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The following two lemmas are required for the proof of Theorem 1.

Lemma 3 Let g7, g8 be the dual functions of the problems (7) and (8) (presented in (9) and (10)), respectively. For any
value of the dual variables u the equality g7(u) = g8(u) holds.

Proof:

g8(u) = inf
µ12LT1

,...,µm2LTm

(
mX

j=1

(✓j + uj)>µj

)

= inf
µ12LT1

{(✓1 + u1)>µ1}+ ...+ inf
µm2LTm

{(✓m + um)>µm}

= inf
µ12XT1

{(✓1 + u1)>µ1}+ ...+ inf
µm2XTm

{(✓m + um)>µm}

= inf
µ12XT1

,...,µm2XTm

(
mX

j=1

(✓j + uj)>µj

)
= g7(u)

In the third equation we used the known fact that for a tree-structured MRF the local consistency polytope coincides with
the marginal polytope and that a corresponding objective for each subproblem is linear.

⇤

Lemma 4 For any tree-structured MRF T with the corresponding set of valid assignments XT ✓ Rd in the standard
overcomplete representation (as defined in (3)) and for any I ✓ {1, ..., d} the following equality holds

conv XT \ {µ 2 Rd : µI = µ⇤
I} = conv {µ 2 XT : µI = µ⇤

I}, (.13)

where µ⇤ 2 Rd is a point, for which there exists an assignment µ̄ 2 XT with µ̄I = µ⇤
I .

Proof: ” ✓ ” : Let v 2 conv XT \ {µ 2 Rd : µI = µ⇤
I}. We now show that v can be represented as a convex combination

of points µ 2 XT where µI = µ⇤
I for each µ in the combination. On the one hand, since v 2 conv XT we can write it as a

convex combination v =
P

µ ↵µµ for µ 2 XT , ↵µ 2 [0, 1] where we assume without loss of generality that the sum contains
only ↵µ > 0. On the other hand, since v 2 {µ 2 Rd : µI = µ⇤

I}, it implies that
P

µ ↵µµI = µ⇤
I must hold. To prove the

subset relationship it suffices to show that µi = µ⇤
i for all i 2 I for each of the points µ in the convex combination. Now let

µ⇤
i = 1 for some i 2 I. Assuming that there is a µ̂ in our combination with µ̂i = 0 results in the following contradiction:

X

µ

↵µµi = ↵µ̂ · 0 +
X

µ 6=µ̂

↵µ µi|{z}
61

6
X

µ 6=µ̂

↵µ < 1 = µ⇤
i ,

that is,
P

µ ↵µµi 6= µ⇤
i . Analogously, considering the case µ⇤

i = 0 and assuming the existence of one µ̂i = 1 gives rise to
the following contradiction: X

µ

↵µµi = ↵µ̂ · 1 +
X

µ 6=µ̂

↵µµi

| {z }
>0

> ↵µ̂ > 0 = µ⇤
i ,

that is,
P

µ ↵µµi 6= µ⇤
i .

” ◆ ” : This direction follows directly from {µ 2 XT : µI = µ⇤
I} ✓ XT and {µ 2 XT : µI = µ⇤

I} ✓ {µ 2 Rd : µI = µ⇤
I}

where {µ 2 Rd : µI = µ⇤
I} is a convex set.

⇤

A Proof of Theorem 1

The following derivations imply the existence of a set of assignments µ1, ...,µm for the individual subproblems according
to the statement in the theorem:

inf
µ12XT1

,...,µm2XTm

L(µ1, ...,µm, ū)
L3
= inf

µ12LT1
,...,µm2LTm

L(µ1, ...,µm, ū)

= inf
µ12LT1

,...,µm2LTm : µj
I=µ⇤

I

L(µ1, ...,µm, ū)

L4
= inf

µ12XT1
,...,µm2XTm : µj

I=µ⇤
I

L(µ1, ...,µm, ū)
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The first equality holds due to Lemma 3. The second equality is due to the following fact. Since strong duality holds
for OP in (8), every optimal primal solution is a minimiser of the Lagrangian L(·, ..., ·, ū). Therefore, the set of feasible
solutions restricted by the constraints µj

I = µ⇤
I contains at least one optimal solution µ1 := µ⇤|T1 , ...,µ

m := µ⇤|Tm , where
µ⇤|Tj denotes a projection to a subspace corresponding to a tree Tj . The third equality can be shown using Lemma 4 as
follows:

inf
µ12LT1

,...,µm2LTm : µj
I=µ⇤

I

L(µ1, ...,µm, ū)

