Supplementary material for ” Boosting Transfer Learning with
Survival Data from Heterogeneous Domains”

1 Theoretical results

The desirable convergence properties of Adaboost (Freund and Schapire, 1995) on the prediction error on the
target population can be shown to hold in our setting, albeit with a modification of our algorithm and a more
careful interpretation of what it means to make errors in survival predictions. The discussion below extends the
results in (Dai et al., 2007) in which the authors were able to simultaneously minimize the error on source and
target populations using a boosting algorithm for classification transfer.

In what follows we analyze the binary error measure,
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that maps the survival prediction error into {0, 1} - incorrect/correct outcomes - to be interpreted as to whether
prediction agree within ¢ of the true outcome. We note also that the results below hold for the version of our
algorithm using B = 1/(1 — y/2log(ns/M)) and using the full data in every iteration. However in experimental
evaluations, our adjusted error scheme and subsampling (discussed also below) improved performance and thus
believe the theoretical results hold more generally. The proofs follow directly from Theorem 6 in (Freund and
Schapire, 1995) and Theorems 3 and 4 in (Dai et al., 2007).

Proposition 1 Suppose hypotheses h(m) produce errors ™ m = 1,..,M as defined in step 4 of Algo-
rithm 1 in the main paper. Then, the probability that hy agrees within ¢ for any given instance from the target
data is bounded above by,
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Proposition 2 Let dy¢ be the VC-dimension of the hypothesis space, the generalization error on the target
distribution data, with high probability, is bounded above by,

e-l-O( MdVC) (3)
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Here, nr is the size of the target population, and € is the empirical error on the target training data given by
equation (1) with survival predictions from hy.

The bound on the target training population error suggests that the error decreases exponentially fast
as the number and accuracy of predictors increases. In turn the generalization bound characterizes the expected
error increment over the in-sample performance given in Proposition 1. This highlights the risk of overfitting to
the training data if the hypothesis space is too complex or too many predictors are combined.
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1.1 Motivation for incorporating stochasticity

We define the mean squared error as the expected integral over all time horizons of the squared difference between
the estimated hy and true survival function S. Here hy is the predicted survival function of the ensemble of trees
and S is the true underlying survival distribution.
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where hf(t; ) = Yo Ymhan (t; ). Note the fact that S(t;x) = Yo AmS(t;x) since > Am = 1, used in line 3.
Hence everything else being equal, lowering the correlation between successive weak learners reduces the mean
squared error. This decomposition motivates combining trees trained on different samples of the data as their
correlation tends to be lower.



Mean (Std. Dev.) DIAMO DIG ECHOS Euro IN-CH

# of Patients 5486 7617 2880 8438 5499
Time to event (years) 1726 (1477) 1072 (446) 1078 (626) 91 (21) 325 (91)
Event occurrence 84% 33% 54% 7% 9%
Age (v) 71 (10) 63 (10) 73 (11) 70 (12) 62 (11)
Male 60% 75% 60% 53% 57%
Caucasian 99% 85% 97% 10% 34%
Body Mass Index 26 (5) 26 (5) 26 (5) - 26 (4)
Sys. Blood Pres. (mmHg) - 127 (20) 127 (20) - 127 (20)
Dias. Blood Pres. (mmHg) - 75 (11) 76 (12) - 79 (10)
Ejection Fraction 31% 31% 43% - 34%
Smoking 34% - 28% 15% 73%
Creatinine 116 (60) 115 (56) 115 (62) 128 (104) 111 (59)
Stroke - - 10% 16% 1%
HF Duration 28 (46) 29 (36) 34 (48) 34 (48) 29 (42)
Beta Blocker 15% 36% 42% 38% 16%
ACE-inhibitor 50% 93% 55% 63% 84%
History Hypertension 24% 47% 26% 54% 13%
History MI 37% 69% 29% 35% 38%
History Diabetes 16% 28% 15% 27% 7%
History Atrial fibrillation 24% 0% 34% 23% 17%
Ischaemic aetiology 56% 69% 7% 59% 47%

Table 1: The main feature distribution of the 5 studies analyzed in the main body of this paper.

2 MAGGIC data

The Meta Analysis Global Group in Chronic Heart Failure (MAGGIC) (Pocock et al., 2012) performed a
literature-based meta-analysis and extracted individual patient data from 30 studies regarding demographics,
medical history, medical treatment, symptom status, clinical variables, laboratory variables and outcome. Table 1
gives mean and standard deviation summary statistics on the 5 studies considered in the main body of this paper.

2.1 Additional experiments

We have implemented all algorithms on the remaining 20 studies with more than 200 patients (anything below
does not give a large enough test set for reliable performance computation). As can be seen in Table 2, our
algorithm, TSB, outperforms in 10 of those studies and has competitive performance on the rest — giving a
similar conclusion to the results in the main body of the paper. In all experiments we have also included results
for all benchmarks trained on source data only — we found these slightly under-perform algorithms using both
source and target, as consequentially for the former class there is a larger shift between training and testing data.

We explored in addition sub-sampling the training data prior to learning in an attempt to select those
instances that are most closely related to the target. Survival Boosting (SB) is then trained on the target and
the sampled subset of the auxiliary training data. We built a classifier (logistic regression) to determine the
probability p of belonging to the target domain and selected those with p > 0.75 to train all benchmarks (in
addition to target data). This strategy leads to performance of SurvBoost (a conventional survival model)
which we denote SB (Samp) similar to Multitask RSF but below TSB on average. This suggests that learning
predictions based on relevant instances in an integrated way, rather using a two-stage approach, is more efficient.
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Studies Cox (T) | Cox (Al SB (T) SB (All) | SB (Samp) M RSF TSB
BATTL 0.689 0.699 0.736 0.744 0.755 0.732 0.753
Berry 0.647 0.661 0.628 0.633 0.630 0.632 0.644
Gotsm 0.549 0.619 0.615 0.652 0.654 0.668 0.709
Crigo 0.509 0.539 0.535 0.543 0.560 0.559 0.579
Guazz 0.609 0.631 0.645 0.653 0.666 0.660 0.679
HFC E 0.600 0.615 0.622 0.603 0.625 0.629 0.627
HIL A 0.610 0.645 0.631 0.640 0.637 0.640 0.651
HOLA 0.699 0.677 0.710 0.703 0.704 0.689 0.691
IN-CH 0.699 0.698 0.705 0.721 0.730 0.709 0.741
Kirk 0.655 0.663 0.645 0.670 0.688 0.698 0.709
Macin 0.648 0.659 0.667 0.668 0.665 0.669 0.671
Mim B 0.587 0.600 0.601 0.633 0.618 0.600 0.579
Music 0.702 0.755 0.702 0.732 0.780 0.769 0.790
Newto 0.700 0.783 0.754 0.777 0.750 0.779 0.769
Rich 0.698 0.764 0.717 0.713 0.732 0.744 0.732
Richa 0.755 0.731 0.801 0.824 0.821 0.821 0.832
SRC A 0.683 0.690 0.708 0.703 0.710 0.715 0.721
Tribo 0.649 0.656 0.633 0.650 0.652 0.650 0.653
Tsuts 0.678 0.689 0.645 0.665 0.644 0.653 0.678
Varel 0.732 0.730 0.729 0.703 0.720 0.713 0.712

Table 2: C-index figures (higher better) and standard deviations on MAGGIC data studies.
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