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Abstract

We study the problem of estimating a set of d linear queries over some unknown distribution
based on a sensitive data set under the constraint of local differential privacy (LDP). Let J be a
data domain of size J . A linear query is uniquely identified by a vector q ∈ RJ , and is defined
as the linear function 〈q, ·〉 : Simplex(J)→ R, where Simplex(J) is the probability simplex in RJ .
Given a set D = {vi ∈ J : i ∈ [n]} of private data items of n individuals drawn i.i.d. from some
unknown distribution p ∈ Simplex(J), we wish to estimate the values of a set of d linear queries
q1, . . . ,qd over p under LDP. This problem subsumes a wide range of estimation tasks including
distribution estimation and d-dimensional mean estimation. We provide new algorithms for
both the offline (non-adaptive) and the adaptive versions of this problem.

In the offline setting, the set of queries are determined and fixed at the beginning of the
algorithm. In the regime where n. d2/ log(J), our algorithms have L2 estimation error (with
respect to the distribution p) that is independent of d, and is tight up to a factor of Õ

(
log1/4(J)

)
.

Our algorithms combine different ideas such as L2 projection on convex polytopes and rejection
sampling. For the special case of distribution estimation, we show that projecting the output
estimate of an algorithm due to [ASZ18] on the probability simplex yields an L2 error that
depends only sub-logarithmically on J in the regime where n. J2/ log(J). These results show
the possibility of accurate estimation of linear queries in the high-dimensional settings under
the L2 error criterion.

In the adaptive setting, the queries are generated over d rounds; one query at a time. At
the start of each round k ∈ [d], a query qk can be chosen adaptively based on all the history
of previous queries and answers. We give an algorithm for this problem with optimal L∞
estimation error (worst error in the estimated values for the queries w.r.t. the data distribution).
Our bound matches a lower bound on the L∞ error for the offline version of this problem
[DJW13b].

1 Introduction

Differential privacy [DMNS06] is a rigorous mathematical definition that has emerged as one of
the most successful notions of privacy in statistical data analysis. Differential privacy provides a
rich and powerful algorithmic framework for private data analysis, which can help organizations
mitigate users’ privacy concerns. There are two main models for private data analysis that are
studied in the literature of differential privacy: the centralized model and the local model. The
centralized model assumes a trusted centralized curator that collects all the personal information
and then analyzes it. In contrast, the local model, which dates back to [War65], does not involve a
central repository. Instead, each individual holding a piece of private data randomizes her data
herself via a local randomizer before it is collected for analysis. This local randomizer is designed
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to satisfy differential privacy, providing a strong privacy protection for each individual. The local
model is attractive in many practical and industrial domains since it relieves organizations and
companies from the liability of holding and securing their users private data. Indeed, in the last
few years there have been many successful deployments of local differentially private algorithms
in the industrial domain, most notably by Google and Apple [EPK14, TVV+17].

In this paper, we study the problem of linear queries estimation under local differential
privacy (LDP). Let J = [J] be a data domain of size J . A linear query with respect to J is
uniquely identified by a vector q ∈ RJ that describes a linear function 〈q, ·〉 : Simplex(J)→ R, where
Simplex(J) denotes the probability simplex in RJ . In this problem, we have a set of n individuals
(users), where each user i ∈ [n] holds a private value vi ∈ J drawn independently from some
unknown distribution p ∈ Simplex(J). An entity (server) generates a sequence of linear queries
q1, . . . ,qd and wishes to estimate, within a small error, the values of these queries over the unknown
distribution p, i.e., 〈q1, p〉, . . . ,〈qd , p〉. To do this, the server collects signals from the users about
their inputs and use them to generate these estimates. Due to privacy concerns, the signal sent
by each user is generated via a local randomizer that outputs a randomized (privatized) version
of the user’s true input in a way that satisfies LDP. The goal is to design a protocol that enables
the server to derive accurate estimates for its queries under the LDP constraint. This problem
subsumes a wide class of estimation tasks under LDP, including distribution estimation studied
in [DJW13b, BS15, DHS15, KBR16, BNST17, YB18, ASZ18] and mean estimation in d dimensions
[DJW13a, DJW13b].

Non-adaptive versus Adaptive Queries: In this work, we consider two versions for the above
problem. In the non-adaptive (offline) version, the set of d queries q1, . . . ,qd are decided by the
server before the protocol starts (i.e., before users send their signals). In this case, the set of d
queries can be represented as the rows of a matrix A ∈ Rd×J that is published before the protocol
starts. In the adaptive version of this problem, the d queries are submitted and answered over d
rounds: one query in each round. Before the start of each round k ∈ [d], the server can adaptively
choose the query qk based on all the history it sees, i.e., based on all the previous queries and
signals from users in the past k −1 rounds. This setting is clearly harder than the offline setting.
Both distribution estimation and mean estimation over a finite (arbitrary large) domain can be
viewed as special cases of the offline queries model above. In particular, for distribution estimation,
the queries matrix A is set to IJ , the identity matrix of size J (in such case, the dimensionality d = J).
For d-dimensional mean estimation, the columns of A are viewed as the set of all realizations of a
d-dimensional random variable.

One of the main challenges in the local model is dealing with high-dimensional settings (i.e.,
when d & n). Previous constructions for distribution estimation [DJW13b, KBR16, YB18, ASZ18]
and mean estimation [DJW13b] suffer from an explicit polynomial dependence on the dimensions
in the resulting L2 estimation error.

In this work, we address this challenge and give new constructions for large, natural families of
offline linear queries that subsumes the above estimation problems. The resulting L2 estimation er-
ror1 has no dependence on d in the high-dimensional setting and depends only sub-logarithmically
on J . We also consider the adaptive version of the general linear queries problem, and give a new
protocol with optimal L∞ error (which is a more natural error criterion in the adaptive setting).
We discuss these results below.

1In this work, we consider the true population risk not the empirical risk. We refer to it as the estimation error and
sometimes as the true error.
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1.1 Results and comparison to previous works

The accuracy guarantees of our ε-LDP protocols are summarized in Table 1.

General offline linear queries: We assume that the L2 norm of any column of the queries matrix
A ∈ Rd×J is bounded from above by some arbitrary constant r > 0. We note that this is weaker
assumption than assuming that the spectral norm of A (largest singular value) is bounded by r.
For any r > 0, let C2(r) denote the collection of all matrices in Rd×J satisfying this condition. We
design ε-LDP protocol that given any queries matrix A from this family, it outputs an estimate
for Ap with nearly optimal L2 estimation error (see Section 2.2.1 for the definition of the L2
estimation error). As noted earlier, the resulting L2 estimation error does not depend on d in
the high-dimensional setting: in particular, in the case where n. d2/ log(J) (which subsumes the
high-dimensional setting when log(J) . d). This improves over the upper bound in [DJW13b,
Proposition 3] achieved by the ball sampling mechanism proposed therein. The near optimality of
our protocol follows from the lower bound in the same reference (see Table 1). To construct our
protocol, we start with an (ε,δ)-LDP protocol that employs the Gaussian mechanism together with
the projection technique similar to the one used in [NTZ13] in the centralized model of differential
privacy. We show the applicability of this technique in the local model. Next, we transform our
(ε,δ)-LDP construction into a pure ε-LDP construction while maintaining the same accuracy (and
the same computational cost). To do this, we give a technique based on rejection sampling ideas
from [BS15, BNS18]. In particular, our technique can be viewed as a simpler, more direct version
of the generic transformation of [BNS18] tuned to the linear queries problem. For this general
setting, we focus on improving the estimation error. We do not consider the problem of optimizing
communication or computational efficiency. We think that providing a succinct description of
the queries matrix (possibly under more assumptions on its structure) is an interesting problem,
which we leave to future work.

