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Abstract

Despite many algorithmic advances, our the-
oretical understanding of practical distribu-
tional reinforcement learning methods re-
mains limited. One exception is Rowland
et al. (2018)’s analysis of the C51 algorithm
in terms of the Cramér distance, but their
results only apply to the tabular setting and
ignore C51’s use of a softmax to produce
normalized distributions. In this paper we
adapt the Cramér distance to deal with arbi-
trary vectors. From it we derive a new dis-
tributional algorithm which is fully Cramér-
based and can be combined to linear func-
tion approximation, with formal guarantees
in the context of policy evaluation. In al-
lowing the model’s prediction to be any real
vector, we lose the probabilistic interpretation
behind the method, but otherwise maintain
the appealing properties of distributional ap-
proaches. To the best of our knowledge, ours
is the first proof of convergence of a distri-
butional algorithm combined with function
approximation. Perhaps surprisingly, our re-
sults provide evidence that Cramér-based dis-
tributional methods may perform worse than
directly approximating the value function.

1 Introduction

In reinforcement learning one often seeks to predict
the expected sum of discounted rewards, also called
return or value, of a given state. The distributional
perspective on reinforcement learning takes this idea
further by suggesting that we should predict the full
distribution of this random return, called value distri-
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bution (Bellemare et al., 2017a). This has produced
state-of-the-art performance on a number of deep rein-
forcement learning benchmarks (e.g. Hessel et al., 2018;
Barth-Maron et al., 2018; Dabney et al., 2018a,b).

The original distributional algorithm from this line of
work is Bellemare et al.’s C51 algorithm. Core to C51
are 1) the use of a softmax transfer function to repre-
sent the value distribution, 2) a heuristic projection
step, and finally 3) the minimization of a Kullback-
Leibler (KL) loss. Rowland et al. (2018) showed that
the heuristic projection minimizes a probability metric
called the Cramér distance. However, their work did
not explain the role of the KL loss in the algorithm.

The combination of two losses (Cramér and KL) is less
than ideal, and makes the learning process technically
more challenging to implement than, e.g., the classic Q-
Learning algorithm (Watkins, 1989). This combination
also makes it difficult to provide theoretical guarantees,
both in terms of convergence but also in the quality
of the value distribution generated by an approximate
learner.

A natural question is whether it is possible to do away
with the softmax and KL loss, and derive a “100%
Cramér” algorithm, both for simplicity and theoretical
understanding. In this paper we seek an algorithm
which directly minimizes the Cramér distance between
the output of the model, for example a deep network,
and a target distribution. As it turns out, we can con-
struct such an algorithm by treating the model outputs
as an improper probability distribution, and deriving a
variant of the Cramér distance which gracefully handles
such distributions.

This new algorithm enables us to derive theoretical
guarantees on the behaviour of a distributional algo-
rithm when combined to linear function approximation,
in the policy evaluation setting. Although convergence
is guaranteed under the usual conditions, our perfor-
mance bound is worse than that of an algorithm which
only approximates the value function. This suggests
that predicting the full distribution as an intermedi-
ate step in estimating the expected value could hurt
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performance. As a whole, our results suggest that the
good performance of C51 cannot solely be attributed
to a better-behaved loss function.

2 Background

We consider an agent acting in an environment
described by a finite Markov Decision Process
〈X ,A,Pr, R, γ〉 (Puterman, 1994). In this paper we
study the policy evaluation setting, in which we as-
sume a fixed policy π mapping states to distributions
over actions and consider the resulting state to state
transition function Prπ:

Prπ(x′ |x) :=
∑

a∈A
π(a |x) Pr(x′ |x, a).

We view the reward function R as a collection of ran-
dom variables describing the bounded, random reward
received when an agent exits a state x ∈ X . The value
distribution (Bellemare et al., 2017a) describes the ran-
dom return, or sum of discounted rewards, received
when beginning in state x:

Zπ(x) :=
∞∑

t=0

γtR(Xt) X0 = x,Xt+1 ∼ Prπ(· |Xt).

