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Supplementary Material for “Resampled Priors for
Variational Autoencoders”

A Derivations

A.1 Resampling ad infinitum

Here, we derive the density p(z) for our rejection sampler that samples from a proposal distribution 7(z) and
accepts a sample with probability given by a(z).

By definition, the probability of sampling z from the proposal is given by 7(z), so the probability of sampling and
then accepting a particular z is given by the product m(z)a(z). The probability of sampling and then rejecting z
is given by the complementary probability = (z)(1 — a(z)).

Thus, the expected probability of accepting a sample is given by [ 7(z)a(z)dz, whereas the expected probability
of rejecting a sample is given by the complement 1 — [ 7(z)a(z)dz.

With this setup we can now derive the density p(z) for sampling and accepting a particular sample z. First, we
consider the case, where we keep resampling until we finally accept a sample, if necessary indefinitely; that is, we
derive the density po(z) (Eq. in the main paper). It is given by the sum over an infinite series of events: We
could sample z in the first draw and accept it; or we could reject the sample in the first draw and subsequently
sample and accept z; and so on. As all draws are independent, we can compute the sum as a geometric series:
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Note that going from the second to third line we have redefined the index of summation to obtain the standard
formula for the sum of a geometric series:

> 1
D at= for |z < 1 (A.6)
—~ 1—=z

Thus, the log probability is given by:
log p(z) = log (z) + loga(z) —log Z (A7)
As 0 <a(z) <1 we find that 0 < Z < 1.

Average number of resampling steps until acceptance. We start by noting that the number of resampling
steps performed until a sample is accepted follows the geometric distribution with success probability Z:

Pr(resampling time = t) = Z(1 — Z)*~* (A.8)
This is due to the fact that each proposed candidate sample is accepted with probability Z, such decisions are

independent, and the process continues until a sample is accepted. As the expected value of a geometric random
variable is simply the reciprocal of the success probability, the expected number of resampling steps is (t) p =1 /Z.
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A.2 Truncated Resampling

Next, we consider a different resampling scheme that we refer to as truncated resampling and derive its density. By
truncation after the 7" step we mean that if we reject the first 7 — 1 samples we accept the next (T*") sample
with probability 1 regardless of the value of a(z).

Again, we can derive the density in closed form, this time by utilizing the formula for the truncated geometric
series,

N N+1
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Again, note that we have shifted the index of summation going from the second to third line. Moreover, note that
a(z) does not occur in the second term in the third line as we accept the 7" sample with probability 1 regardless
of the actual value of a(z).

The obtained probability density is normalized, that is, [ pr(z)dz = 1, because [ w(z)a(z)dz = Z and [ 7(z)dz =
1. Thus, the log probability is given by:

1—(1—-2)T1

7 +(1-2)"1t (A.15)

log pr(2) = log 7(z) + log |a(z)

As discussed in the main paper, pr is a mixture of the untruncated density p,, and the proposal density 7.
We can consider the two limiting cases of T'= 1 (accept every sample) and T — oo (resample indefinitely, see
Appendix |A.1) and recover the expected results:

log pr=1(z) = log 7(z) (A.16)
TII_I)I;O log pr(z) = log %. (A.17)

That is, if we accept the first candidate sample (T' = 1), we obtain the proposal, whereas if we sample ad infinitum,
we converge to the result from above, Eq. (A.7).

Average number of resampling steps until acceptance. We can derive the average number of resampling
steps for truncated resampling by using the result for indefinite resampling, <t>poc = 1/Z, and noting that the
geometric distribution is memoryless:

<t>pT = <t>pOO - <t>pT__oo + <t>acccpt T'th sample (A18)
- - (T 1+ ;) (1—2)T1 4 T(1— 7)T-! (A.19)
_1-0=-2" (A.20)
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where we used the memoryless property of the geometric series for the second term. Also note that as the
probability to accept the 7" sample given that we rejected all previous T'— 1 samples is 1 instead of Z, the third
term does not include a factor of Z.

