 18.0 (3.5 | 17.7 (3.7 0.0 (0.0 0.0 (0.0

Pageblocks || 48.1 (5.8) | 39.6 (4.7) | 64.4 (2.9) | 59.1 (3.8) || 48.6 (3.3) | 424 (5.2) | 5.7 (5.7) | 55.3 (4.7) | 54.5 (4.4)

Yeast 0.0 00) | 294 (2.9 | 12.1 (10.6) | 22.9 (15.7) 2.5 (5.0) | 29.0 (3.5) | 35.4 (15.6) | 24.9 (16.0) | 24.4 (16.1)
Wine 0.0 (0.0) | 15.6 (5.2) 0.0 (0.0) 0.0 (0.0 0.0 (0.0) | 14.6 3.2) | 183 (7.2) 5.5 (10.9) | 11.6 (10.8)
Letter 75.4 (0.7) | 74.9 (0.8) | 80.2 (0.3) | 80.3 (0.3) || 82.9 (0.3) | 82.9 (0.3) | 7T4.9 (0.5 | 82.6 (0.3) | 82.6 (0.3)

News20 90.9 (0.1) | 91.0 (0.2) | 90.9 (0.2) | 90.9 (0.2) || 90.6 (0.1) | 90.6 (0.1) | 89.4 (0.2) | 90.6 (0.2) | 90.6 (0.2)

Average [[ 321 (07 [ 44.0 (23) [ 375 7)) [ 38.0 1) [[334 (o) [ 451 (23) [ 47.0 39) [ 41.1 (a1) | 41.6 (40

Table 4: Mean F-Measure over 5 experiments and limiting the number of iterations/grid steps
to 2 (standard deviation between brackets).

Datasets || SVM | SVMyr | SVMg | SVMc || LR | LRir | LRs | LRe | LRc

Adult 62.5 (0.2) | 64.9 (0.3) | 66.4 (0.2) | 66.2 (0.3) || 63.1 (0.1) | 66.0 (0.1) | 66.6 (0.1) | 66.6 (0.1) | 66.2 (0.1)

Abalonel0 0.0 (.0) | 30.9 @.2) | 32.6 (1.4) | 30.7 (1.1) 0.0 (0.0) | 31.9 @.49) | 31.6 (06) | 31.9 @a.7) | 32.4 (1.9

Satimage 0.0 (0.0) | 23.4 (.3) 6.1 (12.2) 5.9 (11.8) 0.5 (0.9) | 24.2 (5.3) | 21.4 (4.6) 6.2 (12.3) 6.1 (12.2)

IJCNN 44.5 (0.4) | 53.3 (0.4) | 60.7 (0.4) | 61.6 (0.5) || 46.2 (0.3) | 51.6 (0.3) | 59.2 (0.3) | 56.8 (0.3) | 58.3 (0.3)

Abalonel2 0.0 (0.0) | 16.8 (2.7) 0.0 (0.0 0.0 (0.0 0.0 (0.0) | 18.0 (3.5 | 17.7 (3.7 2.8 (3.4) | 13.3 (3.5)

Pageblocks || 48.1 (5.8) | 39.6 (47) | 65.0 (7.6) | 63.3 (41) || 48.6 (3.3) | 424 (5.2) | 557 (5.7) | 62.7 (7.1) | 58.3 (6.8)

Yeast 0.0 (0.0) | 29.4 (2.9 | 30.9 (17.2) | 25.4 (17.5) 2.5 (5.0) | 29.0 3.5) | 35.4 (15.6) | 27.8 (20.0) | 33.0 (18.3)
Wine 0.0 (0.0) | 15.6 (5.2) 0.0 (0.0) | 11.7 (11.1) 0.0 (0.0) | 14.6 3.2) | 183 (7.2) 8.7 (11.2) | 15.6 (6.7)
Letter 75.4 (0.7) | 74.9 (0.8) | 80.7 (0.5) | 80.4 (0.5) || 82.9 (0.3) | 82.9 (0.3) | 7T4.9 (0.5 | 82.9 (0.2) | 82.8 (0.2)

News20 90.9 (0.1) | 91.0 (0.2) | 90.9 (0.2) | 91.0 (0.2) || 90.6 (0.1) | 90.6 (0.1) | 89.4 (0.2) | 90.6 (0.2) | 90.6 (0.1)

Average [[ 321 (07) [ 44.0 (23) [ 433 (40) [ 43.6 (a7 [ 334 (o) [ 45.1 (23) [ 47.0 39) [ 43.7 (56) | 45.7 (5.0)

Table 5: Mean F-Measure over 5 experiments and limiting the number of iterations/grid steps
to 3 (standard deviation between brackets).

Datasets || SVM | SVMyr | SVMe | SVMc || LR | LRir | LRs | LRe | LRc

Adult 62.5 (0.2) | 64.9 (0.3) | 66.1 (0.2) | 66.2 (0.3) || 63.1 (0.1) | 66.0 (0.1) | 66.6 (0.1) | 66.2 (0.1) | 66.2 (0.1)

Abalonel0 0.0 (0.0) | 30.9 (@.2) | 30.7 (1.1) | 31.0 (1.9 0.0 (00) | 31.9 (1.4) | 31.6 (06) | 32.5 (1.5) | 31.3 (2.2)

Satimage 0.0 (0.0) | 23.4 (4.3) 5.9 (11.8) | 20.2 (4.7) 0.5 (0.9) | 24.2 (5.3) | 21.4 (4.6) 6.1 (12.1) | 20.3 (5.1)

IJCNN 44.5 (0.4) | 53.3 (0.4) | 61.6 (0.5) | 61.6 (0.5) || 46.2 (0.3) | 51.6 (0.3) | 59.2 (0.3) | 583 (0.3) | 583 (0.3)

Abalonel2 0.0 (0.0) | 16.8 (2.7) 0.0 (0.0) | 16.7 (2.7) 0.0 (0.0) | 18.0 (35 | 17.7 @3.7) | 14.2 (3.0) | 16.6 (3.4)

Pageblocks || 48.1 (5.8) | 39.6 (47) | 65.5 (2.0) | 63.3 (4.1) || 48.6 (3.3) | 424 (5.2) | 55.7 (5.7) | 60.4 (6.4) | 58.3 (6.8)