The expectation of the value distribution corresponds
to the familiar value function V π(x) (Sutton & Barto,
1998). Similar to the value function satisfying the Bell-
man equation, Zπ satisfies the distributional Bellman
equation with an equality in distribution:

Zπ(x)
D
= R(x) + γZπ(X ′) X ′ ∼ Prπ(· |x),

The distributional Bellman operator T π over value
distributions is defined as

T πZ(x)
D
:= R(x) + γ Prπ Z(x), (1)

where with some abuse of notation we write
Prπ Z(x) := Z(X ′), X ′ ∼ Prπ(· |x). The operator T π
is a contraction mapping in the following sense: let
d be a metric between probability distributions on R,
and for two random variables U, V denote by d(U, V )
the application of d to their distributions. We define
the maximal metric d̄ between two value distributions
Z1, Z2 as

d̄(Z1, Z2) := sup
x∈X

d(Z1(x), Z2(x)).

Now, we say that d is 1) sum invariant if d(A+U,A+
V ) ≤ d(U, V ) for any random variable A independent
of U and V , and 2) scale sensitive of order β if for all
c ∈ R, d(cU, cV ) ≤ cβd(U, V ) (Bellemare et al., 2017b).
For any metric d which satisfies both of these conditions

(with β > 0), then T π is a contraction mapping with
modulus γβ in the maximal metric d̄:

d̄(T πZ1, T πZ2) ≤ γβ d̄(Z1, Z2).

Under mild assumptions and as a consequence of Ba-
nach’s fixed point theorem, the process Zk+1 := T πZk
converges to Zπ in d̄.

2.1 Metrics Over Distributions

Let p and q be two probability distributions. The
Kullback-Leibler (KL) divergence of q from p is

DKL(p,q) =

∫ ∞

−∞
p(t) log

p(t)

q(t)
dt.

Note that the KL divergence is not properly a metric,
but does define a loss function. However, the KL
divergence is not scale sensitive. Furthermore, it is
infinite whenever p is not absolutely continuous with
respect to q, which can be problematic when designing
a distributional algorithm with finite support: applying
the Bellman operator to a discrete random variable
typically changes its support.

The KL divergence is generally used in conjunction
with a softmax transfer function which guarantees that
q has unit mass; without this constraint, the minimizer
of DKL may not be q = p. Furthermore, the KL diver-
gence corresponds to the matching loss for the softmax
function, guaranteeing that the resulting optimization
is convex (with respect to the softmax weights; Auer
et al., 1995).

Unlike the KL divergence, the Cramér distance
(Székely, 2002) is a proper distance between proba-
bility distributions. Given two distributions p and q
over R with cumulative distribution functions Fp and
Fq, the Cramér distance is defined as

DC(p,q) =

∫ +∞

−∞
(Fp(t)− Fq(t))2 dt. (2)

For the purposes of distributional reinforcement learn-
ing, the Cramér distance has a number of appealing
properties. First, it is both sum invariant and scale
sensitive of order β = 1

2 . Then, the Cramér distance
can be minimized by stochastic gradient methods.

2.2 Approximation in the Distributional
Setting

Let us write Pπ(x) for the distribution of the random
variable Zπ(x). There are two common hurdles to
learning Pπ(x): first, we typically do not have access
to a simulator, and must instead rely on sample tran-
sitions; second, we cannot in general store the value
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distribution exactly, and instead must maintain an ap-
proximation. These two issues have been well studied
in the expected value setting of reinforcement learning
(see, e.g. Bertsekas & Tsitsiklis, 1996; Tsitsiklis & Van
Roy, 1997), in particular relating the mean behaviour
of sample-based algorithms such as TD (Sutton, 1988)
to their operator counterparts, including in the context
of linear function approximation. This section provides
analogous notation describing sample-based methods
for distributional reinforcement learning.