From this result we can derive the following limits and special cases, which agree with the intuitive behaviour
for truncated resampling; specifically, if we reject all samples (a(z) ~ 0, thus Z — 07), the average number of
resampling steps achieves the maximum possible value (T'), whereas if we accept every sample, it goes down to 1:

(t),,_, =1 (A.21)
W), =2-7<2 (A.22)
W), = % (A.23)
Jim (1), =T (A.24)
Jim (), =1 (A.25)

A.3 Illustration of standard/classical Rejection Sampling

Figure A.1: In rejection sampling we can draw samples from a complicated target distribution (—) by sampling

q(z)

from a simpler proposal (---) and accepting samples with probability a(z) = T (a)-

are proportional to the relative accept and rejection probability, respectively.

The green and orange line

A.4 Estimation of the normalization constant Z

Here we give details about the estimation of the normalization constant Z, which is needed both for updating the
parameters of the resampled prior pr(z) as well as for evaluating trained models.

Model evaluation. For evaluation of the trained model, we estimate Z with a large number of Monte Carlo
(MC) samples from the proposal:

1 S
Z = 5 Z a(zs) with zg ~ 7(2). (A.26)

In practice, we use S = 10'° samples, and evaluating Z takes only several minutes on a GPU. The fast evaluation
time is due to the relatively low dimensionality of the latent space, so drawing the samples and evaluating their
acceptance function values a(z) is fast and can be parallelized by using large batch sizes (10°). For symmetric
proposals, we also use antithetic sampling, that is, if we draw z, then we also include —z, which also corresponds
to a valid/exact sample from the proposal. Antithetic sampling can reduce variance (see e.g. Section 9.3 of [4]).

In Fig. we show how the Monte Carlo estimates of the normalization Z typically evolves with the number of

MC samples. We plot the estimate of Z as a function of the number of samples used to estimate it, S. That is

1
Zg =

0|

S
Z a(z;) with z; ~ 7(2z) (A.27)

Model training. During training we would like to draw as few samples from the proposal as possible in order not
to slow down training. In principle, we could use the same Monte Carlo estimate as introduced above (Eq. (A.26)).
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Figure A.2: Estimation of Z by MC sampling from the proposal. For less than 107 samples the estimate is quite
noisy but it stabilizes after about 10° samples.

However, when using too few samples, the estimate for Z can be very noisy, see Fig. and the values for log Z
are substantially biased. In practice, we use two techniques to deal with these and related issues: (i) smoothing
the Z estimate by using exponentially moving averages in the forward pass, and (ii) including the sample from
q(z|x), on which we evaluate the resampled prior to compute the KL in the objective function, in the estimator.
We now describe these techniques in more detail.

During training we evaluate KL(q(z|x) || p(z)) in a stochastic fashion, that is, we evaluate log q(z,|x,) — log p(z,)
for each data point x,. in the minibatch and average the results. Here, z, ~ ¢(2z|x,) is a sample from the variational
posterior that corresponds to data point x,.. Thus, we need to evaluate the resampled prior p(z,) on all samples
z, in that batch. The mean KL contribution of the prior terms is then given by:

1 & 1 &
= Z log pr(z,) = = Z(log m(z,) + loga(z,)) —log Z (A.28)

s

where, so far, Z is shared between all data points in the minibatch. To reduce the variability of Z as well as
the bias of log Z, we smooth Z using exponentially moving averages. That is, given the previous moving average
from iteration 4, (Z),, as well as the current estimate of Z computed from S MC samples, Z;, we obtain the new
moving average as:

(Z)i1=0=€)(2); +eZi (A.29)

where € controls how much Z is smoothed. In practice, we use e = 0.1 or € = 0.01. However, we can only use the
moving average in the forward pass, as it is prohibitively expensive (and unnecessary) to backpropagate through
all the terms in the sum. Therefore, we only want to backpropagate through the last term (Z;), which needs to
be rescaled to account for e. Before we show how we do this, we introduce our second way to reduce variance:
including the sample from ¢(z|x,) in the estimator.