Yeast 0.0 (0.0) | 29.4 (2.9) | 32.6 (18.3) | 37.8 (7.8) 2.5 (5.0) | 29.0 3.5 | 35.4 (15.6) | 32.1 (11.9) | 32.6 (12.0)
Wine 0.0 (0.0) | 15.6 (5.2) | 11.8 (11.1) | 19.5 (5.1) 0.0 (0.0) | 14.6 3.2) | 183 (72) | 17.5 (5.8) | 20.0 (3.8)
Letter 75.4 (0.7) | 74.9 (0.8) | 80.5 (0.2) | 80.4 (0.5) || 82.9 (0.3) | 82.9 (0.3) | 7T4.9 (0.5 | 82.9 (0.2) | 82.9 (0.2

News20 90.9 (0.1) | 91.0 (0.2) | 91.0 (0.2) | 91.0 (0.2) || 90.6 (0.1) | 90.6 (0.1) | 89.4 (0.2) | 90.6 (0.2) | 90.6 (0.1)

Average [ 32.1 (o) [ 44.0 (23) [ 446 (a5 [ 488 27 [ 334 (.0) [ 45.1 (23) [ 47.0 39) [ 46.1 (a2) [ 47.7 (3.

16




Table 6: Mean F-Measure over 5 experiments and limiting the number of iterations/grid steps
to 4 (standard deviation between brackets).

Datasets H SVN[ ‘ SVM[ARA l SVMG ‘ SVNIC H LR ‘ LRI,R_ l LRB ‘ LRG l LRC

Adult 62.5 (0.2) | 64.9 (0.3) | 66.0 (0.2) | 66.2 (0.3) || 63.1 (0.1) | 66.0 (0.1) | 66.6 (0.1) | 66.4 (0.1) | 66.2 (0.1)

Abalonel0 0.0 (0.0) | 30.9 @(.2) | 31.0 (1.0) | 31.0 (1.9) 0.0 (00) | 31.9 @.4) | 31.6 (06 | 30.9 .7 | 31.3 (2.2)

Satimage 0.0 (0.0) | 23.4 @3) | 16.4 (9.5 | 20.6 (5.6) 0.5 (0.9 | 24.2 (53) | 21.4 (46) | 17.0 (9.8) | 20.5 (5.0

IJCNN 44.5 (0.4) | 53.3 (0.4) | 61.5 (0.4) | 61.1 (05) || 46.2 (0.3) | 51.6 (0.3) | 59.2 (0.3) | B7.8 (0.4) | 58.3 (0.3)

Abalonel2 0.0 (0.0) | 16.8 (2.7) | 16.5 (4.0) | 16.9 (4.3) 0.0 (0.0) | 18.0 @3.5) | 17.7 @3.7) | 17.6 (3.0) | 17.6 (3.1)

Pageblocks || 48.1 (5.8) | 39.6 (4.7) | 61.0 (6.0) | 63.3 (41) || 48.6 (3.3) | 424 (5.2) | B5.7 (5.7) | 62.1 (7.8) | 584 (6.7)

Yeast 0.0 (0.0) | 29.4 (2.9 | 35.4 8.7) | 39.0 (7.5 2.5 (5.0) | 29.0 @3.5) | 35.4 (15.6) | 31.1 (18.0) | 32.5 (12.0)
Wine 0.0 (0.0) | 15.6 (5.2) | 11.5 (7.8) | 19.5 (5.1) 0.0 (00) | 14.6 3.2) | 183 (r2) | 17.9 (2.8) | 20.0 (3.8)
Letter 75.4 (0.7) | 74.9 (0.8) | 80.5 (0.3) | 80.4 (0.5) || 82.9 (0.3) | 82.9 (0.3) | 7T4.9 (0.5 | 82.9 (0.2) | 82.9 (0.3)

News20 90.9 (0.1) | 91.0 (0.2) | 91.0 (0.1) | 91.0 (0.2) || 90.6 (0.1) | 90.6 (0.1) | 89.4 (0.2) | 90.6 (0.2) | 90.7 (0.1)

Average [[ 321 (07) [ 44.0 (23) [ 471 38) | 48.9 (29) [ 334 (1.0) [ 45.1 (23) [ 47.0 (39) [ 474 (a4) | 478 (3)

Table 7: Mean F-Measure over 5 experiments and limiting the number of iterations/grid steps
to 5 (standard deviation between brackets).

Datasets || SVM | SVMyr | SVMg | SVMc || LR | LRir | LRs | LRe | LRc

Adult 62.5 (0.2) | 64.9 (0.3) | 66.4 (0.3) | 66.2 (0.2) || 63.1 (0.1) | 66.0 (0.1) | 66.6 (0.1) | 66.6 (0.1) | 66.5 (0.1)

Abalonel0 0.0 (.0 | 30.9 @.2) | 32.6 (1.4) | 31.7 (1.0 0.0 (0.0) | 31.9 (@.49) | 31.6 (06) | 31.3 (0.7) | 31.2 (2.3)

Satimage 0.0 00) | 23.4 @3) | 16.4 (9.5 | 20.6 (5.6) 0.5 (0.9 | 24.2 (53) | 21.4 (46) | 17.0 (9.8) | 20.5 (5.0

IJCNN 44.5 (0.4) | 53.3 (0.4) | 61.4 (0.6) | 61.1 (0.5) || 46.2 (0.3) | 51.6 (0.3) | 59.2 (0.3) | 583 (0.3) | 583 (0.3)

Abalonel2 0.0 (00) | 16.8 (2.7) | 16.5 (4.0) | 16.5 (4.0 0.0 (0.0) | 18.0 (35 | 17.7 3.7) | 17.6 (3.0) | 18.1 (2.6)

Pageblocks || 48.1 (5.8) | 39.6 (47) | 67.7 (40) | 62.1 (5.0) || 48.6 (3.3) | 424 (5.2) | 5.7 (5.7) | 61.8 (7.3) | 59.6 (7.3)

Yeast 0.0 (0.0) | 29.4 (2.9 | 31.8 (10.5) | 39.0 (7.5) 2.5 (5.0) | 29.0 @3.5) | 35.4 (15.6) | 30.1 (17.2) | 38.8 (8.5)
Wine 0.0 (0.0) | 15.6 (5.2) | 11.5 (7.8) | 20.4 (5.6) 0.0 (0.0) | 14.6 3.2) | 183 (72) | 17.9 (2.8) | 21.2 (5.1)
Letter 75.4 (0.7) | 74.9 (0.8) | 80.5 (0.4) | 80.4 (0.5) || 82.9 (0.3) | 82.9 (0.3) | 7T4.9 (0.5 | 82.9 (0.2) | 82.9 (0.3)

News20 90.9 (o.1) | 91.0 (0.2) | 91.0 (0.1) | 91.0 (0.2) || 90.6 (0.1) | 90.6 (0.1) | 89.4 (0.2) | 90.6 (0.2) | 90.7 (0.1)

Average [[ 321 (07) [ 44.0 (23) [ 476 (39) | 48.9 (3.0) [[ 334 (1.0) [ 45.1 (23) [ 47.0 (39) [ 474 (42) | 48.8 (39)

Table 8: Mean F-Measure over 5 experiments and limiting the number of iterations/grid steps
to 6 (standard deviation between brackets).