With a tabular representation, where distributions are
stored exactly, Rowland et al. (2018) showed the exis-
tence of a mixture update with step-size α:

P(x)← P(x) + α(fr,γ(P(x′))−P(x)) .

In this mixture update, fr,γ(P(x′)) is the distribu-
tion corresponding to the random variable r + γZ(x′),
Z(x′) ∼ P(x′). This update rule converges to Pπ under
the usual stochastic optimization conditions.

Rowland et al. (2018) also analyzed a mixture up-
date for approximately tabular representations, when
P is constrained to be a distribution over uniformly-
spaced atoms (we will describe this parametrization
in greater detail in the next section). The modified
update incorporates a projection step ΠC which finds
the constrained distribution P(x) closest to fr,γ(P(x′))
in Cramér distance:

P(x)← P(x) + α(ΠCfr,γ(P(x′))−P(x)) . (3)

This projection step is used in the C51 algorithm, which
parametrizes PΘ using a neural network with weights
Θ and whose final layer uses a softmax transfer function
to generate the vector of probabilities PΘ(x). Ignoring
second order optimization terms, the C51 update is

Θ← Θ− α∇ΘDKL(ΠCfr,γ(PΘ̃(x′)) ‖PΘ(x)), (4)

where the use of the KL divergence is justified as the
matching loss to the softmax, and Θ̃ is a “target” copy
of Θ (Mnih et al., 2015).

Although the update rule Eq. (4) works well in practice,
it is difficult to justify. The KL divergence is not scale
sensitive, and it is not clear that its combination with
the Cramér projection and the softmax function leads
to a convergent algorithm.

To address this issue, here we consider an update rule
which directly minimizes the Cramér distance:

Θ← Θ− α∇ΘDC(fr,γ(PΘ̃(x′)),PΘ(x)). (5)

By the matching-loss argument, this suggests doing
away with the transfer function and measuring the
loss with respect to linear outputs. At first glance

this might seem nonsensical, as these may not form a
valid probability distribution. Yet, as we will see, the
Cramér distance can be extended to deal with arbitrary
vectors.

3 Generalizing the Cramér Distance

In this section we generalize the Cramér distance to
vectors which do not necessarily describe probability
distributions. We then transform this generalized dis-
tance to obtain a loss that is suited to the distributional
setting. At a high level, our approach is as follows:

1. We rewrite the Cramér distance between distribu-
tions with discrete support as a weighted squared
distance between vectors;

2. We show that this distance has undesirable prop-
erties when generalized beyond the space of prob-
ability distributions, and address this by modify-
ing the eigenstructure of the weighting used in
defining the distance;

3. We further modify the distance into a loss which
regularizes the sum of vectors towards 1. This
modification is key in our construction of an
algorithm that is theoretically well-behaved when
combined with linear function approximation.

We consider the space D of distributions over re-
turns with finite, common, bounded support z =
{z1, z2, . . . , zk} with zi ≤ zi+1. In this context, Eq. (2)
simplifies to a sum with simple structure:

DC(p,q) =
k−1∑

i=1

(Fp(zi)− Fq(zi))
2(zi+1 − zi)

with p, q in D, where Fp is the cumulative distribution
function of p:

Fp(zi) =

i∑

j=1

p(zj).

We shall also assume that k is odd and z =
{ 1−k

2 , . . . , k−1
2 }, i.e. zi = 2i−1−k

2 , zi+1 − zi = 1. With-
out detracting from our results, this simplifies their
exposition.

Let p := [p1, p2, . . . pk] and q := [q1, q2, . . . qk] denote
the vectors associated with z1, z2, . . . , zk, and write C
for the lower-triangular matrix of 1s:

C =




1 0 0 . . . 0 0 0
1 1 0 . . . 0 0 0
1 1 1 . . . 0 0 0
...

. . .
...