For this, we introduce a datapoint dependent estimate Z,., and replace the log Z term in Eq. (A.28) by:

R
log Z — %Zlog Z, (A.30)
1 5 () .
Ly = m ZS:G(ZS) + CMMG(ZT")] Zgs ~ W(Z)v Zy ~ Q(Z‘X'P) (ASI)
L ) g
= 5T |7 )| (452)

where the sample z, from the variational posterior is reweighted by the ratio of prior and variational posterior,
similar to [2]. Note that we do not want to backpropagate through this fraction, as this would alter the gradients
for the encoder and the proposal. We are now in a position to write down the algorithm that computes the
different Z,. values to use in the objective, see Algorithm [T}
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Algorithm 1: Estimation of log Z (Eq. (A.30])) in the objective during training

input :Minibatch of samples {z,}? from {q(z|x,)}Z; S samples {z,}? from 7; previous moving average

[y

()
q(zr)

IS

output : Updated moving average (Z),, ; log Z estimate for current minibatch {x,}E
3 Zr,curr — SLH [SZS + Stop_grad(
6 end

(%),
1 S
Zs 4+ g > a(zs)
2 for r < 1 to R do
Ja
Zr,smooth — (1 - 6) <Z>z + 6Z’mcurr
ZT' — Zr,curr + Stop—grad(zr,smooth - Zr,curr)
7 <Z>i+1 A % Z? Stop—grad(Zr,smooth)
s logZ %Zflogzr

Note that in the forward pass, line 5 evaluates to Z, smooth, Whereas in the backward direction (when computing
gradients), it evaluates to Z, curr. Thus, we use the smoothed version in the forward pass and the current estimate
for the gradients.

While Algorithm [1| estimates log Z used in the density of the indefinite/untruncated resampling scheme, we can
easily adapt it to compute the truncated density as well, as we compute the individual Z,., which can be used
instead.
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B Experimental Details

B.1 Datasets

The MNIST dataset [7] contains 50,000 training, 10,000 validation and 10,000 test images of the digits 0 to 9.
Each image has a size of 28 x 28 pixels. We use both a dynamically binarized version of this dataset as well as the
statically binarized version introduced by Larochelle and Murray [6].

Omniglot |5] contains 1,623 handwritten characters from 50 different alphabets, with differently drawn examples
per character. The images are split into 24,345 training and 8,070 test images. Following Tomczak and Welling [9)
we take 1,345 training images as validation set. Each image has a size of 28 x 28 pixels and we applied dynamic
binarization to them.

FashionMNIST [11] is a recently proposed plug-in replacement for MNIST with 60,000 train/validation and 10,000
test images split across 10 classes. Each image has size of 28 x 28 pixels and we applied dynamic binarization to
them.

B.2 Network architectures

In general, we decided to use simple standard architectures. We observed that more complicated networks can
overfit quite drastically, especially on staticMNIST, which is not dynamically binarized.

Notation. For all networks, we specify the input size and then consecutively the output sizes of the individual
layers separated by a “—". Potentially, outputs are reshaped to convert between convolutional layers (abbreviated by
“CNN”) and fully connected layers (abbreviated by “MLP”). When we nest networks, e.g. by writing p(x|z1,22) =
MLP[[MLP[d, — 300], MLP[d, — 300]] — 300 — 28 x 28], we mean that first the two inputs,/conditioning variables, z;
and z» in this case, are transformed by neural networks, here an MLP[d, — 300], and their concatenated outputs
(indicated by [-,-]) are subsequently used as an input to another network, in this case with hidden layer of 300
units and reshaped output 28 x 28.

VAE (L =1). For the single latent layer VAE, we used an MLP with two hidden layers of 300 units each for
both the encoder and the decoder. The latent space was chosen to be d, = 50 dimensional and the nonlinearity
for the hidden layers was tanh; the likelihood was chosen to be Bernoulli. The encoder parameterizes the mean p
and the log standard deviation log o of the diagonal Normal variational posterior.

q(z|x) = N(2; piz(x), 02(x))
p(x|z) = Bernoulli(x; ux(z))

which are given by:

1iz(x) = MLP[28 x 28 — 300 — 300 — dy]
log 05(x) = MLP[28 x 28 — 300 — 300 — d]
fix(z) = MLP[d, — 300 — 300 — 28 x 28]

where the networks for u,(x) and logo,(x) are shared up to the last layer. In the following, we will abbreviate
this as follows:

q(z|x) = MLP[28 x 28 — 300 — 300 — dy]
p(x|z) = MLP[d, — 300 — 300 — 28 x 28]