Datasets || SVM | SVMyr | SVMe | SVMc || LR | LRir | LRs | LRe | LRc

Adult 62.5 (0.2) | 64.9 (0.3) | 66.5 (0.1) | 66.4 (0.1) || 63.1 (0.1) | 66.0 (0.1) | 66.6 (0.1) | 66.4 (0.2) | 66.5 (0.1)

Abalonel0 0.0 0.0) | 30.9 (.2 | 30.7 (1) | 31.7 (1.0 0.0 (00) | 31.9 (1.4) | 31.6 (06) | 31.6 (1.0) | 31.4 (2.2)

Satimage 0.0 00) | 23.4 @3) | 204 (5.3) | 20.6 (5.6) 0.5 (0.9) | 24.2 (53) | 21.4 (46) | 20.1 (46) | 20.5 (5.0

IJCNN 44.5 (0.4) | 53.3 (0.4) | 62.1 (0.5) | 61.3 (0.6) || 46.2 (0.3) | 51.6 (0.3) | 59.2 (0.3) | B8.0 (0.4) | 581 (0.3)

Abalonel2 0.0 (0.0) | 16.8 (2.7) | 16.9 (2.9) | 18.2 (3.3) 0.0 (0.0) | 18.0 @3.5) | 17.7 @3.7) | 15.5 (6.2) | 17.7 (3.9)

Pageblocks || 48.1 (5.8) | 39.6 (47) | 64.8 (3.1) | 64.2 (46) || 48.6 (3.3) | 424 (5.2) | 5.7 (5.7) | 60.6 (9.1) | 59.5 (7.4)

Yeast 0.0 (0.0) | 29.4 (2.9 | 32.0 (10.4) | 39.0 (7.5) 2.5 (5.0) | 29.0 3.5 | 35.4 (15.6) | 33.0 (18.8) | 38.8 (8.5)
Wine 0.0 (0.0) | 15.6 (5.2) | 19.4 (5.3) | 19.0 (7.0 0.0 (0.0) | 14.6 3.2) | 183 (72) | 19.6 (5.1) | 21.1 (5.2)
Letter 75.4 (0.7) | 74.9 (0.8) | 80.8 (0.5) | 80.5 (0.4) 82.9 (0.3) | 82.9 (03) | 749 (05) | 82.9 (0.2) | 82.9 (0.3)

News20 90.9 (0.1) | 91.0 (0.2) | 91.0 (0.2) | 91.0 (0.2) || 90.6 (0.1) | 90.6 (0.1) | 89.4 (0.2) | 90.6 (0.1) | 90.7 (0.1)

Average [ 321 (o) [ 44.0 (23 [ 485 (29 [ 492 30) [[ 334 (.0o) [ 45.1 (23) [ 47.0 39) [ 478 (a6) | 48.7 (32)
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Table 9: Mean F-Measure over 5 experiments and limiting the number of iterations/grid steps
to 7 (standard deviation between brackets).

Datasets H SVN[ ‘ SVM[ARA l SVMG ‘ SVNIC H LR ‘ LRI,R_ l LRB ‘ LRG l LRC

Adult 62.5 (0.2) | 64.9 (0.3) | 66.2 (0.1) | 66.4 (0.1) || 63.1 (0.1) | 66.0 (0.1) | 66.6 (0.1) | 66.4 (0.1) | 66.5 (0.1)

Abalonel0 0.0 (0.0) | 30.9 @.2) | 31.0 (1.0) | 32.5 (1.0 0.0 (0.0) | 31.9 (@.49) | 31.6 (0.6) | 32.2 (0.6) | 31.4 (2.2)

Satimage 0.0 0.0) | 23.4 @3) | 20.2 (47 | 20.6 (5.6) 0.5 (0.9 | 24.2 (5.3) | 21.4 (46) | 20.3 (5.0) | 20.5 (5.0

IJCNN 44.5 (0.4) | 53.3 (0.4) | 61.5 (0.4) | 61.5 (0.5) || 46.2 (0.3) | 51.6 (0.3) | 59.2 (0.3) | 583 (0.3) | 58.1 (0.3)

Abalonel2 0.0 (00) | 16.8 (2.7) | 16.9 (2.9) | 18.3 (3.3 0.0 (0.0) | 18.0 (3.5 | 17.7 3.7 | 17.5 (3.4) | 17.7 (3.4)

Pageblocks || 48.1 (5.8) | 39.6 (4.7) | 65.7 (2.6) | 62.8 (3.9) || 48.6 (3.3) | 424 (5.2) | 5.7 (5.7) | 61.3 (9.9) | 59.9 (7.0)

Yeast 0.0 (0.0) | 29.4 (2.9) | 38.8 (7.0) | 39.0 (7.5) 2.5 (5.0) | 29.0 @3.5) | 35.4 (15.6) | 32.7 (11.8) | 38.9 (8.6)
Wine 0.0 (0.0) | 15.6 (5.2) | 19.5 (6.2) | 19.0 (7.0 0.0 (00) | 14.6 3.2) | 183 (r2) | 18.7 (a5) | 21.1 (5.2)
Letter 75.4 (0.7) | 74.9 (0.8) | 80.6 (0.1) | 80.5 (0.4) || 82.9 (0.3) | 82.9 (0.3) | 7T4.9 (0.5 | 82.9 (0.2) | 82.9 (0.3)

News20 90.9 (o.1) | 91.0 (0.2) | 91.1 (0.1) | 91.0 (0.2) || 90.6 (0.1) | 90.6 (0.1) | 89.4 (0.2) | 90.6 (0.1) | 90.7 (0.1)

Average [[ 321 (07) [ 44.0 (23) [ 492 (25) | 49.2 30) [[ 334 (1.0) [ 45.1 (23) [ 47.0 (39) [ 48.1 (36) | 48.8 (3.2)

Table 10: Mean F-Measure over 5 experiments and limiting the number of iterations/grid
steps to 8 (standard deviation between brackets).