Problem/Error metric
Upper bound
(This work)

Upper bound
(Previous work) Lower bound

General offline queries
(L2 error) r ·min

(( log(J) log(n)
nε2

)1/4
,
√

d
nε2

)
r ·

√
d
nε2

[DJW13b, Prop. 3]

r ·min
((

1
nε2

)1/4
,
√

d
nε2

)
([DJW13b, Prop. 3])

Distribution estimation
(L2 error) min

(( log(J)
nε2

)1/4
,
√

J
nε2

) √
J
nε2

[ASZ18, Thm. 3]

min
((

1
nε2

)1/4
,
√

J
nε2

)
([DJW13b, YB18])

General adaptive queries
(L∞ error) r

√
c2
εd log(d)

n –
r

√
c2
εd log(d)

n

([DJW13b, Prop. 4]
for offline queries)

Table 1: Error bounds for the proposed ε-LDP protocols with comparison to previous results. Since
the error in each case cannot exceed the trivial error r, each upper bound should be understood as
the min of the stated bound and r.
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Distribution estimation: For this special case, we extend the Hadamard-Response protocol of
[ASZ18] to the high-dimensional setting. This protocol enjoys several computational advantages,
particularly, O(log(J)) communication and running time for each user. We show that this protocol
when combined with a projection step onto the probability simplex gives L2 estimation error that
depends only sub-logarithmically on J for all n. J2/ log(J). The resulting error is also tight up to
a sub-logarithmic factor in J . We note that the L2 error bound in [ASZ18] is applicable only in
the case where n& J/ε2. Our result thus shows the possibility of accurate distribution estimation
under the L2 error criterion in the high-dimensional setting. Our bound also improves over the
bound of [ASZ18] for all n. J2

ε2 log(J) . To the best of our knowledge, existing results do not imply L2

error bound better than the trivial O(1) error in the regime where n. J
ε2 . It is worthy to point out

that the L2 error bound of [ASZ18] is optimal only when n& J2/ε2. Although this condition is not
explicitly mentioned in [ASZ18], however, as stated in the same paper, their claim of optimality
follows from the lower bound in [YB18]; specifically, [YB18, Theorem IV]. From this theorem, it is
clear that the lower bound is only valid when n ≥ const. J

2

ε2 . Hence, our bound does not contradict
with the results of these previous works. We also note that the idea of projecting the estimated
distribution onto the probability simplex was proposed in [KBR16] (along with a different protocol
than that of [ASZ18]). Although [KBR16] show empirically that the projection technique yield
improvements in accuracy, no formal analysis or guarantees were provided for the resulting error
in this case.
Note that the L2 estimation error bounds in the previous works were derived for the expected
L2-squared error, and hence the expressions here are the square-root of the bounds appearing in
these references. Moreover, we note that our bounds are obtained by first deriving bounds on the
L2-squared estimation error, which then imply our stated bounds on the L2 error. Hence, squaring
our bounds give valid bounds on the L2-squared error.

Adaptive linear queries: We assume the following constraint on any sequence of adaptively
chosen queries 〈q1, ·〉, . . . ,〈qd , ·〉: for each k ∈ [d], ‖qk‖∞ ≤ r for some r > 0. That is, each vector
q defining a query has a bounded L∞ norm. Unlike the offline setting, since the sequence of the
queries is not fixed beforehand (i.e., the queries matrix A is not known a priori), the above L∞
constraint is more natural than constraining a quantity related to the norm of the queries matrix as
we did in the offline setting. For any r > 0, we let Q∞(r) = {〈q, ·〉 : ‖q‖∞ ≤ r}, i.e., Q∞(r) denote the
family of all linear queries satisfying the above constraint. In this setting, we measure accuracy in
terms of the true L∞ error; that is, the maximum true error max

k∈[d]
|yk −〈qk , p〉| in any of the estimates

{yk : k ∈ [d]} for the d queries. (See Section 2.2.2 for a precise definition).
We give a construction of ε-LDP protocol that answers any sequence of d adaptively chosen queries
from Q∞(r). Our protocol attains the optimal L∞ estimation error. The optimality follows from the
fact that our upper bound matches a lower bound on the same error in the non-adaptive setting
given in [DJW13b, Proposition 4]. In our protocol, each user sends only a constant number of bits
to the server, namely, O(log(r)) bits/user. In our protocol, the set of users are partitioned into d
disjoint subsets, and each subset is used to answer one query. Roughly speaking, this partitioning
technique can be viewed as some version of sample splitting. In contrast, this technique is known
to be suboptimal (w.r.t. the L∞ estimation error) in the centralized model of differential privacy
[BNS+16]. Moreover, given the offline lower bound in [DJW13b], our result shows that adaptivity
does not pose any extra penalty in the true L∞ estimation error for linear queries in the local model.
In contrast, it is still not clear whether the same statement can be made in the centralized model of
differential privacy. For instance, assuming ε = Θ(1) and n& d3/2, then in the centralized model, the
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best known upper bound on the true L∞ estimation error for this problem in the adaptive setting is
≈ d1/4/

√
n [BNS+16, Corollary 6.1] (which combines [DMNS06] with the generalization guarantees

of differential privacy). Whereas in the offline setting, the true L∞ error is upper-bounded by

≈
√

log(d)
n (combining [DMNS06] with the standard generalization bound for the offline setting).

There is also a gap to be tightened in the other regime of n and d as well. For example, this can be
seen by comparing [BNS+16, Corollary 6.3] with the bound attained by the private multiplicative
weights algorithm [HR10] in the offline setting.

2 Preliminaries and Definitions

2.1 (ε,δ)-Local Differential Privacy

In the local model, an algorithm A can access any entry in a private data set D = (v1, . . . , vn) ∈ J n
only via a randomized algorithm (local randomizer)R : J →Wthat, given an index i ∈ [n], runs on
the input vi and returns a randomized output R(vi) to A. Such algorithm A satisfies (ε,δ)-local
differential privacy ((ε,δ)-LDP) if the local randomizer R satisfies (ε,δ)-LDP defined as follows.

Definition 2.1 ((ε,δ)-LDP). A randomized algorithm R : J → W is (ε,δ)-LDP if for any pair
v,v′ ∈ J and any measurable subset O ⊆W , we have

P
R

[R(v) ∈ O] ≤ eεP
R

[R(v) ∈ O] + δ,

where the probability is taken over the random coins of R. The case of δ = 0 is called pure ε-LDP.

2.2 Accuracy Definitions

2.2.1 Offline queries

For the non-adaptive (offline) setting, we measure accuracy in terms of the worst-case expected
L2-error in the responses to d queries. Let p be any (unknown) distribution over a data domain
J = [J]. To simplify presentation, we will overload notation and use p ∈ Simplex(J) to also denote
the probability mass function (p.m.f.) of the same distribution, where Simplex(J) refers to the
probability simplex in RJ defined as Simplex(J) =

{
(w1, . . . ,wJ ) ∈ RJ : wj ≥ 0 ∀j ∈ [J],

∑J
j=1wj = 1

}
.