1 1 1 . . . 1 0 0
1 1 1 . . . 1 1 0
1 1 1 . . . 1 1 1




.
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If
∑
i pi = 1, pi ≥ 0 (resp.,

∑
i qi = 1, qi ≥ 0), these

can be viewed as the probabilities of a distribution over
z. Then, Cp is the cumulative distribution of p, and
the Cramér distance between p and q becomes

l2CC>(p,q) := ‖Cp− Cq‖2 = ‖p− q‖2CC> . (6)

One can replace the cumulative distributions with the
tail cumulative distributions to get

l2C>C(p,q) =
∥∥C>p− C>q

∥∥2
= ‖p− q‖2C>C . (7)

If p or q do not correspond to proper probability distri-
butions, the Cramér distance of Eq. 2 may be infinite,
while Eq. 6 and 7 remain finite. This suggests the
use of this definition when comparing vector-valued
objects that are close to, or attempt to approximate
distributions.

However, the two distances can disagree when p and q
do not correspond to proper probability distributions.
Let

∑
i pi be the “mass” of p, reflecting its relationship

to the mass of a probability distribution. If p and
q have different mass, then l2CC>(p, ·) 6= l2C>C(p, ·).
The issue is that Eq. 6 and 7 measure differently the
difference in mass.

To resolve this discrepancy, we modify the Cramér dis-
tance to deal unambiguously with uneven masses. This
leads to a two-part distance: The first is insensitive to
differences of total mass while the second only penalizes
that difference. Let

e = [1/
√
k, . . . , 1/

√
k]> and Πe⊥ = Ik − ee> ,

our distance is

l2λ(p,q) := (p− q)>Πe⊥CC
>Πe⊥(p− q)

+ λ
(
(p− q)>e

)2
. (8)

Denoting Cλ = Πe⊥CC
>Πe⊥ + λee>, we have

l2λ(p,q) = (p− q)>Cλ(p− q) = ‖p− q‖2Cλ .

First, one may note that, when p and q have the same
total mass, we have l2CC> = l2C>C = l2λ(p,q) for all
values of λ. As such, this new distance clarifies the
behaviour for arbitrary vectors while being consistent
with the existing Cramér loss for proper distributions.
For any given distribution p, the solution to

min
q∈Rk

l2λ(p,q)

is p. On the other hand, if the minimization is done
over a constrained set, λ determines the magnitude of
the penalty from the difference in total mass.

As we will later see, the distance lλ, used as a loss, is
not sufficient to guarantee good behaviour with linear

function approximation. Instead, we define a related
loss but with an explicit normalization penalty:

l̂2λ(p,q) = (p− q)>Πe⊥CC
>Πe⊥(p− q)

+ λ
(
q>e− 1

)2
. (9)

Intuitively, l̂λ recognizes that a distribution-like object
should benefit from having unit mass. In the context of
the distributional Bellman operator, this is the differ-
ence between backing up the mass at successor states
versus normalizing the state’s distribution to sum to 1.
However, l̂λ does not define a distance proper, and our
theoretical treatment of it in Section 4.2.2 will require
additional care.

4 Analysis

We now explore, through a series of lemmas, properties
of the Cramér distance of relevance to distributional
reinforcement learning. Two of these results will be
related to the minimization of the Cramér loss directly
over distributions and two will be related to the use of
linear function approximation.

4.1 Optimization properties

We begin by analyzing properties resulting from the
minimization of l2λ over q, beginning with the approxi-
mately tabular setting (Section 2.2).

4.1.1 Impact on optimization speed

A well-known result in convex optimization states that,
when minimizing a quadratic function f with positive
definite Hessian H using a batch first-order method,
e.g., Eq. 5, the convergence to the optimum is linear
with a rate of 1− 1

κ where κ is the condition number
of H. Assuming we directly optimize the Cramér loss
over q with such a method, the convergence rate would
depend on the condition number of the matrix used, i.e.
CC> when using the Cramér loss l2CC> or Cλ when
using the extended loss l2λ.