Datasets || SVM | SVMyr | SVMg | SVMc || LR | LRir | LRs | LRe | LRc

Adult 62.5 (0.2) | 64.9 (0.3) | 66.4 (0.1) | 66.5 (0.1) || 63.1 (0.1) | 66.0 (0.1) | 66.6 (0.1) | 66.5 (0.1) | 66.5 (0.1)

Abalonel0 0.0 0.0) | 30.9 (.2 | 32.6 (1.4) | 32.6 (1.0 0.0 0.0) | 31.9 (1.4) | 31.6 (0.6) | 32.1 (0.8) | 31.4 (2.2)

Satimage 0.0 00) | 23.4 @3) | 20.2 (47 | 20.6 (5.6) 0.5 (0.9 | 24.2 (5.3) | 21.4 (46) | 20.3 (5.0) | 20.5 (5.0

IJCNN 44.5 (0.4) | 53.3 (0.4) | 61.9 (0.7) | 61.5 (0.5) || 46.2 (0.3) | 51.6 (0.3) | 59.2 (0.3) | 58.0 (0.4) | 581 (0.3)

Abalonel2 0.0 (00) | 16.8 (2.7) | 16.9 (2.9) | 18.3 (3.3) 0.0 (0.0) | 18.0 (35 | 17.7 3.7y | 17.5 (3.4) | 18.1 (3.7)

Pageblocks || 48.1 (5.8) | 39.6 (47) | 65.8 (4.3) | 62.8 (3.9) || 48.6 (3.3) | 424 (5.2) | 5.7 (5.7) | 60.0 (88) | 59.4 (7.5)

Yeast 0.0 (0.0) | 29.4 (2.9 | 33.3 (12.2) | 39.0 (7.5) 2.5 (5.0) | 29.0 3.5 | 35.4 (15.6) | 39.4 (8.5 | 38.9 (8.6)
Wine 0.0 (0.0) | 15.6 (5.2) | 19.5 (6.2) | 22.4 (6.1) 0.0 (0.0) | 14.6 3.2) | 183 (7.2) | 18.7 (a5) | 21.1 (5.2)
Letter 75.4 (0.7) | 74.9 (0.8) | 80.6 (0.4) | 80.5 (0.4) || 82.9 (0.3) | 82.9 (0.3) | 7T4.9 (0.5 | 82.9 (0.2) | 82.9 (0.3)

News20 90.9 (o.1) | 91.0 (0.2) | 91.0 (0.1) | 91.0 (0.2) || 90.6 (0.1) | 90.6 (0.1) | 89.4 (0.2) | 90.6 (0.1) | 90.6 (0.1)

Average [[ 321 (07) [ 44.0 (23) [ 488 (33) | 495 (29) [[ 334 (1.0) [ 45.1 (23) [ 47.0 (39) [ 48.6 (32) | 48.8 (33)

Table 11: Mean F-Measure over 5 experiments and limiting the number of iterations/grid
steps to 9 (standard deviation between brackets).

Datasets || SVM | SVMyr | SVMe | SVMc || LR | LRir | LRs | LRe | LRc

Adult 62.5 (0.2) | 64.9 (0.3) | 66.4 (0.1) | 66.5 (0.1) || 63.1 (0.1) | 66.0 (0.1) | 66.6 (0.1) | 66.4 (0.1) | 66.5 (0.1)

Abalonel0 0.0 (0.0) | 30.9 (@1.2) | 31.0 (1.0) | 32.2 (0.8) 0.0 (00) | 31.9 (1.4) | 31.6 (06) | 31.5 (0.4) | 314 (2.2)

Satimage 0.0 00) | 23.4 @3) | 204 (5.3) | 20.6 (5.6) 0.5 (0.9 | 24.2 (53) | 21.4 (46) | 20.8 (4.9) | 20.5 (5.0

IJCNN 44.5 (0.4) | 53.3 (0.4) | 61.5 (0.4) | 61.5 (0.5) || 46.2 (0.3) | 51.6 (0.3) | 59.2 (0.3) | 583 (0.3) | 581 (0.3)

Abalonel2 0.0 (0.0) | 16.8 (2.7) | 16.7 (41) | 18.3 (3.3) 0.0 (0.0) | 18.0 @3.5) | 17.7 3.7) | 15.1 (5.9) | 18.0 (3.6)

Pageblocks || 48.1 (5.8) | 39.6 (47) | 65.4 (2.3) | 62.8 (3.9) || 48.6 (3.3) | 424 (5.2) | 55.7 (5.7) | 62.7 (83) | 59.4 (7.5)

Yeast 0.0 (0.0) | 29.4 (2.9 | 38.3 (3.8) | 39.0 (7.5 2.5 (5.0) | 29.0 3.5 | 35.4 (15.6) | 38.9 (10.9) | 38.9 (8.6)
Wine 0.0 (0.0) | 15.6 (5.2) | 15.5 (6.0) | 22.7 (6.0) 0.0 (0.0) | 14.6 3.2) | 183 (7.2) | 20.7 (6.0) | 21.1 (5.2)
Letter 75.4 (0.7) | 74.9 (0.8) | 80.8 (0.5) | 80.5 (0.5) 82.9 (0.3) | 82.9 (03) | 749 (05) | 82.9 (0.2) | 82.9 (0.3)

News20 90.9 (0.1) | 91.0 (0.2) | 91.1 (0o.1) | 91.0 (0.2) || 90.6 (0.1) | 90.6 (0.1) | 89.4 (0.2) | 90.6 (0.2) | 90.6 (0.1)

Average [ 321 (o) [ 44.0 (23 [ 487 (20) [ 495 (28 [ 334 (.0) [ 45.1 (23) [ 47.0 39) [ 488 (3.7m [ 48.7 (33)
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Table 12: Mean F-Measure over 5 experiments and limiting the number of iterations/grid
steps to 10 (standard deviation between brackets).