Let D denote the set of users’ inputs {vi : i ∈ [n]} that are drawn i.i.d. from p(this will be usually
denoted as D ∼ pn). For any r > 0, let C2(r) =

{
A = [a1 . . . aJ ] ∈ Rd×J : ‖a‖2 ≤ r

}
; that is, C2(r) denote

the family of all matrices in Rd×J whose columns lie in Bd2(r) (the d-dim L2 ball of radius r). Let
A ∈ C2(r) be a queries matrix whose rows determine d offline linear queries. An (ε,δ)-LDP protocol
Prot describes a set of procedures executed at each user and the server that eventually produce an
estimate ŷ ∈ Rd for the true answer vector Ap ∈ Rd subject to (ε,δ)-LDP. Let Prot(A,D) denote the
final estimate vector ŷ generated by the protocol Prot for a data set D and queries matrix A. The
true expected L2 error in the estimate Prot(A,D) when D ∼ pnis defined as

errProt,L2
(A;pn) , E

Prot, D∼pn
[‖Prot(A,D)−Ap‖2] ,

where the expectation is taken over the randomness in D and the random coins of the protocol.
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True error: The worst-case expected L2-error (with respect to worst-case distribution and worst
case queries matrix in C2(r)) is defined as

errProt,L2
(C2(r),n) , sup

A∈C2(r)
sup

p∈Simplex(J)
E

Prot, D∼pn
[‖Prot(A;D)−Ap‖2] (1)

Empirical error: Sometimes, we will consider the worst-case empirical L2 error of an LDP
protocol. Given any data set D ∈ [J]n, let p̂(D) ∈ Simplex(J) denote the histogram (i.e., the empirical
distribution) of D. The worst-case empirical L2 error of an LDP protocol Prot is defined as

êrrProt,L2
(C2(r),n) , sup

A∈C2(r)
sup
D∈[J]n

E
Prot

[‖Prot(A;D)−Ap̂(D)‖2] (2)

Note the expectation in this case is taken only over the random coins of Prot.

Optimal non-private estimators for offline linear queries The following is a simple observation
that follows well-known facts in statistical estimation.

sup
A∈C2(r)

sup
p∈Simplex(J)

E
D∼pn

[‖Ap̂(D)−Ap‖2] ≤ r
√
n

(3)

Note that Ap̂(D) is an unbiased estimator of Ap. The above bound follows from a simple analysis
of the variance of Ap̂(D).

Note: Given (3), if we have an LDP protocol Prot that has worst-case empirical L2 error α, then
such a protocol has worst-case true L2 error errProt,L2

(C2(r),n) ≤ α + r√
n

.

2.2.2 Adaptive queries

For any r > 0, we let Q∞(r) = {〈q, ·〉 : ‖q‖∞ ≤ r}, i.e., Q∞(r) denote the family of all linear queries
described by vectors in RJ of L∞ norm bounded by r. In the adaptive setting, we consider the
worst-case expected L∞ error in the vector of estimates generated by LDP protocol for any sequence
of d adaptively chosen queries q1, . . . ,qd ∈ Q∞. Let D ∼ pn be a data set of users’ inputs. Let Prot
be LDP protocol for answering any such sequence. We define the worst-case L∞ error as

errProt,L∞(Q∞(r),d,n) , sup
p∈Simplex(J)

sup
adaptive strategy
choosing q1,...,qd

E
Prot, D∼pn

[
max
k∈[d]

| Prot(k)(D)− 〈qk , p〉 |
]
, (4)

where Prot(k)(D) denotes the estimate generated by the protocol in the k-th round of the protocol.

2.3 Geometry facts

For a convex body K ⊆ Rd , the polar body Ko is defined as {y : |〈y,x〉| ≤ 1 ∀x ∈ K}. A convex body
K is symmetric if K = −K . The Minkowski norm ‖x‖K induced by a symmetric convex body K is
defined as ‖x‖K = inf{r ∈ R : x ∈ rK}. The Minkowski norm induced by the polar body Ko of K is
the dual norm of ‖x‖K , and has the form ‖y‖Ko = supx∈K |〈x,y〉|. By Holder’s inequality, we have
〈x,y〉 ≤ ‖x‖K‖y‖Ko .
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Let BJ1 denote the unit L1 ball in RJ . A symmetric convex polytope L ⊂ Rd of J vertices
that are represented as the columns of a matrix A ∈ Rd×J is defined as L , ABJ1 = {y ∈ Rd : y =
Ax for some x ∈ RJ with ‖x‖1 ≤ 1}. The dual Minkowski norm induced by the convex symmetric
polytope L is given by ‖x‖Lo = maxy∈L|〈x,y〉| = maxj∈[J]|〈aj ,x〉|, where the last equality is due to the
fact that any linear function over a polytope attains its maximum at one of the vertices of the
polytope.

The following is a useful lemma based on standard analysis that bounds the least squared
estimation error over convex bodies. We restate here the version that appeared in [NTZ13].

Lemma 2.2 (Lemma 1 in [NTZ13]). Let L ⊆ Rd be a symmetric convex body, and let y ∈ L and ȳ = y+z
for some z ∈ Rd . Let ŷ = argminw∈L ‖w− ȳ‖22. Then, we must have

‖ŷ− y‖22 ≤ 4min{‖z‖22, ‖z‖Lo }.

As a direct consequence of the above lemma and the preceding facts, we have the following
corollary.

Corollary 2.3. Let L ⊂ Rd be a symmetric convex polytope of J vertices {aj}
J
j=1, and let y ∈ L and

ȳ = y + z for some z ∈ Rd . Let ŷ = argminw∈L ‖w− ȳ‖22. Then, we must have

‖ŷ− y‖22 ≤ 4max
j∈[J]
|〈z, aj〉|.

2.4 SubGaussian random variables

Definition 2.4 (σ2-subGaussian random variable). A zero mean random variable X is called

σ -subgaussian if for all λ ≥ 0, P [|X | ≥ λ] ≤ 2e−
λ2

2σ2 .

Another equivalent version of the definition is as follows: A zero-mean random variable X is
σ -subgaussian if for all t ∈ R, E

[
etX

]
≤ e

1
2 t

2 σ2
. It is worth noting that these two versions of the

definition are equivalent up to a small constant in σ (see, e.g., [Bul]).

3 LDP Protocols for Offline Linear Queries

In this section, we consider the problem of estimating d offline linear queries under ε-LDP. For
any given r > 0, as discussed in Section 2.2.1, we consider a queries matrix A ∈ C2(r); that is, the
columns of A are assumed to lie in the L2 ball Bd2(r) of radius r.

As a warm-up, in Section 3.1, we first describe and analyze an (ε,δ)-LDP protocol. Our protocol
is simple and is based on (i) perturbing the columns of A corresponding to users’ inputs via
Gaussian noise and (ii) applying a projection step, when appropriate, to the noisy aggregate similar
to the technique of [NTZ13] in the centralized model. This projection step reduces the error
significantly in the regime where n . d2/ log(J) (which subsumes the high-dimensional setting

d & n when log(J) . d). In particular, in such regime, our protocol yields an L2 error ≈ r
( log(J)

n

)1/4
,

which does not depend on d and depends only sub-logarithmically on J . Moreover, this error is
within a factor of log1/4(J) from the optimal error in this regime. Hence, this result establishes the
possibility of accurate estimation of linear queries with respect to the L2 error in high-dimensional
settings. Adoption of all previously known algorithms (particularly, the ball sampling mechanism
of [DJW13b]) do not provide any guarantees better than the trivial error for that problem in the
regime where n. d.
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In Section 3.2, we give a construction that transforms our (ε,δ) algorithm into a pure ε-LDP
algorithm with essentially the same error guarantees. Our transformation is inspired by ideas from
[BS15, BNS18]. In particular, [BNS18] gives a generic technique for transforming an (ε,δ)-LDP
protocol to anO(ε)-LDP protocol. Our construction can be viewed as a simpler, more direct version
of this transformation for the case of linear queries.

3.1 (ε,δ) LDP Protocol for Offline Linear Queries

We first describe the local randomization procedure RGauss
i carried out by each user i ∈ [n]. The

local randomization is based on perturbation via Gaussian noise ; that is, it can be viewed as LDP
version of the standard Gaussian mechanism [DKM+06].

Algorithm 1 RGauss
i : (ε,δ)-Local Randomization of user i ∈ [n]

Require: Queries matrix A ∈ C2(r), User i input vi ∈ [J], privacy parameters ε,δ.
1: return ỹi = avi + zi where zi ∼N (0,σ2Id) where avi is the vi-th column of A, σ2 = 2r2 log(2/δ)

ε2 ,
and Id denotes the identity matrix of size d.

The desciption of our (ε,δ) protocol for linear queries is given in Algorithm 2.