Lemma 1 (Condition number). Let C be the set of
symmetric matrices M for which (p− q)>M(p− q) =
(p−q)>CC>(p−q) for all proper distributions p and
q. Let κmin(C) the lowest condition number attained
by matrices M in C. Then all the matrices of the form
Cλ with λ ∈ [λk−1(C0), λ1(C0)], where λk−1(C0) and
λ1(C0) are the second smallest and largest eigenvalues
of C0, respectively, have condition number κmin(C).

The proof of this result and the following may be found
in the appendix.

Lemma 1 shows that the optimal convergence rate
is obtained for a potentially wide range of values for
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λ. As an example, for k = 51, the condition number
of CC> is about 4296 while κmin(C) is around 1053,
about 4 times lower, and this is true for λ in the range
[0.250, 263].

4.1.2 Preservation of the expectation

Although the prediction q may not be a distribution, it
still makes sense to talk of the dot product between q
and the support z as its “expectation”: indeed, in many
cases of interest the optimization procedure does yield
valid distributions. In designing a full distributional
agent, this generalized notion of expectation is also a
natural way to convert q into a scalar value, e.g. for
decision making.

This section discusses potential guarantees on the dif-
ference in expected return between p and q when q is
the minimizer of the Cramér loss l2λ over a restricted
set. Typically, we will ask q to have a specific support
but other constraints might include that q must be
normalized or that some values of q cannot be modified.
Specifically, the following lemma studies the impact on
the expectation when minimizing the Cramér loss over
an affine subset.

Lemma 2 (Expectation preserving). Let p be an
arbitrary distribution over a discrete support. Let
ΠA,b(p) the projection of p onto the linear subset
SA,b = {q|Aq = b}. Then, if the first and the last
columns of A are equal, i.e. A1 = Ak, then p and
ΠA,b(p) have the same expectation.

Lemma 2 covers projections onto specific supports, as
used in C51, as well as constraints on the total mass of
ΠA,b(p), for instance that the projection has unit mass.
Here, we use z to denote both the support and the
vector containing the elements of that support. More
generally, the Cramér projection offers a certain amount
of freedom on the constraints that can be enforced while
still preserving the expectation. In particular, leaving
the two boundaries unconstrained is enough to preserve
the expectation.

4.2 Linear function approximation

We next quantify the behaviour of our generalized loss
function when combined to linear function approxima-
tion. Section 4.2.2 is the main theoretical contribution
of this paper: it shows that the combination of a loss
based on Equation 9 together with linear approxima-
tion produces a stable dynamical system, and quantifies
the approximation error that results from it.

4.2.1 Two-step optimization

In categorical distributional RL, the target distribution
p is the product of an application of the distributional

Bellman operator and does not usually have the same
support as the parametrized output distribution q(θ).
Recall that D is the set of distributions with support
z. C51 first projects p onto D, yielding

Πλ,D(p) = arg min
u∈D

l2λ(p,u),

assuming p is a proper distribution. Then, as a sec-
ond step in the update process, it minimizes the KL
divergence between Πλ,D(p) and q(θ).

In our experiments we retain the projection onto z from
the C51 algorithm, and subsequently minimize our loss
with respect to this projection. Doing so is equivalent
to directly minimizing the Cramér loss, even when p
is not a proper distribution. Extending the result from
Lemma 3 of Rowland et al. (2018), we note that Πλ,D
is an orthogonal projection for q(θ) ∈ D:

l2λ(p,q(θ)) = l2λ(p,Πλ,D(p)) + l2λ(Πλ,D(p),q(θ)).

Taking the derivative of the two sides of this equation
with respect to θ, the parameters of the model, yields

∂l2λ(p,q(θ))

∂θ
=
∂l2λ(Πλ,D(p),q(θ))

∂θ

and minimizing the distance with the projection of p
onto the support z of q leads to the same gradients.
With some additional care, the argument extends to
the loss with a normalization penalty, l̂2λ.