Datasets H SVN[ ‘ SVM[ARA l SVMG ‘ SVNIC H LR ‘ LRI,R_ l LRB ‘ LRG l LRC

Adult 62.5 (0.2) | 64.9 (0.3) | 66.5 (0.1) | 66.4 (0.1) || 63.1 (0.1) | 66.0 (0.1) | 66.6 (0.1) | 66.5 (0.1) | 66.5 (0.1)

Abalonel0 0.0 0.0) | 30.9 @(1.2) | 32.6 (1.4) | 32.2 (0.8) 0.0 (00) | 31.9 @1.4) | 31.6 (06 | 31.8 (1.00 | 31.1 (2.0)

Satimage 0.0 (00) | 23.4 @3) | 204 (5.3) | 20.6 (5.6) 0.5 (0.9 | 24.2 (53) | 21.4 (46) | 20.8 (4.9) | 20.5 (5.0

IJCNN 44.5 (0.4) | 53.3 (0.4) | 61.9 (0.7) | 61.5 (0.5) || 46.2 (0.3) | 51.6 (0.3) | 59.2 (0.3) | 58.0 (0.4) | 58.1 (0.3)

Abalonel2 0.0 (0.0) | 16.8 (2.7) | 16.7 (41) | 18.3 (3.3) 0.0 (0.0) | 18.0 @3.5) | 17.7 3.7) | 15.1 (5.9) | 17.8 (3.49)

Pageblocks || 48.1 (5.8) | 39.6 (4.7) | 65.6 (4.1) | 62.8 (3.9) || 48.6 (3.3) | 424 (5.2) | 5.7 (5.7) | 61.3 (7.3) | 59.4 (7.5)

Yeast 0.0 (0.0) | 29.4 (2.9) | 32.5 (10.4) | 39.0 (7.5) 2.5 (5.0) | 29.0 @3.5) | 35.4 (15.6) | 38.9 (10.9) | 39.5 (9.3)
Wine 0.0 (0.0) | 15.6 (5.2) | 15.5 (6.0) | 22.7 (6.0) 0.0 (0.0) | 14.6 3.2) | 183 (7.2) | 20.7 (6.0) | 21.1 (5.2)
Letter 75.4 (0.7) | 74.9 (0.8) | 80.8 (0.5) | 80.7 (0.4) || 82.9 (0.3) | 82.9 (0.3) | 7T4.9 (0.5 | 82.9 (0.2) | 82.9 (0.3)

News20 90.9 (0.1) | 91.0 (0.2) | 91.0 (0.1) | 91.0 (0.2) || 90.6 (0.1) | 90.6 (0.1) | 89.4 (0.2) | 90.6 (0.2) | 90.6 (0.1)

Average [[ 321 (07) [ 44.0 (23) [ 484 (33) [ 495 (28) [[ 334 (10) [ 45.1 (23) [ 47.0 (39) [ 48.7 (37 | 48.8 (33)

Table 13: Mean F-Measure over 5 experiments and limiting the number of iterations/grid
steps to 11 (standard deviation between brackets).

Datasets || SVM | SVMyr | SVMg | SVMc || LR | LRir | LRs | LRe | LRc

Adult 62.5 (0.2) | 64.9 (0.3) | 66.4 (0.1) | 66.5 (0.1) || 63.1 (0.1) | 66.0 (0.1) | 66.6 (0.1) | 66.5 (0.1) | 66.5 (0.1)

Abalonel0 0.0 0.0) | 30.9 @(.2) | 324 @.3) | 32.2 (0.8) 0.0 (0.0) | 31.9 (@.4) | 31.6 (06 | 31.9 (0.7) | 30.9 (1.9

Satimage 0.0 00) | 23.4 @3) | 20.2 (47 | 20.6 (5.6) 0.5 (0.9 | 24.2 (5.3) | 21.4 (46) | 20.7 (4.8) | 20.5 (5.0

IJCNN 44.5 (0.4) | 53.3 (0.4) | 61.4 (0.5) | 61.8 (0.5) || 46.2 (0.3) | 51.6 (0.3) | 59.2 (0.3) | 583 (0.3) | 581 (0.4)

Abalonel2 0.0 (0.0) | 16.8 (2.7) | 16.7 (a1) | 18.3 (3.3) 0.0 (0.0) | 18.0 (3.5) | 17.7 (37 | 17.2 (31) | 17.8 (3.9)

Pageblocks || 48.1 (5.8) | 39.6 (47) | 66.4 (3.5) | 62.8 (3.9) || 48.6 (3.3) | 424 (5.2) | 5.7 (5.7) | 62.6 (8.0) | 59.4 (7.5)

Yeast 0.0 (0.0) | 29.4 (2.9 | 384 (7.1) | 39.0 (7.5 2.5 (5.0) | 29.0 3.5 | 35.4 (15.6) | 38.7 (8.1) | 39.5 (9.3)
Wine 0.0 (0.0) | 15.6 (5.2) | 16.4 (5.9) | 22.7 (6.0) 0.0 (0.0) | 14.6 3.2) | 183 (7.2) | 20.5 (6.0) | 21.1 (5.2)
Letter 75.4 (0.7) | 74.9 (0.8) | 80.7 (0.3) | 80.9 (0.4) || 82.9 (0.3) | 82.9 (0.3) | 7T4.9 (0.5 | 82.9 (0.2) | 82.9 (0.3)

News20 90.9 (o.1) | 91.0 (0.2) | 91.0 (0.2) | 91.0 (0.2) || 90.6 (0.1) | 90.6 (0.1) | 89.4 (0.2) | 90.6 (0.2) | 90.6 (0.1)

Average [[ 321 (07) [ 44.0 (23) [ 49.0 (28) | 49.6 (28) [[ 334 (1.0o) [ 45.1 (23) [ 47.0 (39) [ 49.0 31) | 48.7 (33)

Table 14: Mean F-Measure over 5 experiments and limiting the number of iterations/grid
steps to 12 (standard deviation between brackets).

Datasets || SVM | SVMyr | SVMe | SVMc || LR | LRir | LRs | LRe | LRc

Adult 62.5 (0.2) | 64.9 (0.3) | 66.4 (0.1) | 66.5 (0.1) || 63.1 (0.1) | 66.0 (0.1) | 66.6 (0.1) | 66.4 (0.1) | 66.5 (0.1)

Abalonel0 0.0 (0.0) | 30.9 (@1.2) | 31.0 (1.0) | 32.2 (0.8) 0.0 (00) | 31.9 (1.4) | 31.6 (06) | 32.0 (0.7) | 30.9 (1.9

Satimage 0.0 00) | 23.4 @3) | 204 (5.3) | 20.6 (5.6) 0.5 (0.9 | 24.2 (53) | 21.4 (46) | 20.3 (5.0) | 20.5 (5.0

IJCNN 44.5 (0.4) | 53.3 (0.4) | 61.8 (0.4) | 61.6 (0.6) || 46.2 (0.3) | 51.6 (0.3) | 59.2 (0.3) | B8.0 (0.4) | 582 (0.3)