Algorithm 2 ProtGauss: (ε,δ)-LDP protocol for answering offline linear queries from C2(r)
Require: Queries matrix A ∈ C2(r), Users’ inputs {vi ∈ [J] : i ∈ [n]}, privacy parameters ε,δ.

1: for Users i = 1 to n do
2: User i computes ỹi =RGauss

i (vi) and sends it to the server.
3: end for
4: Server computes ȳ = 1

n

∑n
i=1 ỹi .

5: if n < d2 log(2/δ)
8ε2 log(J) : then

6: ŷ = argminw∈ABJ1
‖w− ȳ‖22 where BJ1 is the unit L1 ball in RJ .

7: else
8: ŷ = ȳ
9: end if

10: return ŷ.

We now state and prove the privacy and accuracy guarantee of our protocol. Note in the local
model of differential privacy, the privacy of the entire protocol rests only on differential privacy of
the local randomizers, which we prove now.

Theorem 3.1. [Privacy Guarantee] Algorithm 1 is (ε,δ)-LDP.

Proof. The proof follows directly from standard analysis of the Gaussian mechanism [DKM+06,
NTZ13] applied in the context of (ε,δ)- LDP.

Theorem 3.2 (Accuracy of Algorithm 2). Protocol ProtGauss given by Algorithm 2 satisfies the following
accuracy guarantee:

errProtGauss, L2
(C2(r),n) ≤ r ·min

(32 log(J) log(2/δ)
nε2

)1/4

,

√
2d log(2/δ)

nε2


where errProtGauss, L2

(C2(r),n) is as defined in (1).
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Proof. Fix any queries matrix A ∈ C2(r). Let y = Ap̂ where p̂ = 1
n

∑n
i=1 evi is the actual histogram

of the users’ data set (here, et ∈ RJ denotes the vector with 1 in the t-th coordinate and zeros

elsewhere). First, consider the case where n ≥ d2 log(2/δ)
8ε2 log(J) . Note that ŷ = ȳ, and hence ŷ−y is Gaussian

random vector with zero mean and covariance matrix σ2

n Id . Hence, in this case, it directly follows

that êrrProtGauss, L2
(C2(r),n) =

√
σ2 d
n = r

√
2d log(2/δ)

nε2 , where êrrProtGauss, L2
(C2(r),n) is the worst-case

empirical error as defined in (2).

Next, consider the case where n < d2 log(2/δ)
8ε2 log(J) . Since ŷ is the projection of ȳ on the symmetric

convex polytope ABJ1, then by Corollary 2.3, it follows that

‖ŷ− y‖22 ≤ 4max
j∈[J]
|〈ȳ− y, aj〉|.

Hence, we have

êrrProtGauss, L2
(C2(r),n) ≤ 2

√
E
[
max
j∈[J]
|〈ȳ− y, aj〉|

]
.

As before, note that ȳ− y ∼ N
(
0, σ

2

n Id
)
. Note also that ‖aj‖ ≤ r ∀j ∈ [J]. Hence, for each j ∈ [J],

〈ȳ−y, aj〉 is Gaussian with zero mean and variance ≤ r2σ2/n. By standard bounds on the maximum
of Gaussian r.v.s (e.g., see [Rig15]), we have

E
[
max
j∈[J]
|〈ȳ− y, aj〉|

]
≤

√
σ2

n
r2 log(J) ≤ r2

√
2

log(J) log(2/δ)
nε2 .

Hence, in this case, we have êrrProtGauss, L2
(C2(r),n) ≤

(32 log(J) log(2/δ)
nε2

)1/4
.

Putting the two cases above together, we get that êrrProtGauss, L2
(C2(r),n) is upper-bounded by

the expression in the theorem statement.
From (3) in Section 2.2.1 (and the succeeding note), we have

errProtGauss, L2
(C2(r),n) ≤ êrrProtGauss, L2

(C2(r),n) + r/
√
n.

Note that the r/
√
n term above is swamped by the bound on êrrProtGauss, L2

(C2(r),n). This completes
the proof.

3.2 (ε,0) LDP Protocol for Offline Linear Queries

In this section, we give a pure LDP construction that achieves essentially the same accuracy (up
to a constant factor of at most 2) as our approximate LDP algorithm above. Our construction is
based on a direct transformation of the above approximate LDP protocol into a pure LDP one. Our
construction is inspired by the idea of rejection sampling in [BS15, BNS18], and can be viewed as a
simpler, more direct version of the generic technique in [BNS18] in the case of linear queries.

In our construction, we assume that ε ≤ 12. For any a ∈ Rd , let fa denote the probability density
function of the Gaussian distributionN (a,σ2 Id) where σ2 = 4 r2 log(n)

ε2 . (Note that the setting of σ2

is the same setting for the Gaussian noise used in Algorithm 2 with δ ≈ 1/n2.)
In Algorithm 3, we describe the local randomization procedure RRejSamp

i executed indepen-
dently by every user i ∈ [n]. Then, we describe our ε-LDP protocol for offline linear queries in
Algorithm 4.
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Algorithm 3 RRejSamp
i : ε-Local Randomization of user i ∈ [n] based on rejection sampling

Require: Queries matrix A ∈ C2(r), User i input vi ∈ [J], privacy parameter ε.
1: Get avi : the vi-th column of A.

2: Sample a Gaussian vector ỹi ∼N
(
0, σ2 Id

)
, where σ2 := 2r2 log(2/δ)

ε2 and δ := 2
n2 .

3: Compute (scaled) ratio of the two Gaussian densities favi and f0 at ỹi : ηi := 1
2
favi

(ỹi )

f0(ỹi )
.

4: if ηi ∈ [ e
−ε/4

2 , e
ε/4

2 ] then
5: Sample a bit Bi ∼ Ber(ηi)
6: else
7: Let Bi = 0
8: end if
9: if Bi = 1 then

10: return ỹi
11: else
12: return ⊥ {The output in this case indicates that user i is dropped out of the protocol.}
13: end if

Algorithm 4 ProtRejSamp: ε-LDP protocol for offline linear queries from C2(r)

Require: Queries matrix A ∈ C2(r), Users’ inputs {vi ∈ [J] : i ∈ [n]}, privacy parameter ε.
1: for All users i ∈ [n] such that RRejSamp

i (vi) ,⊥ do
2: Let ỹi =RRejSamp

i (vi) and send ỹi to the server.
3: end for
4: Server receives the set of responses {ỹi}n̂i=1, where n̂ is the number users whose response ,⊥.
5: Server computes ȳ = 1

n̂

∑n̂
i=1 ỹi .

6: if n̂ < d2 log(n)
4ε2 log(J) : then

7: ŷ = argminw∈ABJ1
‖w− ȳ‖22 where BJ1 is the unit L1 ball in RJ .

8: else
9: ŷ = ȳ

10: end if
11: return ŷ.

We now state and prove the privacy and accuracy guarantees of our protocol.

Theorem 3.3. [Privacy Guarantee] Algorithm 3 is ε-LDP.

Proof. Consider any user i ∈ [n]. Let v ∈ [J] be any input of user i. Define

Goodi(v) ,
{

y ∈ Rd : ηi(v,y) ∈ [
e−ε/4

2
,
eε/4

2
]
}
,

where ηi(v, y) = 1
2
fav (y)
f0(y) . Note that by the standard analysis of the Gaussian mechanism, we

have P
ỹi∼N (0, σ2)

[ỹi < Goodi(v)] ≤ δ, where σ2 and δ are set as in Step 2 of Algorithm 3). Now, we

note that the output of Algorithm 3 is a function of only the bit Bi . Since differential privacy

2This is not a loss of generality in most practical scenarios where we aim at a reasonably strong privacy guarantee.
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is resilient to post-processing, it suffices to show that for any v,v′ ∈ [J], any b ∈ {0,1}, we have
P

RRejSamp
i (v)

[Bi = b] ≤ eε P
RRejSamp
i (v′)

[Bi = b]. First, observe that

P
RRejSamp
i (v)

[Bi = 0] ≤ P
RRejSamp
i (v)

[Bi = 0| ỹi ∈ Goodi(v)] + P
RRejSamp
i (v)

[ỹi < Goodi(v)]

≤ 1− e
−ε/4

2
+ δ.

