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A DISTANCES AND DIVERGENCES BETWEEN DISTRIBUTIONS

We recall the following notions, for two distributions µ, µ′ on a finite set X . The total variation distance, denoted
by dTV, is defined as

dTV(µ, µ′) =
1

2

∑
x∈X
|µx − µ′x| = max

X⊆X
|µ(X)− µ′(X)| .

The Kullback–Leibler divergence, denoted by KL, is defined as

KL(µ, µ′) =
∑
x∈X

µx log

(
µx
µ′x

)
.

The chi-square divergence, denoted by Dχ2 , is defined as

Dχ2(µ, µ′) =
∑
x∈X

µ′x

(
µx
µ′x
− 1

)2

.

The Hellinger distance, denoted by H, is defined by

H2(µ, µ′) =
∑
x∈X

µ′x

(√
µx
µ′x
− 1

)2

.

We will also make frequent use of the following standard inequalities (see e.g. ?).

1

2
H2(µ, µ′) ≤ dTV(µ, µ′) ≤ H(µ, µ′)

dTV(µ, µ′) ≤
√

1

2
KL(µ, µ′) (Pinsker’s Inequality)

B PROOFS

B.1 Proofs from Section 3SAMPLE COMPLEXITYsection.3

of Theorem 6theorem.6. Recalling that µt = µP t, the following classical result holds, for µ and µ′ be distributions
over X .

µ = π +

d∑
i=2

〈ui, µ〉πui and µ′ = π +

d∑
i=2

〈ui, µ′〉πui ,

Indeed, µ and µ′ are treated as vectors in Rd and can be expressed in terms of the basis vectors u1, . . . , ud. The
coefficients are given by αi = 〈µ, ui〉π (resp. α′i = 〈µ′, ui〉π). As µ and µ′ are distributions, Lemma 4theorem.4
give us that α1 = α′1 = 1.

As the ui’s are eigenvectors, we have µt = µP t = π +
∑d
i=2 αiλ

t
iui and µ′t = µ′P t = π +

∑d
i=2 α

′
iλ
t
iui. Then, by

using the orthonormality of ui with respect to 〈·, ·〉π, we have:



‖µt − µ′t‖2π =

d∑
i=2

λ2ti (〈ui, µ〉π − 〈ui, µ′〉π)2

This norm between µt and µ′t can be compared to other notions of distances between distributions. In particular,
this can be done for the Hellinger distance between µt and µ′t. Let µt,x/µ

′
t,x =: 1 + γt,x. It then holds that

H2(µt, µ
′
t) =

∑
x

µ′t,x(1−
√

1 + γt,x)2

= 2
∑
x

µ′t,x

(
1 +

γt,x
2
−
√

1 + γt,x

)
≥ ε3/2

8

∑
x

µ′t,xγ
2
t,x (see below)

=
ε3/2

8

∑
x

(µt,x − µ′t,x)2

µ′t,x

The first inequality can be justified in the following way: Define the function fc on [−1,∞) by

fc(t) = 1 + t/2− ct2 −
√

1 + t .

Basic computations yield that for all positive c, fc(0) = 0 and f ′c(0) = 0. Furthermore, we have that

f ′′c (t) = −2c+
1

4(1 + t)3/2
.

As a consequence, fc is convex in t ∈ [ε − 1, 1/ε − 1] for c = ε3/2/8, so fc(t) ≥ 0 on this interval. We therefore

have that 1 +
γt,x
2 −

√
1 + γt,x ≥ ε3/2

8 γ2t,x for µt,x/µ
′
t,x ∈ [ε, 1/ε]. As a consequence, it holds that

H2(µt, µ
′
t) ≥

ε5/2

8

∑
x

(µt,x − µ′t,x)2

πx

=
ε5/2

8
‖µt − µ′t‖2π

We use this property to control directly the probability of error of the likelihood-ratio test ψLR

max
ν∈{µ,µ′}

P⊗nνt (ψLR 6= ν) ≤ P⊗nµt (ψLR 6= µ) + P⊗nµ′
t

(ψLR 6= µ′)

= 1−
(
P⊗nµ′

t
(ψLR 6= µ)−P⊗nµt (ψLR 6= µ)