Abalonel2 0.0 (0.0) | 16.8 (2.7) | 16.9 (2.9) | 18.3 (3.3) 0.0 (0.0) | 18.0 @3.5) | 17.7 @3.7) | 17.5 (3.4) | 17.8 (3.9)

Pageblocks || 48.1 (5.8) | 39.6 (47) | 64.7 (3.2) | 62.8 (3.9) || 48.6 (3.3) | 424 (5.2) | 55.7 (5.7) | 61.5 (10.0) | 59.4 (7.5)

Yeast 0.0 (0.0) | 29.4 (2.9 | 38.1 (7.6) | 39.0 (7.5 2.5 (5.0) | 29.0 3.5 | 35.4 (15.6) | 39.1 (10.1) | 39.5 (9.3)
Wine 0.0 (0.0) | 15.6 (5.2) | 20.0 (6.4) | 22.7 (6.0) 0.0 (0.0) | 14.6 3.2) | 183 (7.2) | 18.7 (a5) | 21.1 (5.2)
Letter 75.4 (0.7) | 74.9 (0.8) | 80.8 (0.5) | 80.9 (0.4) 82.9 (0.3) | 82.9 (03) | 749 (05) | 82.9 (0.3) | 82.9 (0.3)

News20 90.9 (0.1) | 91.0 (0.2) | 91.0 (0.1) | 91.0 (0.2) || 90.6 (0.1) | 90.6 (0.1) | 89.4 (0.2) | 90.6 (0.1) | 90.6 (0.2)

Average [ 321 (o) [ 44.0 23 [ 491 27 [ 496 8 [[ 334 (.0) [ 45.1 (23) [ 47.0 39) [ 48.7 (35 | 48.7 (33)
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Table 15: Mean F-Measure over 5 experiments and limiting the number of iterations/grid
steps to 13 (standard deviation between brackets).

Datasets H SVN[ ‘ SVM[ARA l SVMG ‘ SVNIC H LR ‘ LRI,R_ l LRB ‘ LRG l LRC

Adult 62.5 (0.2) | 64.9 (0.3) | 66.4 (0.1) | 66.5 (0.1) || 63.1 (0.1) | 66.0 (0.1) | 66.6 (0.1) | 66.5 (0.1) | 66.5 (0.1)

Abalonel0 0.0 0.0) | 30.9 @(1.2) | 32.6 (1.4) | 32.2 (0.8) 0.0 (00) | 31.9 @.4) | 31.6 (06 | 32.3 @.1) | 30.9 (1.9

Satimage 0.0 (00) | 23.4 @3) | 204 (5.3) | 20.6 (5.6) 0.5 (0.9 | 24.2 (5.3) | 21.4 (46) | 20.3 (5.0) | 20.5 (5.0

IJCNN 44.5 (0.4) | 53.3 (0.4) | 61.9 (0.7) | 61.6 (0.6) || 46.2 (0.3) | 51.6 (0.3) | 59.2 (0.3) | 582 (0.2) | 58.2 (0.3)

Abalonel2 0.0 (00) | 16.8 (2.7) | 16.9 (2.9) | 18.3 (3.3 0.0 (0.0) | 18.0 (35 | 17.7 3.7 | 17.5 (3.4) | 17.8 (3.4)

Pageblocks || 48.1 (5.8) | 39.6 (4.7) | 66.6 (3.1) | 62.8 (3.9) || 48.6 (3.3) | 424 (5.2) | 5.7 (5.7) | 60.2 (9.0) | 59.4 (7.5)

Yeast 0.0 (0.0) | 29.4 (2.9 | 33.3 (12.2) | 39.0 (7.5) 2.5 (5.0) | 29.0 @3.5) | 35.4 (15.6) | 39.1 (10.1) | 39.5 (9.3)
Wine 0.0 (0.0) | 15.6 (5.2) | 20.0 (6.4) | 22.7 (6.0) 0.0 (00) | 14.6 3.2) | 183 (r2) | 18.7 (a5) | 21.1 (5.2)
Letter 75.4 (0.7) | 74.9 (0.8) | 80.8 (0.5) | 80.9 (0.4) || 82.9 (0.3) | 82.9 (0.3) | 7T4.9 (0.5 | 82.9 (0.3) | 82.9 (0.3)

News20 90.9 (0.1) | 91.0 (0.2) | 91.0 (0o.1) | 91.0 (0.2) || 90.6 (0.1) | 90.6 (0.1) | 89.4 (0.2) | 90.6 (0.1) | 90.6 (0.2)

Average [[ 321 (07) [ 44.0 (23) [ 49.0 33) | 49.6 (2.8) [[ 334 (1.0) [ 45.1 (23) [ 47.0 (39) [ 48.6 (3.4) | 48.7 (33)

Table 16: Mean F-Measure over 5 experiments and limiting the number of iterations/grid
steps to 14 (standard deviation between brackets).

Datasets || SVM | SVMyr | SVMg | SVMc || LR | LRir | LRs | LRe | LRc

Adult 62.5 (0.2) | 64.9 (0.3) | 66.5 (0.1) | 66.5 (0.1) || 63.1 (0.1) | 66.0 (0.1) | 66.6 (0.1) | 66.5 (0.1) | 66.5 (0.1)

Abalonel0 0.0 0.0) | 30.9 @(.2) | 324 @.3) | 32.2 (0.8) 0.0 (0.0) | 31.9 (1.4) | 31.6 (06) | 31.4 (0.5 | 30.9 (1.9

Satimage 0.0 0.0) | 23.4 @3) | 204 (5.3) | 20.6 (5.6) 0.5 (0.9 | 24.2 (5.3) | 21.4 (46) | 20.8 (4.9) | 20.5 (5.0

IJCNN 44.5 (0.4) | 53.3 (0.4) | 61.6 (0.6) | 61.6 (0.6) || 46.2 (0.3) | 51.6 (0.3) | 59.2 (0.3) | 58.0 (0.4) | 582 (0.3)

Abalonel2 0.0 (00) | 16.8 (2.7) | 16.8 (4.2) | 18.3 (3.3) 0.0 (0.0) | 18.0 (35 | 17.7 3.7 | 15.1 (5.9) | 17.8 (3.9)

Pageblocks || 48.1 (5.8) | 39.6 (47) | 65.5 (4.2) | 62.8 (3.9) || 48.6 (3.3) | 424 (5.2) | 55.7 (5.7) | 62.8 (8.2) | 59.4 (7.5)