We also have

P
RRejSamp
i (v′)

[Bi = 0] ≥ P
RRejSamp
i (v′)

[
Bi = 0| ỹi ∈ Goodi(v′)

]
· P
RRejSamp
i (v′)

[
ỹi ∈ Goodi(v′)

]
≥

(
1− e

ε/4

2

)
(1− δ) .

Thus,

P
RRejSamp
i (v)

[Bi=0]

P
RRejSamp
i (v′ )

[Bi=0] ≤
1− e−ε/42 +δ(

1− eε/42

)
(1−δ)

. Note that for any t ∈ R, 1 + t ≤ et. Also, note that since ε ≤ 1, we

have 1 + ε/4 ≤ eε/4 ≤ 1 + 5
16ε. Hence, this ratio can be upper bounded as

1
2 (1 + ε/4) + δ

1
2 (1− 5

16ε)(1− δ)
=

1 + ε/4

1− 5
16ε
·

1 + 2δ
(1+4ε)

1− δ
≤ e

7
8εe4δ ≤ eε.

In the last step, we use the fact that δ = (1/n2) and hence, δ� ε/32.
Now, we consider the event that Bi = 1. Note that ∀v ∈ [J], P

RRejSamp
i (v)

[Bi = 1 | ỹi < Goodi(v)] = 0.

Hence, we have

P
RRejSamp
i (v)

[Bi = 1] ≤ P
RRejSamp
i (v)

[Bi = 1 | ỹi ∈ Goodi(v)] ≤ e
ε/4

2
.

We also have

P
RRejSamp
i (v′)

[Bi = 1] = P
RRejSamp
i (v′)

[
Bi = 1 | ỹi ∈ Goodi(v′)

]
· P
RRejSamp
i (v′)

[
ỹi ∈ Goodi(v′)

]
≥ e
−ε/4

2
(1− δ).

Hence,
P

RRejSamp
i (v)

[Bi = 1]

P
RRejSamp
i (v′)

[Bi = 1]
≤ eε/2+2δ < eε.

Theorem 3.4 (Accuracy of Algorithm 4). Suppose n ≥ 120. Then, Protocol ProtRejSamp (Algorithm 4)
satisfies the following accuracy guarantee:

errProtRejSamp, L2
(C2(r),n) ≤ r ·min

(280 log(J) log(n)
nε2

)1/4

,

√
10d log(n)

nε2


where errProtRejSamp, L2

(C2(r),n) is as defined in (1).

11



The high-level idea of the proof can be described as follows. We first show that the number
of users who end up sending a signal to the server (i.e., those users with Bi = 1) is at least a
constant fraction of the total number of users (& n/4). Hence, the effective reduction in the sample
size will not have a pronounced effect on the true error (it can only increase the true expected
L2 error by at most a factor ≤ 2). Next, we show that conditioned on Bi = 1, the distribution of
the user’s signal ỹi in Algorithm 4 is identical to the distribution of the user’s signal in the (ε,δ)
protocol of the previous section (Algorithm 2). That is, conditioned on a high probability event, the
signals generated by the active users via the pure ε local randomizers RRejSamp (Algorithm 3) are
statistically indistinguishable from the signals that could have been generated if those users have
used the Gaussian local randomizers RGauss

i (Algorithm 1). This allows us to show that the L2 error
resulting from Algorithm 4 is essentially the same as the one resulting from Algorithm 2.

We now give the formal proof. In the sequel, we call user i ∈ [n] active if Bi = 1; that is, if
RRejSamp
i (vi) , ⊥ and hence, user i ends up sending a signal ỹi to the server. As in the proof of

Theorem 3.3, we define

Goodi =
{

y ∈ Rd : ηi(y) ∈
[
e−ε/4

2
,
eε/4

2

]}
,

where ηi(y) = 1
2
favi

(y)

f0(y) .

We start by the following useful lemmas.

Lemma 3.5. Suppose n ≥ 120. With probability ≥ 1− e−n/34, the number of active users n̂ in Step 4 of
Algorithm 4 satisfies n̂ > n/4.

Proof. Given Algorithm 3, for any user i ∈ [n], observe that

P
[
RRejSamp(vi) =⊥

]
= P [Bi = 0] ≤ P

ỹi∼N (0, σ2)
[ỹi < Goodi] +P [Bi = 0 | ỹi ∈ Goodi]

≤ δ+ (1− e
−ε/4

2
) ≤ 2

n2 + 5/8.

where the last inequality follows from the fact that ε ≤ 1. Thus, we have P [Bi = 1] ≥ 3/8− 2/n2.

Note that n̂ =
∑n
i=1Bi . Since n ≥ 120, then by Chernoff’s bound, we have

P [n̂ < n/4] < e−n/34.

Lemma 3.6. For any user i ∈ [n], any input vi ∈ [J], and any measurable set O ⊆ Rd , we have

P
ỹi←R

RejSamp
i (vi )

[ỹi ∈ O | Bi = 1] = P
ỹi←RGauss

i (vi )
[ỹi ∈ O | ỹi ∈ Goodi]

Proof. Let ỹi be the Gaussian r.v. generated in Step 2 of Algorithm 3. Note (ỹi ,Bi) has mixed
probability distribution. For every realization y of ỹi and every b ∈ {0,1}, the joint (mixed) density
function of (ỹi ,Bi) can be expressed as hỹi |Bi (y|b)P [Bi = b] = pBi | ỹi (b |y)f0(y), where hỹi |Bi is the

conditional density of ỹi given Bi and pBi | ỹi is the conditional density function of Bi given ỹi . Note
that we have

pBi | ỹi (1 | y) =


1
2
favi

(y)

f0(y) y ∈ Goodi

0 y < Goodi

(5)
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Now, observe that for any measurable set O ∈ Rd ,

P
ỹi←R

RejSamp
i (vi )

[ỹi ∈ O | Bi = 1] =

P
ỹi←R

RejSamp
i (vi )

[ỹi ∈ O , Bi = 1]

P [Bi = 1]

=

∫
y∈O pBi | ỹi (1 | y)f0(y)dy

P [Bi = 1]

=
1
2

∫
y∈O∩Goodi

favi (y)dy

P [Bi = 1]
(6)

=
1
2
·

P
ỹi←RGauss

i (vi )
[ỹi ∈ O , ỹi ∈ Goodi]

P [Bi = 1]
(7)

where (6) follows from (5), and (7) follows from observing that the distribution of RGauss(vi) is
N

(
avi , σ

2 Id
)

(whose density is denoted as favi as defined early in this section).
Next, we consider P [Bi = 1]. Note that

P [Bi = 1] = P
ỹi←R

RejSamp
i (vi )

[Bi = 1, ỹi ∈ Goodi]

=
∫

y∈Goodi
pBi | ỹi (1 | y)f0(y)dy

=
1
2
· P

ỹi←RGauss
i (vi )

[ỹi ∈ Goodi]

Plugging this in (7), then (7) reduces to P
ỹi←RGauss

i (vi )
[ỹi ∈ O | ỹi ∈ Goodi], which proves the lemma.