HVAE (L = 2). For the hierarchical VAE with two latent layers, we used two different architectures, one based
on MLPs and the other on convolutional layers. Both were inspired by the architectural choices of Tomczak and
Welling [9], however, we chose to use simpler models than them with fewer layers and regular nonlinearities instead
of gated units to avoid overfitting.
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The MLP was structured very similarly to the single layer case:

q(z2]x) = MLP[28 x 28 — 300 — 300 — d,]
q(21|x, z2) = MLP[[MLP[28 x 28 — 300], MLP[d, — 300]] — 300 — d,]
p(2122) = MLP[d, — 300 — 300 — d]
p(x|21,22) = MLP[[MLP[d, — 300], MLP[d, — 300]] — 300 — 28 x 28]

We again use tanh nonlinearities in hidden layers of the MLP and a Bernoulli likelihood model.

ConvHVAE (L = 2). The overall model structure is similar to the HVAE but instead of MLPs we use CNNs
with strided convolutions if necessary. To avoid imbalanced up/down-sampling we chose a kernel size of 4 which
works well with strided up/down-convolutions. As nonlinearities we used ReLU activations after convolutional
layers and tanh nonlinearities after MLP layers.

q(z2]x) = MLP[CNN[28 x 28 x 1 — 14 x 14 x 32 — 7 X 7 x 32 — 4 x 4 X 32] — d]

q(z1]x,22) = MLP[[CNN[28 X 28 x 1 — 14 x 14 X 32 — 7 x 7T x 32 — 4 x 4 x 32], MLP[d, — 4 x 4 x 32]] — 300 — d]
) [
) [

p(z1|22) = MLP[d, — 300 — 300 — dy]
CNN[MLP[[MLP][d, — 300], MLP[d, — 300]] —4 x 4 x 32] =7 x 7 x 32 — 14 x 14 x 32 — 32 x 32 x 1]

p(X|Z1a Z2

Acceptance function a(z). For a(z) we use a very simple MLP architecture,
a(z) = MLP[d, — 100 — 100 — 1],

again with tanh nonlinearities in the hidden layers and a logistic nonlinearity on the output to ensure that the
final value is in the range [0, 1].

RealNVP. For the RealNVP prior/proposal we employed the reference implementation from TensorFlow
Probablity [1]. We used a stack of 4 RealNVPs with two hidden MLP layers of 100 units each and performed
reordering permutations in-between individual RealNVPs, as the RealNVP only transforms half of the variables.

Masked Autoregressive Flows. For the Masked Autoregressive Flows 8] (MAF) prior/proposal we use a stack
of 5 MAFs with MLP[100 — 100] each and again use the reference implementation from TensorFlow Probablity.
Random permutations are employed between individual MAF blocks [8].

B.3 Training procedure for a VAE with resampled prior

LARS constitutes another method to specify rich priors, which are parameterized through the acceptance function
ax(z); we use subscript A in this section to highlight the learnable parameters of the acceptance function. The
acceptance function only modifies the prior of the model with the encoder and decoder remaining unchanged. Thus,
the only part of the training objective, which changes compared to training of a normal VAE, is the evaluation of
prior contribution to the KL term, log p(z). This log density is evaluated on samples from the encoder distribution
¢,(z|x). Both for truncated and untruncated sampling, evaluation of log p(z) entails evaluating (i) the proposal
density m(z) (ii) the acceptance function ay(z) (iii) the normalizer Z and their logarithms. Evaluation of the
proposal and acceptance function is straight forward and evaluation of the normalizer and its logarithm are
detailed in Algorithm [f}

As discussed in the main paper, we never need to perform accept/reject sampling during training but only need
to evaluate the prior density. To update the normalizer during training, we require a modest number of samples
from the proposal; however, we never actually perform the accept/reject step and never need to decode these
samples into image space using the decoder model.