4.2.2 Convergence to a fixed point

We are now ready to show the convergence of distri-
butional RL in the context of linear function approxi-
mation. Recall that a proof of convergence for C51 is
hindered by the failure of the KL minimization process
to be nonexpansive in the Cramér distance; as we will
see, our result critically depends on the loss defined in
Equation 9.

We consider a feature matrix Φ ∈ Rn×m, with n the
number of states and m the number of features, and a
weight matrix Θ ∈ Rm×k. That is, we consider outputs
of the form Q = ΦΘ ∈ Rn×k, which with some abuse
of terminology we call value distributions. As before,
we write Q(x) to denote the k-dimensional output for
state x ∈ X .

We study a stochastic update rule of the form given by
Eq. (5), but where DC is replaced by the loss l̂2λ. When
the states to be updated are sampled according to a
distribution ξ, the expected behaviour of this update
rule corresponds to an operator akin to a projection
(Tsitsiklis & Van Roy, 1997). In our setting, the opera-
tor minimizes the ξ-weighted Cramér loss derived from
l̂2λ, denoted

l̂2ξ,λ(P,Q) :=
∑

x∈X
ξ(x)l̂2λ(P(x),Q(x)).
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We denote this operator by Π̂ξ,λ,Φ (the notation is
made explicit in the appendix). Given a value distribu-
tion P ∈ Rn×k, the operator finds the value distribution
in the span of Φ which minimizes l̂2ξ,λ(P, ·):

Π̂ξ,λ,ΦP = ΦΘ∗ where Θ∗ = arg min
Θ

l̂2ξ,λ(P,ΦΘ).

Finally, our analysis is performed with respect the
distance l2λ, rather than the loss l̂2λ (which is not a
distance). This leads to the ξ-weighted distance

l2ξ,λ(P,Q) :=
∑

x∈X
ξ(x)l2λ(P(x),Q(x)),

with corresponding projection operator Πξ,λ,Φ.

We now show that the combination of the distri-
butional Bellman operator T π and the ξ-weighted,
projection-like operator describes a convergent algo-
rithm. When λ > 0, we can further bound the dis-
tance of this fixed point to the true value distribution
Pπ in terms of the best approximation in the class,
Πξ,λ,ΦPπ. As is usual, ξ is taken to be the station-
ary distribution of the Markov chain described by Prπ:
ξ(x′) =

∑
x∈X ξ(x) Prπ(x′ |x).

Theorem 1 (Convergence of the projected distribu-
tional Bellman process). Let ξ be the stationary distri-
bution induced by the policy π. The process

P0 := ΦΘ0 , Pk+1 := Π̂ξ,λ,ΦT πPk.

converges to a set S such that for any two P,P′ ∈ S,
there is a X -indexed vector of constants α such that

P(x) = P′(x) + α(x)e.

If λ > 0, S consists of a single point P̃ which is the
fixed point of the process. Furthermore, we can bound
the error of this fixed point with respect to the true
value distribution Pπ:

l2ξ,λ(P̃,Pπ) ≤ 1

1− γ l
2
ξ,λ(Πξ,λ,ΦPπ,Pπ)

− γλ

1− γ
∥∥P̃−Pπ

∥∥2

ξ,ee>
,

where the second term measures the difference in mass
between P̃ and Pπ.

Theorem 1 is significant for a number of reasons. First,
it answers the question left open by Rowland et al.
(2018), namely whether a proof of convergence exists
for the distributional setting with an approximate rep-
resentation, and with which representation. Second,
it shows that there is a trade-off between the differ-
ent components of the loss – while our result concerns
linear function approximation, it suggests that sim-
ilar trade-offs must exist within other distributional
algorithms.