Proof of Theorem 3.4: Putting Lemmas 3.5 and 3.6 together with Theorem 3.2 leads us easily to
the stated result. Fix any queries matrix A ∈ C2(r). First, note that {(ỹi ,Bi) : i ∈ [n]} are independent
(independence across users). Hence, for any fixed subset S̃ ⊆ [n], any sequence of users’ inputs
{vi : i ∈ S̃}, and any sequence of measurable sets {Oi ⊆ Rd : i ∈ S̃}, we have

P{
ỹi←R

RejSamp
i (vi ): i∈S̃

} [ỹi ∈ Oi ∀i ∈ S̃ | Bi = 1 ∀i ∈ S̃
]

=
∏
i∈S̃

P
ỹi←R

RejSamp
i (vi )

[ỹi ∈ Oi | Bi = 1]

=
∏
i∈S̃

P
ỹi←RGauss

i (vi )
[ỹi ∈ Oi | ỹi ∈ Goodi]

= P
{ỹi←RGauss

i (vi ): i∈S̃}

[
ỹi ∈ Oi ∀i ∈ S̃ | ỹi ∈ Goodi ∀i ∈ S̃

]

≤
P

{ỹi←RGauss
i (vi ): i∈S̃}

[
ỹi ∈ Oi ∀i ∈ S̃

]
1− |S̃ | · δ

≤
( n
n− 2

)
P

{ỹi←RGauss
i (vi ): i∈S̃}

[
ỹi ∈ Oi ∀i ∈ S̃

]
≤ 1.02 · P

{ỹi←RGauss
i (vi ): i∈S̃}

[
ỹi ∈ Oi ∀i ∈ S̃

]
(8)
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where the second equality follows from Lemma 3.6, and the last two inequalities follow from the
fact that δ = 2/n2, |S̃ | ≤ n, and the fact that n ≥ 120.

Let S ⊆ [n] denote the subset of active users; that is S = {i ∈ [n] : Bi = 1}. Fix any realization S̃
of S . Let D̃ =

{
vi : i ∈ S̃

}
; that is, D̃ is the subset of the data set D of users’ inputs congruent with S̃ .

Now, conditioned on the event in Lemma 3.5 (i.e., conditioned on n̂ ≥ n/4) and conditioned on any
fixed realization S̃ of S , then by (8), we have

E{
ỹi←R

RejSamp
i (vi ): i∈S̃

}
, D̃

[
‖ŷ−Ap‖2

]
≤ 1.02 · E

{ỹi←RGauss
i (vi ): i∈S̃}, D̃

[
‖ŷ−Ap‖2

]
(9)

Note that by Theorem 3.2, the expectation on the right-hand side is bounded as

E
{ỹi←RGauss

i (vi ): i∈S̃}, D̃
[
‖ŷ−Ap‖2

]
≤ r ·min


(

32 log(J) log(n2)
(n/4)ε2

)1/4

,

√
2d log(n2)

(n/4)ε2

 (10)

By Lemma 3.5, the event n̂ ≥ n/4 occurs with probability at least 1− e−n/34. Thus, if we remove
conditioning on such event from the expectation on the left-hand side of (9), the unconditional
version of such expectation can only increase by an additive term of at most r e−n/34 (since the L2
error cannot exceed r, and the probability that n̂ < n/4 is at most e−n/34). This term is dominated
by (10).

Putting these together, we finally arrive at

errProtRejSamp, L2
(C2(r),n) ≤ r ·min

(280 log(J) log(n)
nε2

)1/4

,

√
10d log(n)

nε2

 .
3.3 On Tightness of the Bound

The above bound (Theorem 3.4) is tight up to a factor O
(
(log(J) log(n))1/4

)
.. In particular, one

can show a lower bound of Ω
(
min

(
1

n1/4
√
ε
,
√

d
nε2

))
on the L2 error. We note that it would suffice

to show a tight lower bound on the minimax L2 error in estimating the mean of a d-dimensional
random variable with a finite support in Bd2(r). Such lower bound follows from the lower bound
in [DJW13b, Proposition 3]. We note that the packing constructed in the proof of [DJW13b,
Proposition 3] is for a d-dimensional random variable with finite support. Hence, this lower bound
is applicable to our case where the data universe is of finite size J . Tightening the remaining gap
between the upper and lower bounds is left as an open problem. We conjecture that the log1/4(J)
factor in the upper bound is necessary.

4 (ε,0)-LDP Distribution Estimation

In this section, we revisit the problem of LDP distribution estimation under L2 error criterion. First,
we note that this problem is a special case of the linear queries problem, where the queries matrix
A = IJ , i.e., the identity matrix of size J . Therefore, our results in Section 3 immediately give an
upper bound on the L2 error in this case. Namely, our results imply the existence of pure ε LDP pro-

tocol for distribution estimation whose L2 error is bounded by min
((280 log(J) log(n)

nε2

)1/4
,
√

10 J log(n)
nε2

)
.

However, in our protocol ProtRejSamp, both communication complexity and running time per user
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would be Ω(J) in this case, which is prohibitive when J is large since the users are usually compu-
tationally limited (compared to the server). Our goal in this section is to have a construction with
similar error guarantees but with better communication and running time at each user.

In the low-dimensional setting (n & J/ε2), [ASZ18] give a nice construction (the Hadamard-

Response protocol) whose L2 error is O(
√

J
ε2n ). In this protocol, both communication and running

time at each user areO(log(J)). Also, the running time at the server is Õ(n+J) (which is significantly
better than the naive O(nJ) running time). We show that this protocol can be extended to the
high-dimensional setting. In particular, we show that, when n. J2

ε2 log(J) , projecting the output of

the Hadamard-Response protocol onto the probability simplex yields L2 error .
( log(J)
ε2n

)1/4
, which

is tight up to a factor of (log(J))1/4 given the lower bounds in [DJW13b, YB18]. This improves the
bound of [ASZ18] for all n. J2

ε2 log(J) . Moreover, to the best of our knowledge, existing results do

not imply L2 error bound better than the trivial O(1) error in the regime where n. J
ε2 .

The idea of projecting the estimated distribution onto the probability simplex was also proposed
in [KBR16] and was empirically shown to yield improvements in accuracy, however, no formal
analysis was provided for the error resulting from this technique.

We want to point out that the L2 error of [ASZ18] is optimal only when n ≥Ω(J2/ε2). Although
this condition is not explicitly mentioned in [ASZ18], however, as stated in the same paper, their
claim of optimality follows from the lower bound in [YB18]; specifically, [YB18, Theorem IV].
From this theorem, it is clear that the lower bound is only valid when n ≥ const. J

2

ε2 . Hence, our
bound on the L2 error does not contradict the results of these previous works.

Outline of Hadamard-Response Protocol of [ASZ18]: We will refer to this protocol as ProtHR.
We will use such a protocol as a black-box, so, we will not give a detailed description for it. The
details can be found in [ASZ18, Section 4]. Let J̃ = 2dlog2(J+1)e. Note that J + 1 ≤ J̃ ≤ 2J + 1 Let HJ̃
denote the Hadamard matrix of size J̃ . As before, the data set D = {vi ∈ [J] : i ∈ [n]} of users’ inputs
is assumed to be drawn i.i.d. from unknown distribution p = (p(1), . . . ,p(J)) ∈ Simplex(J).
User procedure: In ProtHR, each user i ∈ [n] encode his input vi as follows: first, select the (vi+1)-th
row of HJ̃ , then, encode vi as the subset Cvi ⊂ [J̃] of indices of that row that are incident with
+1. Given Cvi , user i invokes a generalized version of the basic randomized response technique
to output a randomized index zi ∈ [J̃] as its ε-LDP report (See [ASZ18, Section 3]). Hence, the
communication requirement per user is ≤ log2(2J + 1) bits. Moreover, by the properties of the
Hadamard matrix and the generalized randomized response, all the operations at any user can be
executed in time O(log(J)).
Server procedure: For every element v ∈ [J] in the domain, the server generates an estimate p̄(v)
for the true probability mass p(v) as follows:

p̄(v) =
(
eε + 1
eε − 1

)
·
∑
w∈[J̃]

HJ̃ (v + 1,w) · q(w), (11)

where HJ̃ (v + 1,w) denotes the entry of HJ̃ at the (v + 1)-th row and the w-th column, and q(w) =
1
n

∑n
i=1 1(vi = w) is the fraction of users whose reports are equal to w (See [ASZ18, Section 4]).