Yeast 0.0 (0.0) | 29.4 (2.9) | 38.0 (4.4) | 39.0 (7.5 2.5 (5.0) | 29.0 @3.5) | 35.4 (15.6) | 38.2 (11.2) | 39.5 (9.3)
Wine 0.0 (0.0) | 15.6 (5.2) | 19.1 (6.9) | 22.7 (6.0) 0.0 (0.0) | 14.6 3.2) | 183 (72) | 18.9 (.6 | 21.1 (5.2)
Letter 75.4 (0.7) | 74.9 (0.8) | 80.8 (0.5) | 80.9 (0.4) || 82.9 (0.3) | 82.9 (0.3) | 7T4.9 (0.5 | 82.9 (0.2) | 82.9 (0.3)

News20 90.9 (o.1) | 91.0 (0.2) | 91.1 (0.1) | 91.0 (0.2) || 90.6 (0.1) | 90.6 (0.1) | 89.4 (0.2) | 90.6 (0.2) | 90.6 (0.2)

Average [[ 321 (07) [ 44.0 (23) [ 492 (28) | 49.6 (2.8) [[ 334 (1.0) [ 45.1 (23) [ 47.0 (39) [ 485 (36) | 48.7 (33)

Table 17: Mean F-Measure over 5 experiments and limiting the number of iterations/grid
steps to 15 (standard deviation between brackets).

Datasets || SVM | SVMyr | SVMe | SVMc || LR | LRir | LRs | LRe | LRc

Adult 62.5 (0.2) | 64.9 (0.3) | 66.4 (0.1) | 66.5 (0.1) || 63.1 (0.1) | 66.0 (0.1) | 66.6 (0.1) | 66.4 (0.1) | 66.5 (0.1)

Abalonel0 0.0 (0.0) | 30.9 (@1.2) | 31.0 (1.0) | 32.2 (0.8) 0.0 (00) | 31.9 (1.4) | 31.6 (06) | 31.9 (0.5 | 30.9 (1.9

Satimage 0.0 00) | 23.4 @3) | 204 (5.3) | 20.6 (5.6) 0.5 (0.9 | 24.2 (53) | 21.4 (46) | 20.7 (4.8) | 20.5 (5.0

IJCNN 44.5 (0.4) | 53.3 (0.4) | 61.8 (0.4) | 61.6 (0.6) || 46.2 (0.3) | 51.6 (0.3) | 59.2 (0.3) | B8.2 (0.2) | 582 (0.3)

Abalonel2 0.0 (00) | 16.8 (2.7) | 16.8 (42) | 18.3 (3.3 0.0 (0.0) | 18.0 (35 | 17.7 @3.7) | 17.2 (3.1) | 184 (2.3)

Pageblocks || 48.1 (5.8) | 39.6 (4.7) | 65.7 (2.1) | 62.8 (3.9) || 48.6 (3.3) | 424 (5.2) | 55.7 (5.7) | 62.7 (83) | 59.4 (7.5)

Yeast 0.0 (0.0) | 29.4 (2.9 | 39.0 (6.8) | 39.0 (7.5 2.5 (5.0) | 29.0 3.5 | 35.4 (15.6) | 39.1 (10.1) | 39.5 (9.3)
Wine 0.0 (0.0) | 15.6 (5.2) | 20.0 (6.4) | 22.7 (6.0) 0.0 (0.0) | 14.6 3.2) | 183 (7.2) | 18.7 (a5) | 21.1 (5.2)
Letter 75.4 (0.7) | 74.9 (0.8) | 80.8 (0.5) | 80.9 (0.4) 82.9 (0.3) | 82.9 (03) | 749 (05) | 82.9 (0.2) | 82.9 (0.3)

News20 90.9 (0.1) | 91.0 (0.2) | 91.1 (0o.1) | 91.0 (0.1) || 90.6 (0.1) | 90.6 (0.1) | 89.4 (0.2) | 90.6 (0.2) | 90.6 (0.2)

Average [ 321 (o) [ 44.0 (23 [ 493 (27 [ 496 28 [[ 334 (.0) [ 45.1 (23) [ 47.0 (39) [ 48.8 (3.2) | 48.8 (32
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Table 18: Mean F-Measure over 5 experiments and limiting the number of iterations/grid
steps to 16 (standard deviation between brackets).

Datasets || SVM | SVMyr | SVMg | SVMc || LR | LRir | LRs | LRe | LRc

Adult 62.5 (0.2) | 64.9 (0.3) | 66.4 (0.1) | 66.5 (0.1) || 63.1 (0.1) | 66.0 (0.1) | 66.6 (0.1) | 66.5 (0.1) | 66.5 (0.1)

Abalonel0 0.0 (0.0) | 30.9 (.2) | 324 (1.3) | 32.2 (0.8) 0.0 (.0) | 31.9 (1.9) | 31.6 (0.6) | 31.7 (0.7) | 30.9 (1.9)

Satimage 0.0 00) | 23.4 @3) | 204 (5.3) | 20.6 (5.6) 0.5 (0.9 | 24.2 (53) | 21.4 (46) | 20.7 (4.8) | 20.5 (5.0

IJCNN 44.5 (0.4) | 53.3 (0.4) | 61.6 (0.6) | 61.6 (0.6) || 46.2 (0.3) | 51.6 (0.3) | 59.2 (0.3) | 580 (0.4) | 582 (0.3)

Abalonel2 0.0 (0.0) | 16.8 (2.7) | 16.8 (4.2) | 18.3 (3.3) 0.0 (0.0) | 18.0 (3.5) | 17.7 (37 | 17.2 (31) | 184 (2.3)

Pageblocks || 48.1 (5.8) | 39.6 (47) | 65.5 (4.2) | 62.8 (3.9) || 48.6 (3.3) | 424 (5.2) | 557 (5.7) | 62.8 (82) | 59.4 (7.5)

Yeast 0.0 (0.0) | 29.4 (2.9 | 38.6 (7.1) | 39.0 (7.5 2.5 (5.0) | 29.0 3.5 | 35.4 (15.6) | 39.1 (10.1) | 39.5 (9.3)
Wine 0.0 (0.0) | 15.6 (5.2) | 20.0 (6.4) | 22.7 (6.0) 0.0 (0.0) | 14.6 3.2) | 183 (7.2) | 18.7 (a5) | 21.1 (5.2)
Letter 75.4 (0.7) | 74.9 (0.8) | 80.8 (0.5) | 81.0 (0.4) || 82.9 (0.3) | 82.9 (0.3) | 7T4.9 (0.5 | 82.9 (0.2) | 82.9 (0.3)

News20 90.9 (o.1) | 91.0 (0.2) | 91.1 (0.1) | 91.0 (0.1) || 90.6 (0.1) | 90.6 (0.1) | 89.4 (0.2) | 90.6 (0.2) | 90.6 (0.2)

Average [[ 321 (07) [ 44.0 (23) [ 494 (3.0) [ 49.6 (28) [[ 334 (10) [ 45.1 (23) [ 47.0 (39) [ 48.8 (32) | 48.8 (39)

Table 19: Mean F-Measure over 5 experiments and limiting the number of iterations/grid
steps to 17 (standard deviation between brackets).