The parameter λ plays an important role in the the-
orem, both to guarantee convergence and (indirectly)
to determine the approximation error. At a high level,
this makes sense: a high value of λ forces the algo-
rithm to output something close to a distribution, at
the expense of actual predictions. On the other hand,
taking λ = 0 yields a process which may not converge
to a single point. Finally, we note that to guarantee
convergence to a unique fixed point, it is not enough
to use the loss from Eq. 8: in that case, we can only
guarantee convergence to the set S, even for λ > 0.
The following lemma, used to prove Theorem 1, shows
why: the distributional Bellman operator T is only a
nonexpansion along the dimension e, which captures
the mass of the output vectors.

Lemma 3. Let ξ be the stationary distribution induced
by the policy π. Write T π ′ := Πλ,DT π to mean the
distributional Bellman operator followed by a projection
onto the support z = z1, . . . , zk. For a matrix B ∈ Rk×k
and ∆ ∈ Rn×k, write

‖∆‖2ξ,B =
∑

x∈X
ξ(x) ‖∆(x)‖2B .

Then for any two value distributions P,Q ∈ Rn×k,

∥∥T π ′P− T π ′Q
∥∥2

ξ,AA>
≤ γ ‖P−Q‖2ξ,AA>

∥∥T π ′P− T π ′Q
∥∥2

ξ,ee>
≤ ‖P−Q‖2ξ,ee> .

where A := Πe⊥C.

When P and Q have equal mass, we recover the con-
traction result by Bellemare et al. (2017b) (albeit in ξ-
weighted Cramér distance, rather than maximal Cramér
distance) – however, this also shows that our gener-
alization of the distributional Bellman operator deals
differently with probability mass itself. This is why
Theorem 1 requires the normalization penalty loss l̂2λ,
rather than the simpler l2λ.

4.2.3 Bound on the approximation error

Our analysis provides us with a partial answer to the
question: why and when should distributional rein-
forcement learning perform better empirically? In the
linear approximation case that we study here, one an-
swer is that it might hurt performance, as the following
theorem suggests:

Theorem 2 (Error bound for the expected value).
Let ‖·‖ξ be the ξ-weighted norm over value functions.

The squared expectation error of the fixed point P̃ with
respect to the true value function V π is bounded as

‖EP̃ z− V π‖2
ξ
≤ ‖C−1/2

λ z‖2l2ξ,λ(P̃,Pπ).
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Figure 1: Learning curves (training scores) for C51 and S51 on five Atari 2600 games, and reference score for
DQN at 100 million frames as given by Bellemare et al. (2017a).

The proof relies on a Rayleigh quotient argument,
and shows that the bound is tight if the error vector

P̃(x)−Pπ(x) is collinear with C
−1/2
λ z. In particular,

if we take λ such that Cλ = CCT , then the constant

is ‖C−1/2
λ z‖2 = ‖e

√
k‖2 = k. Then, as λ → 0, the

constant goes to infinity. By contrast, the bound on
the approximate value function derived from Tsitsiklis
& Van Roy (1997) is better in two respects: first, its
equivalent constant is 1. Second, our bound contains
an amplification factor 1/

√
1− γ from the error term

l2ξ,λ(P̃,Pπ), which in their bound becomes the smaller

constant 1/
√

1− γ2, because the usual Bellman opera-
tor is a γ-contraction in ‖·‖ξ, while the Cramér distance
is only a

√
γ-contraction in the equivalent norm.

However, the bound is slightly misleading. In our anal-
ysis we have assumed that the width of the support,
i.e. zk − z1, also grows with k. We can instead nor-
malize the C matrix and the support z to reflect a
fixed width: C ′ = C/k and z′ = z/k. In this case, the
constant remains but the squared loss may in some
cases be k times smaller. Still, it is not unreasonable
to expect that, given that the distributional approach
models more things, it should be more susceptible to
misspecification.

5 Experiments

The Cramér distance enjoys many theoretical prop-
erties that the KL divergence used in C51 lacks. To
complement our theoretical results in the policy evalua-
tion setting, we now study how our new loss affects the
overall performance in the more complex control setting
(Sutton & Barto, 1998). Our goals are to demonstrate
that we can achieve qualitatively comparable perfor-
mance to C51 with an algorithm based on this loss,
and to study the similarities and differences between
the two algorithms.