Finally, the server outputs the vector of estimates: p̄ = (p̄(1), . . . , p̄(J)). As shown in [ASZ18], the
total operations can be done in Õ(n+ J).
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As noted in the same reference, equation (11) reduces to

p̄(v) = 2
(
eε + 1
eε − 1

)
·
(
q̂(Cv)− 1

2

)
, (12)

where q̂(Cv) = 1
n

∑n
i=1 1 (zi ∈ Cv), which, by the properties of the local randomization, is the average

of n Bernoulli r.v.s. Moreover, as shown in [ASZ18, Section 3], E
ProtHR

[p̄(v)] = p(v) ∀v ∈ [J]. Putting

these observations together with Chernoff’s inequality leads to the following fact.

Fact 4.1. Let σ2 = 4
(
eε+1
eε−1

)2
. Each of the J components of p̄−p is σ2

n -subGaussian random variable.

We now give a construction ProtPHR (Projected Hadamard-Response) where the output estimate
of ProtHR is projected onto the probability simplex whenever n. J2

ε2 log(J) . Clearly, ProtPHR has the
same computational advantages of ProtHR.

Algorithm 5 ProtPHR: ε-LDP protocol for distribution estimation
Require: Data set of users’ inputs D = {vi ∈ [J] : i ∈ [n]}, privacy parameter ε.

1: p̄← ProtHR(D, ε)
2: p̂ = argminw∈Simplex(J) ‖w− p̄‖22.
3: return p̂.

First, note that since differential privacy is resilient to post-processing, ε-LDP of ProtPHR

immediately follows from ε-LDP of ProtHR (shown in [ASZ18]).

Theorem 4.2 (Accuracy of Algorithm 5). Let cε , eε+1
eε−1 . (Note that cε = O(1/ε) when ε = O(1)).

Protocol ProtPHR satisfies the following accuracy guarantee:

errProtPHR, L2
(n) , sup

p∈Simplex(J)
E

ProtPHR, D∼pn
[‖ProtPHR(D)−p‖2] ≤ min

(256c2
ε log(J)
n

)1/4

,

√
4c2

ε J
n

 .
Proof. Fix any p ∈ Simplex(J) as the true distribution. First, consider the case where n ≥

(
eε+1
eε−1

)2 J2

16log(J) .
Note that in this case the bound follows from [ASZ18] (since the projection step cannot increase
the L2 error).

Next, we consider the case where n <
(
eε+1
eε−1

)2 J2

16log(J) . Note that the symmetric version of the

polytope Simplex(J) is the L1 Ball BJ1. Let p∗ = argminw∈BJ1
‖w− p̄‖22. Corollary 2.3 tells us that

‖p∗ −p‖22 ≤ 4max
j∈[J]
|〈p̄−p, ej〉|,

where ej ∈ RJ denotes the vector with 1 in the j-th coordinate and zeros elsewhere. Now, as defined
in ProtPHR, let p̂ = argminw∈Simplex(J) ‖w− p̄‖22. Since p ∈ Simplex(J), then for the special case where

the symmetric polytope is BJ1, we always have ‖p̂−p‖2 ≤ ‖p∗ −p‖2. This is because p∗−p in this case
can be written as the sum of two orthogonal components : (p∗ − p̂) + (p̂−p) . Hence, Corollary 2.3
implies that

‖p̂−p‖22 ≤ 4max
j∈[J]
|〈p̄−p, ej〉|.
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By Fact 4.1, for every j ∈ [J], 〈p̄−p, ej〉 is σ2

n -subGaussian where σ2 = 4
(
eε+1
eε−1

)2
. Now, by using the

standard bounds on the maximum of subGaussian r.v.s (see [Rig15, Theorem 1.16]), we have

E
ProtPHR, D∼pn

[
‖p̂−p‖22

]
≤ 4

σ
√
n

√
2 log(2J) ≤

√
256c2

ε log(J)
n

.

Thus, we have errProtPHR, L2
(n) ≤

(
256c2

ε log(J)
n

)1/4
.

5 ε-LDP Protocol for Adaptive Linear Queries

In this section, we consider the problem of estimating any sequence of d adaptively chosen
linear queries q1, . . . ,qd from Q∞(r) over some unknown distribution p ∈ Simplex(J). As defined
in Section 2.2.2, for any fixed r > 0, each query from Q∞(r) is a linear function 〈q, ·〉, which is
uniquely identified by a vector q ∈ RJ where ‖q‖∞ ≤ r.

We measure accuracy in terms of the L∞ estimation error in the d queries as defined in (4) in
Section 2.2.2.

We give a construction of ε-LDP protocol that yields the optimal L∞ error. The optimality
follows from the fact that our upper bound matches a lower bound on the same error in the weaker
non-adaptive setting, which follows from the lower bound in [DJW13b, Proposition 4]. Moreover,
in our protocol each user sends only O(log(r)) bits to the server3. In our protocol, the set of users
are randomly partitioned into d disjoint subsets before the protocol starts, and each subset is used
to answer one query. Assignment of the subsets to the queries is fixed before the protocol starts.
Roughly speaking, this partitioning technique can be viewed as sample splitting. This avoids
the trap of overfitting a query to the data samples it is evaluated on. In the centralized model,
sample-splitting is generally sub-optimal. Our result shows that for adaptive linear queries in the
local model, this technique is optimal.

The description of the protocol is given in Algorithm 6.

Theorem 5.1 (Privacy Guarantee). Protocol ProtAdSamp given by Algorithm 6 is (ε,0)-LDP.

Proof. Fix any user i and any choice of ji = k ∈ [d]. Observe that user i responds only to a single
query: the k-th query. We show that the procedure described by Step 4 is ε-differentially private
with respect to any such user’s input item. First, note that cε ≥ 1 for all ε > 0 and |qk | ≤ r. Hence, it
is easy to verify that 1

2

(
1 + qk(vi )

cεr

)
and 1

2

(
1− qk(vi )

cεr

)
in Step 4 are always in (0,1) and they sum to 1,

so they are legitimate probabilities. Observe that the ratio of the probabilities of the responses of
user i when its data item is vi and v′i is given by

P
[
ỹk,i = cε r

∣∣∣ vi]
P
[
ỹk,i = cε r

∣∣∣ v′i ] =
cε + qk(vi )

r

cε + qk(v′i )
r

≤ cε + 1
cε − 1

= eε

where the second inequality follows from the fact that |qk(v)| ≤ r for all k ∈ [d] and all v ∈ [J].
Similarly,

P
[
ỹk,i = −cε r

∣∣∣ vi]
P
[
ỹk,i = −cε r

∣∣∣ v′i ] =
cε −

qk(vi )
r

cε −
qk(v′i )
r

≤ cε + 1
cε − 1

= eε

3Assuming fixed-precision representation of real numbers in [−1, 1]
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Algorithm 6 ProtAdSamp: ε-LDP protocol for adaptive linear queries from Q∞(r)

Require: Data set of users’ inputs D = {vi ∈ [J] : i ∈ [n]}, privacy parameter ε, sequence of d
adaptive linear queries q1, . . . ,qd ∈ Q∞(r) .

1: Each user i ∈ [n] gets independently assigned (by itslef or via the server) a random uniform
index ji ← [d]. {This creates a random partition of the users, which is independent of the users’
data, and is fixed before the protocol starts.}

2: for k = 1, . . . ,d do
3: for all users i such that ji = k do
4: User i receives query qk responds with ỹk,i generated as follows:

ỹk,i=

 cεr w.p. 1
2

(
1 + qk(vi )

cεr

)
−cεr w.p. 1

2

(
1− qk(vi )

cεr

)
where cε = eε+1

eε−1 .
5: end for
6: Server computes an estimate ȳk = 1

n̂k

∑
i:ji=k ỹk,i based on the reports of the active users in

round k : {ỹk,i : ji = k}, where n̂k = |{i ∈ [n] : ji = k}| is the number of active users in round k.
7: Server chooses a new query qk+1 ∈ Q∞(r) (possibly based on all observations it received from

the users until round k).
8: end for
9: return Estimated vector ȳ = (ȳ1, . . . , ȳd).