Datasets || SVM [ SVMrgr | SVMg [ SVMe | LR | LRir | LR | LRe [ LRe

Adult 62.5 (0.2) | 64.9 (0.3) | 66.4 (0.1) | 66.5 (0.1) 63.1 (0.1) | 66.0 (0.1) | 66.6 (0.1) | 66.5 (0.1) | 66.5 (0.1)

Abalonel0 0.0 (0.0) | 30.9 (.2) | 324 (1.3) | 32.2 (0.8) 0.0 (0.0) | 31.9 (@.49) | 31.6 (0.6) | 31.7 (0.7) | 30.9 (1.9

Satimage 0.0 (0.0) | 23.4 (4.3) | 204 (5.3) | 20.6 (5.6) 0.5 (09) | 24.2 (5.3) | 21.4 (46) | 20.7 (a.8) | 20.5 (5.0

IJCNN 44.5 (0.4) | 53.3 (0.4) | 61.6 (0.6) | 61.6 (0.6) || 46.2 (0.3) | 51.6 (0.3) | 59.2 (0.3) | 582 (0.2) | 58.2 (0.3)

Abalonel2 0.0 (00) | 16.8 (2.7) | 16.8 (4.2) | 18.3 (3.3) 0.0 (0.0) | 18.0 (3.5 | 17.7 3.7 | 17.2 3.1) | 184 (2.3)

Pageblocks || 48.1 (5.8) | 39.6 (4.7) | 66.4 (3.2) | 62.8 (3.9) || 48.6 (3.3) | 424 (5.2) | 5.7 (5.7) | 62.8 (8.2) | 59.4 (7.5)

Yeast 0.0 (0.0) | 29.4 (2.9 | 38.6 (7.1) | 39.0 (7.5) 2.5 (5.0) | 29.0 @3.5) | 35.4 (15.6) | 39.1 (10.1) | 39.5 (9.3)
Wine 0.0 00) | 15.6 (5.2) | 20.0 (6.4) | 22.7 (6.0 0.0 (00) | 14.6 3.2) | 183 (72) | 18.7 (a5) | 21.1 (5.2)
Letter 75.4 (0.7) | 74.9 (0.8) | 80.8 (0.5) | 81.0 (0.4) || 82.9 (0.3) | 82.9 (0.3) | 7T4.9 (0.5 | 82.9 (0.2) | 82.9 (0.3)

News20 90.9 (o.1) | 91.0 (0.2) | 91.1 (0.1) | 91.0 (0.1) || 90.6 (0.1) | 90.6 (0.1) | 89.4 (0.2) | 90.6 (0.2) | 90.6 (0.2)

Average [[ 321 (07) [ 44.0 (23) [ 495 (29) [ 49.6 (28) [[ 334 (1.0) [ 45.1 (23) [ 47.0 (39) [ 48.8 (32) | 48.8 (39)

Table 20: Mean F-Measure over 5 experiments and limiting the number of iterations/grid
steps to 18 (standard deviation between brackets).

Datasets || SVM [ SVMyr | SVMg | SVM¢ [ LR [ LRes | LR | LRe | LRe

Adult 62.5 (0.2) | 64.9 (0.3) | 66.4 (0.1) | 66.5 (0.1) 63.1 (0.1) | 66.0 (0.1) | 66.6 (0.1) | 66.5 (0.1) | 66.5 (0.1)

Abalonel0 0.0 00) | 309 (.2 | 324 (1.3) | 32.2 (0.8) 0.0 (0.0) | 31.9 (1.4) | 31.6 (0.6) | 31.7 (0.7) | 30.9 (1.9

Satimage 0.0 (0.0) | 23.4 (4.3) | 204 (5.3) | 20.6 (5.6) 0.5 (0.9) | 24.2 (5.3) | 21.4 (46) | 20.7 (a.8) | 20.5 (5.0

IJCNN 44.5 (0.4) | 53.3 (0.4) | 61.6 (0.6) | 61.6 (0.6) || 46.2 (0.3) | 51.6 (0.3) | 59.2 (0.3) | B8.2 (0.2) | 58.2 (0.3)

Abalonel2 0.0 (0.0) | 16.8 (2.7) | 16.8 (4.2) | 18.3 (3.3) 0.0 (0.0) | 18.0 @3.5) | 17.7 @3.7) | 17.2 (3.1) | 184 (2.3)

Pageblocks || 48.1 (5.8) | 39.6 (47) | 66.4 (3.2) | 62.8 (3.9) || 48.6 (3.3) | 424 (5.2) | 5.7 (5.7) | 62.8 (82) | 59.4 (7.5)

Yeast 0.0 (0.0) | 29.4 (2.9 | 38.6 (7.1) | 39.0 (7.5) 2.5 (5.0) | 29.0 @3.5) | 35.4 (15.6) | 39.1 (10.1) | 39.5 (9.3)

‘Wine 0.0 (0.0) | 15.6 (5.2) | 20.0 (6.4) | 22.7 (6.0 0.0 (0.0) | 14.6 3.2) | 183 (7.2) | 18.7 (a5 | 21.1 (5.2)

Letter 75.4 (0.7) | 74.9 (0.8) | 80.8 (0.5) | 81.0 (0.4) || 82.9 (0.3) | 82.9 (0.3) | 7T4.9 (0.5) | 82.9 (0.2) | 82.9 (0.3)

News20 90.9 (0.1) | 91.0 (0.2) | 91.1 (o.1) | 91.0 (0.1) 90.6 (0.1) | 90.6 (0.1) | 89.4 (0.2) | 90.6 (0.2) | 90.6 (0.2)

Average [ 32.1 (o) [ 44.0 (23 [ 495 (29) [ 49.6 (25 [ 334 (10 [ 45.1 (23 [ 47.0 39 [ 488 (3.2) | 488 (3.2)
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