= inf
µ12LT1

,...,µm2LTm : µj
I=µ⇤

I

(
mX

j=1

(✓j + ūj)
>µj

)

= inf
µ12LT1

: µ1
I=µ⇤

I

{(✓1 + ū1)
>µ1}+ ...+ inf

µm2LTm : µm
I =µ⇤

I
{(✓m + ūm)>µm}

(a)
= inf

µ12MT1
: µ1

I=µ⇤
I

{(✓1 + ū1)
>µ1}+ ...+ inf

µm2MTm : µm
I =µ⇤

I
{(✓m + ūm)>µm}

(b)
= inf

µ12 conv {µ2XT1
: µI=µ⇤

I}
{(✓1 + ū1)

>µ1}+ ...+ inf
µm2 conv {µ2XTm : µI=µ⇤

I}
{(✓m + ūm)>µm}

(c)
= inf

µ12XT1
: µ1

I=µ⇤
I

{(✓1 + ū1)
>µ1}+ ...+ inf

µm2XTm : µm
I =µ⇤

I
{(✓m + ūm)>µm}

= inf
µ12XT1

,...,µm2XTm : µj
I=µ⇤

I

(
mX

j=1

(✓j + ūj)
>µj

)

= inf
µ12XT1

,...,µm2XTm : µj
I=µ⇤

I

L(µ1, ...,µm, ū)

where the step in (a) holds because for every tree-structured MRF Tj the marginal polytope MTj coincides with the local
consistency polytope LTj ; in step (b) we use MTj = conv XTj and Lemma 4; finally, the step in (c) holds because a linear
objective over a polytope always achieves its optimum at least at one of the extreme points (that is, corners) of the latter.

⇤
Note that the agreement on the integral part holds also for edge marginals, that is, for every dimensions in µ⇤ with an
integral value, even if the nodes of an edge are fractional. Namely, we ca extend the constraint µ̄j

I = µ⇤
I in Theorem 1 to

every dimension having an integral value and the proof still works.

B Proof of Lemma 2

We denote by µ⇤|Tj a projection of a solution µ⇤ over a graph G to a subspace corresponding to a subtree Tj . Since strong
duality holds for the problem (8) any primal optimal is a minimiser of the Lagrangian. Therefore, each restriction µ⇤|Tj is
a minimiser of a corresponding subproblem over tree Tj . Furthermore, Theorem 1 guarantees an existence of a minimiser
µ̄j that agrees with the integral part of µ⇤|Tj and differs from µ⇤ only on the fractional entries. Note that this holds also
for edge marginals. Namely, in the proof of Theorem 1 we can extend the constraints µ̄j

I = µ⇤
I to every dimension in

µ⇤ having an integral value (including edge marginals) and the proof still works. Any point on the line through these
two solutions (µ⇤|Tj and µ̄j) is also optimal since the corresponding objective is linear. We now show an existence of a
corresponding solution µ̂j by construction. We define

µ̂j
i (xi) :=

(
µ⇤
i (xi), if i 2 I

1� µ̄j
i (xi), otherwise.

(B.1)

for each i 2 Vj and

µ̂j
i,k(xi, xk) :=

(
µ⇤
i,k(xi, xk), if µ⇤

i,k(xi, xk) 2 {0, 1}
1� µ̄j

i,k(xi, xk), if µ⇤
i,k(xi, xk) = 0.5

(B.2)

for each (i, k) 2 Ej . It is easy to see that the above definition of µ̂j satisfies the equation (12). Furthermore, µ̂j lies on the
line through µ̄j and the restriction µ⇤|Tj and is therefore optimal. We now show that it is feasible, that is, µ̂j 2 XTj . Note
that the variables µ̂j are either equal to the variables in µ⇤

I or have an opposite value to the variables in µ̄j . Therefore,
they inherit the integrality constraints as well as the normalisation constraints from µ⇤ and µ̄j . Similar argument can be
used for the marginalisation constraints. More precisely, for the integral edges, where both end nodes are integral, the
marginalisation constraints hold true. We only need to check the cases with non integral edges. This can be done by
considering all the cases listed in Lemma 5. We show exemplary one case – the remaining cases are straightforward. In the
following we drop the superscript j denoting the subproblem and write only µ̂ and µ̄. Consider the case (a) from Lemma 5.
First, we have µ⇤

i,j(0, 0) = µ⇤
i,j(1, 1) = 0.5 and µ⇤

i,j(0, 1) = µ⇤
i,j(1, 0) = 0. That is, µ̄i,j(0, 1) = µ̄i,j(1, 0) = 0. Without loss of