Theorem 5.2 (Accuracy). Suppose n ≥ 8d log(n). Then, Protocol ProtAdSamp given by Algorithm 6
satisfies the following accuracy guarantee for any sequence q1, . . . ,qd ∈ Q∞(r) of adaptive linear queries

errProtAdSamp, L∞(Q∞(r),d,n) ≤ 4r

√
c2
εd log(d)

n
,

where errProtAdSamp, L∞(Q∞(r),d,n) is as defined in (4). Moreover, this bound is optimal.

Our upper bound is optimal since it matches a lower bound on the L∞ error in the weaker
non-adaptive version of the same problem, which follows from [DJW13b, Proposition 4] .

This result shows that adaptivity does not pose any extra penalty in the true L∞ estimation error
for linear queries in the local model. In contrast, it is still not clear whether the same statement
can be made about linear queries in the centralized model of differential privacy. For instance,
assuming ε = Θ(1) and n & d3/2, then in the centralized model, the best known upper bound on
the true L∞ estimation error in the adaptive setting is ≈ d1/4/

√
n [BNS+16, Corollary 6.1] (which

combines [DMNS06] with the generalization guarantees of differential privacy). Whereas in the

offline setting, the true L∞ error is upper-bounded by ≈
√

log(d)
n (combining [DMNS06] with the

standard generalization bound for the offline setting). There is also a gap to be tightened in the
other regime of n and d as well. This, for example, can be seen by comparing the bound for the
adaptive setting [BNS+16, Corollary 6.3] with the bound attained by [HR10] in the offline setting.

Proof. Let p denote the true distribution over the data domain [J]. Let D = {vi : i ∈ [n]} ∼ pn. For
every i ∈ [n], k ∈ [d], define Bk,i = 1(ji = k), where ji ← [d] is the uniform index generated for user i
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in Step 1 of ProtAdSamp. Note that for any fixed k ∈ [d], {Bk,i : i ∈ [n]} are i.i.d., and P
[
Bk,i = 1

]
= 1/d

for every i ∈ [n]. For every k ∈ [d], define Ik =
{
i ∈ [n] : Bk,i = 1

}
; that is, Ik is the set of active users

in round k. Hence, n̂k = |Ik |, where n̂k is the number of active users (as in Step 6). Let Dk ⊆ D be
defined as Dk = {vi : i ∈ Ik}; that is, Dk is the subset of data set D that contains the inputs of the
active users in round k. For every round k ∈ [d], as in Step 6, ȳk is given by

ȳk =
1
n̂k

∑
i∈Ik

ỹk,i . (13)

Suppose we condition on any fixed realization of the partition of users {Ik : k ∈ [d]}. Condi-
tioned on any such partition, since the users’ inputs in D are i.i.d., then D1, . . . ,Dk are mutually
independent. Hence, conditioned on any such partition, for every round k ∈ [d], the choice of the
query qk is independent of the subsample Dk involved in the computation in round k, and thus, for
every round k ∈ [d], we have

E
[
ỹk,i

∣∣∣ (I1, . . . ,Id)
]

= E
[
ỹk,i

∣∣∣ Ik] = 〈qk ,p〉 ∀i ∈ Ik

where the expectation is taken w.r.t. vi ∼ p, the randomization Step 4 in ProtAdSamp, and any
possible randomness in the choice of qk . Hence, conditioned on any fixed partition of the users, from
(13) we get

E
ProtAdSamp, D∼pn

[
ȳk

∣∣∣ (I1, . . . ,Id)
]

=
1
n̂k

∑
i∈Ik

E
ProtAdSamp, Dk∼pn̂k

[
ỹk,i

∣∣∣ Ik] = 〈qk ,p〉 ∀k ∈ [d] (14)

Now, we define the set Good that contains “good” realizations for the partition (I1, . . . ,Id):

Good =
{
(I1, . . . ,Id) : |Ik | ≥

n
2d
∀ k ∈ [d]

}
Since for every k ∈ [d], Ik is a Bin(n,1/d) r.v., then by the multiplicative Chernoff’s bound and the
union bound, we have

P [(I1, . . . ,Id) < Good] ≤ d e−
n

8d (15)

Now, conditioned on any fixed realization of a partition (I1, . . . ,Id) ∈ Good, it is easy to see that
for every k ∈ [d], ȳk is the average of n̂k ≥ n

2d independent r.v.s, each taking a value in {−cε r, cε r}
w.p. 1. From this observation and using (14), it follows that for every k ∈ [d], ȳk − 〈qk ,p〉 is

σ2-subGaussian, where σ2 = 4d c2
ε r

2

n . Hence, by a standard fact concerning the expectation of the
maximum of subGaussians (see, e.g., [Rig15]), we have

E
[
max
k∈[d]

| ȳk − 〈qk ,p〉 |
∣∣∣ (I1, . . . ,Id) ∈ Good

]
≤ 2cε r

√
2d log(2d)

n
(16)

Putting (16) and (15) together, and noting that the error is always bounded by r, we get

E
[
max
k∈[d]

| ȳk − 〈qk ,p〉 |
]
≤ 2cε r

√
2d log(2d)

n
+ r d e−

n
8d (17)

By the assumption that n ≥ 8d log(n), the second term on the right-hand side is bounded by r dn ,
and hence, dominated by the first term. This gives the desired bound on errProtAdSamp, L∞(Q∞(r),d,n).
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[EPK14] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. Rappor: Randomized aggre-
gatable privacy-preserving ordinal response. In CCS, 2014.

[HR10] Moritz Hardt and Guy N Rothblum. A multiplicative weights mechanism for privacy-
preserving data analysis. In Foundations of Computer Science (FOCS), 2010 51st Annual
IEEE Symposium on, pages 61–70. IEEE, 2010.

[KBR16] Peter Kairouz, Keith Bonawitz, and Daniel Ramage. Discrete distribution estimation
under local privacy. arXiv preprint arXiv:1602.07387, 2016.

20



[NTZ13] Aleksandar Nikolov, Kunal Talwar, and Li Zhang. The geometry of differential privacy:
the sparse and approximate cases. In Proceedings of the forty-fifth annual ACM symposium
on Theory of computing, pages 351–360. ACM, 2013.

[Rig15] Philippe Rigollet. Lecture Notes. 18.S997: High Dimensional Statistics. MIT
Courses/Mathematics, 2015. https://ocw.mit.edu/courses/mathematics/18-s997-high-
dimensional-statistics-spring-2015.

[TVV+17] A.G. Thakurta, A.H. Vyrros, U.S. Vaishampayan, G. Kapoor, J. Freudiger, V.R. Sridhar,
and D. Davidson. Learning new words, 2017. US Patent 9,594,741.

[War65] Stanley L. Warner. Randomized response: A survey technique for eliminating evasive
answer bias. Journal of the American Statistical Association, 60(309):63–69, 1965.

[YB18] Min Ye and Alexander Barg. Optimal schemes for discrete distribution estimation
under locally differential privacy. IEEE Transactions on Information Theory, 2018.

21


	Introduction
	Results and comparison to previous works

	Preliminaries and Definitions
	(, )-Local Differential Privacy
	Accuracy Definitions
	Offline queries
	Adaptive queries

	Geometry facts
	SubGaussian random variables

	LDP Protocols for Offline Linear Queries
	(, ) LDP Protocol for Offline Linear Queries
	(, 0) LDP Protocol for Offline Linear Queries
	On Tightness of the Bound

	(, 0)-LDP Distribution Estimation
	-LDP Protocol for Adaptive Linear Queries 