The full training procedure for a VAE as well as the changes necessary due the resampled prior are detailed
in Algorithm [2l We detail the pseudo code for resampled priors with untruncated/indefinite resampling but an
extension to the truncated case is straight forward.
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Algorithm 2: Pseudo code for training of a VAE with resampled prior (for untruncated resampling)

input :dataset of images Dirain = {Xn }2V

output : trained model parameters ¢, 8 (encoder/decoder) and \,log Z (resampled prior)
initialize parameters of encoder ¢ and decoder 6

initialize parameters of the resampled prior A and the moving average (Z)

for it <+ 1 to N;; do

sample a minibatch of data {x, }F

sample latents {z, } from the encoder distribution {g,(z|x,)}Z (using reparameterization)

oA @ N R

=]

evaluate the reconstruction term: recon + Zf’ log pg(x|z,)

7 update moving average (Z) and compute log Z using Algorithm

8 evaluate the KL term: kl + & Zf‘ [log gy (2z,|x,) — log w(z,) — log ax(z,)] +log Z
evaluate the objective: recon — kl

10 backpropagate gradients into all parameters ¢, 0 and A

11 end

12 compute final normalizer for evaluation: Z ¢+ z1— S5 () with z, ~ 7(z)

B.4 Training a VAE with resampled outputs

Here, we elaborate on the training procedure for a VAE with resampled discrete outputs presented in Section [5.3]
In particular, we explain why we essentially perform post-hoc fitting for the acceptance function a(x).

As stated in the main text, the ELBO for the resampled objective is given by:

By, (afsc) 108 0 (x[2) — KL(qy (2[x) [| p(2)) + log 2222, (B.33)

where x corresponds to the observation under consideration and we have reintroduced the subscripts ¢, 8, A to
indicate the learnable parameters of the encoder, decoder, and acceptance function, respectively. The normalizer
7 is estimated on decoded samples from the (regular) prior p(z):

Z = [ my(x|z)p(z)ax(x)dxdz = Er, (x|z)p(z)[ar(x)] = %Zf ax(Xs), (B.34)

with x5 ~ 7(x|zs) and z; ~ p(z). Note that because the images in the MNIST dataset are binary, both the
observations x as well as the model samples x, are discrete variables. This does not make learning the parameters
A of the acceptance function ay(x) more difficult than in the continuous case, as it does not involve propagating
gradients through x.

However, the situation is different for the parameters 6 of the decoder, as the distribution of the model samples
X, and, thus, our estimate of Z depends on them. Therefore we need to compute the gradient of the sample-based
estimate Z w.r.t. the decoder parameters 6; this would be be easy to do by using the reparameterization trick
if x; were continuous. Unfortunately, in our case, the samples x, are discrete and thus non-reparameterizible,
which means that we have to use a more general gradient estimator such as REINFORCE [10]. Unfortunately,
estimators of this type usually have much higher variance than reparameterization gradients; so for simplicity we
choose to ignore this contribution to the gradients of the decoder parameters. Computationally, this amounts to

estimating Z using
s

1
7 =~ g zé: ax(stop_grad(xs)). (B.35)

Thus, the encoder and decoder parameters are trained effectively by optimizing the first two terms of Eq. ,
whereas the parameters of the acceptance function are trained by optimizing the last term of Eq. . This is
essentially equivalent to the post-hoc setting considered in Table [2| because the acceptance function has no effect
on training the rest of the model.
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C Additional results

C.1

Here, we show larger versions of the images in Fig. [2] and also show the learned density of a ReaNVP when used in
isolation as a prior, preainvp, see Fig.[C.4] We find that the RealNVP by itself is not able to isolate all the modes,
as has already been observed by Huang et al. , who observe a similar shortcoming for Masked Autoregressive

Flows (MAFs).

Illustrative examples in 2D

' high capacity a(z): MLP [2-10-10-1] ! low capacity a(z): MLP [2-10-1]
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Figure C.3: Learned acceptance functions a(z) (red) that approximate a fixed target ¢ (blue) by reweighting
a N(0,1) proposal (---) to obtain an approximate density p(z) (green). Darker values correspond to higher

numbers.

| RealNVP ! RealNVP + learned rejection sampler
target g(z) | PRealNVP (Z) | TRealNVP(Z) alz p(z)
. o | - 4 | .- »
oo | - | : N > * 4
. i - < 3 K .. »

Figure C.4: Training with a RealNVP proposal. The target is approximated either by a RealNVP alone (left) or a
RealNVP in combination with a learned rejection sampler (right). Darker values correspond to higher numbers.