generality assume µ̄i,j(0, 0) = 1 and µ̄i,j(1, 1) = 0, that is, µ̄i(0) = µ̄j(0) = 1 and µ̄i(1) = µ̄j(1) = 0. Due to the construction
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in (B.1) we get µ̂i(0) = µ̂j(0) = 0 and µ̂i(1) = µ̂j(1) = 1. This corresponds to µ̂i,j(0, 0) = µ̂i,j(0, 1) = µ̂i,j(1, 0) = 0 and
µ̂i,j(1, 1) = 1 which is exactly what we get from construction in (B.2). Therefore, we get a valid labelling of an edge and
the marginalisation constraints are satisfied. Finally, note that the equality µ⇤|Tj = 1

2 (µ̄
j + µ̂j) also holds (including the

edge marginals).

⇤

C Proof of Theorem 2

Let µ⇤ be a unique optimal solution of the LP relaxation (5). We use the notation µ⇤|Tj to denote a reduction of µ⇤ to
a corresponding subtree. Theorem 1 guarantees an existence of minimisers µ̄1 2 XT1 , ..., µ̄

m 2 XTm of a corresponding
Lagrangian L(·, ..., ·, ū) where each µ̄j agrees with the integral part of µ⇤|Tj . We now assume that there is another
minimiser µ̂j for the j-th subproblem with µ̄j

i (xi) 6= µ̂j
i (xi) for some i 2 I, xi 2 S and show that this assumption leads to

a contradiction. We do this by constructing another optimal solution of the LP relaxation different from µ⇤.

Assume for simplicity a decomposition over individual edges. We consider the following relabelling procedure starting with
an edge (i, k) corresponding to the j-th subproblem above. Since µ̂j and µ̄j both are minimisers for the corresponding
subproblem, the average µ̃j := 1

2 (µ̂
j + µ̄j) is also a minimiser (because the objective is linear) and µ̃j

i (xi) = 0.5 for xi 2 S.
That is, the i-th node is now assigned with a fractional label 0.5. The remaining nodes xr (r 6= k) adjacent to xi can be
relabelled in a consistent way to xi = 0.5 such that a corresponding assignment (0.5, xr) is optimal for the edge (i, r) by
using the weak tree agreement property4. Namely, since there are two optimal assignments for the edge (i, k) with both
values for i, for every adjacent edge (i, k) there must also be optimal assignments with both values for i. Therefore, we can
define a new labelling for each edge adjacent to i by computing the average of the corresponding assignments. During
this procedure some nodes xk can change their label. Note that this is possible only for nodes with integral value in µ⇤.
To validate this claim consider a fractional node xk. Since xi is integral in µ⇤, there must be (due to lemma 2) optimal
assignments (x⇤

i , 0) and (x⇤
i , 1) for edge (i, k), where x⇤

i is the optimal label of xi according to µ⇤. Furthermore, because of
xi = 0.5 (due to relabelling µ̃j) there also must be an optimal assignment for that edge of the form (1�x⇤, 0) or (1�x⇤, 1).
In any case we can find an optimal average such that xi = xk = 0.5. That is, the value of fractional xk does not change!

If a node xk changes his label to 0.5 during this procedure, we then need to consider all its neighbours (except xi) and
proceed with the relabelling process. More precisely, we have the following cases:
We now consider an edge (i, k) where xi has been relabelled to 0.5 in previous steps.
Case 1: I ! I
That is, xi and xk both have an integral value in µ⇤.
(a) xk does not change by computing a corresponding average, then there is nothing more to do.
(b) xk changes. We label it with 0.5 and consider all adjacent cases (except xi).
Case 2: I ! F
That is, xi is integral in µ⇤ and xk is fractional. There must be (due to lemma 2) optimal assignments (x⇤

i , 0) and
(x⇤

i , 1). Because xi = 0.5 now there must be (due to WTA) an optimal assignment (1� x⇤
i , 0) or (1� x⇤

i , 1) such that a
corresponding optimal average results in xi = xk = 0.5. So the label of xk does not change.
Case 3: I ! I/F
That is, xk has an integral value in µ⇤ but has been relabelled to 0.5 previously. Due to the WTA there are always
assignments such that a corresponding average results in xi = xk = 0.5.

Since only integral nodes can change their label during the above relabelling procedure, there are no other cases to consider.
The relabelling procedure terminates with a new consistent jont labelling µ̃ different from µ⇤. We can prove the statement
for arbitrary tree decompositions (not only over edges) by using similar arguments.