We compare the original C51 algorithm with our
Cramér variant from Eq. 9, dubbed S51, on five games
supported by the Arcade Learning Environment (Belle-
mare et al., 2013), and using the Dopamine framework
(Castro et al., 2018). In a nutshell, S51 learns from

samples, using the sample-based version of the distri-
butional Bellman operator (Eq. 1), but where the fixed
policy is replaced by one which backs up the distri-
bution with maximum expected value (what Rowland
et al. (2018) calls “Categorical Q-Learning”). Further
experimental details, including on how to transform
C51 into S51, are given in Appendix A.

Figure 1 shows that S51 achieves higher scores than
DQN, demonstrating that it maintains the empirical
benefits of the distributional perspective, and performs
as well as C51 in three out of five games. This is
especially significant given the relative freedom of the
network in outputting arbitrary vectors. Nonetheless,
our results suggest that there are benefits to enforcing
normalized distributions – possibly in reducing the
update variance.

To better understand the qualitative differences be-
tween the two algorithms, we studied agents playing
through episodes of different games and visualized the
predicted distribution for their selected actions (videos
available in the supplemental; Figure 3). We find that
C51 outputs value distributions which are bell-shaped
and may have a separate mode at 0. In contrast, the
S51 distributions are much more diverse; we highlight
two interesting results:

Double negatives. S51 agents often assign negative
mass to negative returns in games where such returns
are impossible, such as Pong (Figure 2, left). The
total mass in these cases is still close to 1.

Compensation around 0. In Space Invaders (Fig-
ure 2, right), the 0 return prediction is bracketed with
small negative and positive corrections that cancel each
other out. One explanation is that the network com-
pensates for its limited capacity by relying on negative
return predictions. This is particularly interesting as
this behaviour is not possible under published distribu-
tional algorithms.

Noisier predictions (left and right). S51 assigns a
small amount of probability to almost all returns. We
hypothesize that this effect is visually absent from
the C51 histograms because of the squashing effect
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Figure 2: Distributions predicted by both algorithms in similar situations.

of the softmax transfer function, and that this added
noise explains some of the difference in performance.
In particular, to generate a small probability the C51
network need only output a sufficiently negative logit;
by contrast, S51 must output a value which is neither
too negative nor too positive (i.e., is actually close to
0).

6 Discussion and Conclusion

While the convergence of the distributional approach
with linear approximation may have been predictable,
our proof shows that the result is not completely
straightforward, and that the normalization penalty
plays an important role in convergence. Because the
softmax produces bounded outputs, it may still be
possible to derive some convergence guarantees for it;
however, it seems difficult to bound on its approxima-
tion error once we leave the convex regime of the linear
outputs/squared loss combination. Another question is
whether minimizing the Cramér distance in the context
of function approximation for optimal control somehow
results in learning dynamics that are more stable than
in the expected case, as a wealth of empirical results
now suggest.

The Wasserstein distance also plays an important role
in distributional reinforcement learning. Dabney et al.
(2018b) demonstrated that one can obtain a stable dis-
tributional algorithm which minimizes the Wasserstein
distance even in the approximate case by performing
quantile regression rather than gradient descent on the
sample Wasserstein loss. A similar analysis to ours
may in fact prove convergence in the approximate set-
ting; we expect that minimizing the Wasserstein metric
should also be susceptible to pathological cases yielding

a worse approximation of expected values.

Despite our attempts, we could not match the raw per-
formance of C51. While this may only be a matter of
hyperparameter tuning, we might have lost other prop-
erties when moving away from the KL. One might also
wonder if there are other losses even more suited to the
problem than our modified Cramér loss. In particular,
since the ultimate goal is to preserve the expectation
of the target distribution, one could adapt the loss
to strengthen the link between loss minimization and
expectation preservation.
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