KL(¢(2) || p(z)) = 0.68 KL(q(z) | x(2)) = 1.21

Z =0.18

C.2 LARS in combination with a non-factorial prior on Omniglot

In Table we show results for combining a RealNVP proposal with LARS. Similarly to MNIST (Table [7|in the
main paper), we find that a RealNVP used as a prior by itself outperforms a combination of VAE with resampled

KL(q(2) || p(z)) = 0.08

prior. However, if we combine the RealNVP proposal with LARS, we obtain a further improvement.

MoDEL NLL A
VAE (L =1) + N(0,1) prior 104.53 1
VAE + RealNVP prior 101.50 1
VAE + resampled N (0,1) 102.68 0.012
VAE + resampled RealNVP  100.56 0.018

Table C.1: Test NLL on dynamic Omniglot. Equivalent table to Table |7|in the main paper.
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C.3 Samples from jointly trained VAE models

We generated 10* samples from the proposal 7(z) = N(z;0,1) of a jointly trained model and sorted them by
their acceptance value a(z). Fig. shows samples selected by their acceptance probability as assigned by the
acceptance function a(z). The top row shows samples with highest values (close to 1), which would almost certainly
be accepted by the resampled prior; visually, these samples are very good. The middle row shows 25 random
samples from the proposal, some of which look very good while others show visible artefacts. The corresponding
acceptance values typically reflect this, see also Fig. in which we also show the a(z) distribution for all 10*
samples from the proposal sorted by their a value. The bottom row shows samples with the lowest acceptance
probability (typically below a(z) ~ 1071°), which would almost surely be rejected by the resampled prior. Visually,

EErANy EIEEER B[ il 1
S é/|6l7fa> [t [=-RORIEIAT
==l b dFsic
3 [0 1221

15141013 Hlll [ 1
IIE l'll]ﬂl]ﬂ

highest a(z)
H
e
H

random samples from proposal

lowest a(z)

R DRRRE P
DEERRE SCRE

MNIST Omniglot FashionMNIST

Figure C.5: Comparison of sample means from a VAE with MLP encoder/decoder and jointly trained resampled
prior. Samples shown are out of 10* samples drawn. top: highest a(z); middle: random samples from the proposal;
bottom: lowest a(z). All samples from the simple VAE model with MLP encoder/decoder.

C.4 Samples from applying LARS to a pretrained VAE model

Similarly to Appendix we now show samples from a VAE that has been trained with the usual standard
Normal prior and to which we applied the resampled prior post-hoc, see Fig. [C.7] We fixed the encoder and
decoder and only trained the acceptance function on the usual ELBO objective.
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100
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10—16

—22 \ \ | |
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Index of sample 04

2.60e-23 336e10 1.11e-08 8.39e-08 3.97e-07 1.45e-06 474e06 1.47e-05 4.70e-05 1.50e-04 6.23e-04 4.15e-03 2.95e-01 995e01

Figure C.6: Samples from the proposal of a jointly trained VAE model with resampled prior on MNIST and their
corresponding acceptance function values. top: Distribution of the a(z) values (index sorted by a(z)); note the log
scale for a(z). The average acceptance probability for this model is Z ~ 0.014. bottom: Representative samples
and their a(z) values. The a(z) value correlates with sample quality.

highest a(z)

random samples from proposal

lowest a(z)

MNIST Omniglot

Figure C.7: Comparison of sample means from a VAE with pretrained MLP encoder/decoder to which we applied
a resampled LARS prior post-hoc. Samples shown are out of 10* samples drawn. top: samples with highest a(z);
middle: random samples from the proposal; bottom: samples with lowest a(z).
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C.5 Samples from a VAE with LARS output distribution

In Fig. we show ranked samples for a VAE with resampled marginal log likelihood, that is, we apply LARS on
the discrete output space rather than in the continuous latent space. We find that even in this high dimensional
space, our approach works well, and a(x) is able to reliably rank images.
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Figure C.8: Samples from a VAE with a jointly trained acceptance function on the output, that is, with a resampled
marginal likelihood. top: Samples grouped by the acceptance function (best, random, and worst); bottom: Samples
and their acceptance function values.