⇤

D On the fractional solutions of LP relaxation

For binary pairwise MRFs the LP relaxation has the property that in every (extreme) optimal solution each fractional
node is half integral [3, 17]. Furthermore, each edge marginal is either integral or has fractional values. More precisely,
an edge marginal is integral only if both end nodes are integral. In fact, there are six further cases for fractional edge
marginals as specified in the following lemma.

Lemma 5 Let µ 2 LG be an extreme point. Then each edge marginal µi,j(xi, xj) is either integral (if both end nodes xi

and xj are integral) or
(a) is equal to

4Optimal assignments obtained via DD are known to satisfy the weak tree agreement (WTA) condition [12]. In
particular, for our purposes we use the following fact. Consider any two trees Ti and Tj which share a node xk. Then for
any optimal configuration µi there exists an optimal configuration µj with µi

k(xk) = µj
k(xk).
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µi,j(xi, xj) xj = 0 xj = 1
xi = 0 0.5 0
xi = 1 0 0.5

or
µi,j(xi, xj) xj = 0 xj = 1
xi = 0 0 0.5
xi = 1 0.5 0

if both xi and xj are fractional;
(b) is equal to

µi,j(xi, xj) xj = 0 xj = 1
xi = 0 0.5 0
xi = 1 0.5 0

or
µi,j(xi, xj) xj = 0 xj = 1
xi = 0 0 0.5
xi = 1 0 0.5

if xi is fractional and xj is integral (xj = 0 on the left and xj = 1 on the right);
(c) is equal to

µi,j(xi, xj) xj = 0 xj = 1
xi = 0 0.5 0.5
xi = 1 0 0

or
µi,j(xi, xj) xj = 0 xj = 1
xi = 0 0 0
xi = 1 0.5 0.5

if xj is fractional and xi is integral (xi = 0 on the left and xi = 1 on the right);

Proof: The integral case is clear. We now assume that a given edge is non integral, that is, at least one of the nodes is
fractional. First we show that in every case a matrix corresponding to an edge assignment contains only two different
values a and b.
Case (a):
Since every feasible solution µ 2 LG is subject to the marginalisation constraints

P
xi

µi,j(xi, xj) = µj(xj) andP
xj

µi,j(xi, xj) = µi(xi) the following equations must hold

µi,j(0, 0) + µi,j(0, 1) = µi(0)

µi,j(1, 0) + µi,j(1, 1) = µi(1)

µi,j(0, 0) + µi,j(1, 0) = µj(0)

µi,j(0, 1) + µi,j(1, 1) = µj(1)

(D.1)

Due to µi(0) = µi(1) = µj(0) = µj(1) = 0.5 it follows from (D.1) that a := µi,j(0, 0) = µi,j(1, 1) and b := µi,j(0, 1) =
µi,j(1, 0). Now we argue that a, b 2 {0, 0.5}. For this purpose assume that the edge marginal µi,j(xi, xj) contains other
than half-integral values. So w.l.o.g. let a 2 (0, 0.5), then also b 2 (0, 0.5) (otherwise a+ b 6= 0.5). We now define two
different feasible solutions µ1 and µ2 which have the same entries as µ except the entries for the marginal µi,j(xi, xj),
which we define for µ1 by a1 := a+ ✏, b1 := b� ✏ and for µ2 by a2 := a� ✏ and b2 := b+ ✏, where ✏ is small enough such
that a1, a2, b1, b2 2 (0, 0.5). Furthermore, due to a1 + b1 = a2 + b2 = 0.5 a corresponding edge assignment is feasible, and
therefore the solutions µ1, µ2. Since µ = 1

2 (µ
1 + µ2), the solution µ is a convex combination of two different feasible

solutions, and is therefore not extreme contradicting our assumption that µ is a corner of the local polytope. So it must
hold a, b 2 {0, 0.5}. Finally, a = 0 implies b = 0.5 and vice versa due to a+ b = 0.5. The remaining cases in (b) and (c)
can be dealt with by using similar arguments as above.

⇤


	Introduction
	Notation and Background
	MAP Inference as an Optimisation Problem
	Optimisation via Dual Decomposition

	Connections between LP Relaxation and DD
	Case 1: LP Relaxation yields an Integral Solution
	Case 2: LP Relaxation yields a Fractional Solution

	Related Work
	Numerical Validation
	Conclusion
	Proof of Theorem 1
	Proof of Lemma 2
	Proof of Theorem 2
	On the fractional solutions of LP relaxation