C.6 VAE with resampled prior and 2D latent space

For visualization purposes, we also trained a VAE with a two-dimensional latent space, d, = 2. We trained both a
regular VAE with standard Normal prior as well as VAEs with resampled priors. We considered three different
cases that we detail below: (i) a VAE with a resampled prior with expressive/large network as a function; (ii) a
VAE with a resampled prior with limited /small network as a function; and (iii) a pretrained VAE to which we
apply LARS post-hoc, that is, we fixed encoder/decoder and only trained the accept function a. We show the
following:

e Fig. The aggregate posterior, that is, the mixture density of all encoded training data, ¢(z) = % Zf:[ q(z|x),
as well as the standard Normal prior for a regular VAE with standard Normal prior. We find that the
mismatch between standard Normal prior and aggregate posterior is KL(q(z) | p(z)) ~ 0.4.

e Fig. The aggregate posterior, proposal, accept function and resampled density for the VAE with
jointly trained resampled prior with high capacity/expressive accept function. We found that the LARS
prior matches the aggregate posterior very well and has KL(¢(z)||p(z)) = 0.15. We note that the aggregate
posterior is spread out more compared to the regular VAE, see also Fig. and note that the KL between
the proposal and the aggregate posterior is larger than for the regular VAE. The accept function slices out
parts of the prior very effectively and redistributes the weight towards the sides.

e Fig. Same as Fig. but with a smaller network for the acceptance function. We used the same
random seed for both experiments and notice that the structure of the resulting latent space is very similar
but more coarsely partitioned compared to the previous case. The final KL between aggregate posterior and
resampled prior is slightly larger, KL(g(z) || p(z)) =~ 0.20, which we attribute to the lower flexibility of the a
function.

e Fig. We also consider the case of applying LARS post hoc to the pretrained regular VAE, that is, we only
learn a on a fixed encoder/decoder. Thus, the aggregate posterior is identical to Fig. However, we find
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that the acceptance function is able to modulate the standard Normal proposal to fit the aggregate posterior
very well and even slightly better than in the jointly trained case. Note that the aggregate posterior is the
same as in Fig. [C:9 but that the LARS prior matches it much better than the standard Normal proposal.

e Fig. Scatter plots of the encoded means for all training data points for both the VAE with standard
Normal prior as well as the LARS/resampled prior with large and small network for the acceptance function.
Colours indicate the different MNIST classes.

aggregate posterior ¢(z) prior par(,1)(2)

.v O
.

KL(q(z) [ p(z)) = 0.4

Figure C.9: Aggregate posterior and fixed standard Normal prior for a regular VAE trained with the standard
Normal prior. Dynamic MNIST

aggregate posterior ¢(z)  proposal m(z) = N(0,1) a(z) MLP[2 — 100 — 100 — 1] LARS prior pr—100(2)

\

KL(q(z)||7(z)) ~ 1.14 Z ~0.03 KL(q(z)||p(z)) ~ 0.15

Figure C.10: Aggregate posterior and resampled prior for a VAE with LARS prior and high capacity network
for a: a = MLP[2 — 100 — 100 — 1]. Dynamic MNIST



Resampled Priors for Variational Autoencoders

aggregate posterior q(z)  proposal 7(z) = N (0,1) a(z) MLP[2—20 —20 —1]  LARS prior pr—i0o(z)

2

KL(q(z)||7(z)) =~ 1.15 Z ~0.02 KL(q(z)||p(z)) = 0.20

Figure C.11: Aggregate posterior and resampled prior for a VAE with LARS prior and low capacity network for
a: a = MLP[2 — 20 — 20 — 1]. Dynamic MNIST

aggregate posterior q(z)  proposal 7(z) = N (0,1) a(z) MLP[2 — 100 — 100 — 1] LARS prior pr—100(z)

U 5

o .

KL(q(z)||7(z)) ~ 0.4 Z =~ 0.06 KL(q(z)||p(z)) =~ 0.1

Figure C.12: Aggregate posterior and resampled prior that has been trained post-hoc on the pretrained regular
VAE. Dynamic MNIST

VAE with LARS prior VAE with standard prior VAE with LARS prior
a = MLP[2 — 100 — 100 — 1] a=MLP[2 — 20 — 20 — 1]

Figure C.13: Embedding of the MNIST training data into the latent space of a VAE. Colours indicate the different
classes and all plots have the same scale.
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