)
= 1− dTV(µ⊗nt , µ′⊗nt )

Indeed, one of the event X realizing the total variation distance between the two distributions is the one on
which µ′⊗nt

(
(Xi)i∈[n]

)
is greater or equal than µ⊗nt

(
(Xi)i∈[n]

)
, i.e. where the output of ψLR is µ′. We have, by

properties of the Hellinger distance, that

1− dTV(µ⊗nt , µ′⊗nt ) ≤ 1− 1

2
H2(µ⊗nt , µ′⊗nt ) =

(
1− 1

2
H2(µt, µ

′
t)
)n

.

The last equality allows, by tensorization, to relate directly this probability of error to a quantity depending
separately on (µt, µ

′
t), and n. As a consequence, we have

max
ν∈{µ,µ′}

P⊗nνt (ψLR 6= ν) ≤
(

1− ε5/2

16
‖µt − µ′t‖2π

)n
≤ e−n ε

5/2

16 ‖µt−µ
′
t‖

2
π

As a consequence, for n ≥ 16ε−5/2 log(1/δ)/‖µt − µ′t‖2π, the probability of error is indeed less than δ.



of Theorem 7theorem.7. We recall from the proof of Theorem 6theorem.6 that

‖µt − µ′t‖2π =

d∑
i=2

λ2ti (〈ui, µ〉π − 〈ui, µ′〉π)2 .

We compare this distance to the Kullback–Leibler divergence KL(µt, µ
′
t). Let µt,x/µ

′
t,x =: 1 + γt,x; as

∑
x µt,x =∑

x µ
′
t,x, it follows that

∑
x µ
′
t,xγt,x = 0. Then consider the following:

KL(µt, µ
′
t) =

∑
x

µt,x ln
µt,x
µ′t,x

=
∑
x

µ′t,x(1 + γt,x) ln(1 + γt,x)

≤
∑
x

µ′t,x(1 + γt,x)γt,x Using the fact that ln(1 + t) ≤ t

=
∑
x

µ′t,xγ
2
t,x As

∑
x

µ′xγx = 0

=
∑
x

(µt,x − µ′t,x)2

µ′t,x

≤ 1

ε

∑
x

(µt,x − µ′t,x)2

πx
As

1

µ′t,x
≤ 1

επx

=
1

ε
‖µt − µ′t‖2π .

To give a lower bound on the probability of error, we have

inf
ψ

max
ν∈µ,µ′

P⊗nνt (ψ 6= ν) ≥ inf
ψ

1

2
(P⊗nµt (ψ 6= µ) + P⊗nµ′

t
(ψ 6= µ′)) ≥ 1− dTV(µ⊗nt , µ′⊗nt )

2

The above holds by using the definition of total variation distance as the supremum of the difference in probability
for all events, and using the event ψ = µ, with an infimum taken over all tests ψ. Furthermore, by Pinsker’s
inequality and by the tensorization properties of the Kullback–Leibler divergence, we have that

dTV(µ⊗nt , µ′⊗nt ) ≤
√
KL(µ⊗nt , µ′⊗nt )/2 =

√
nKL(µt, µ′t)/2 .

As a consequence, it holds that

inf
ψ

max
ν∈µ,µ′

P⊗nνt (ψ 6= ν) ≥ 1

2
− 1

2

√
n

2ε
‖µt − µ′t‖2π .

For any n ≤ 8εδ2/‖µt − µ′t‖2π, the probability of error is at least 1/2− δ.

B.2 Proofs from Section 3.4Guarantees without likelihood-ratio boundssubsection.3.4

of Theorem 10theorem.10. As in the proof of Theorem 6theorem.6, it holds that

max
ν∈{µ,µ′}

P⊗nνt (ψLR 6= ν) ≤ 1− dTV(µ⊗nt , µ′⊗nt ) ≤ 1− 1

2
H2(µ⊗nt , µ′⊗nt ) =

(
1− 1

2
H2(µt, µ

′
t)
)n

.

Furthermore, we have that

H2(µ̃t, µ̃
′
t) =

∑
x

(√
µ̃t,x −

√
µ̃′t,x

)2
=
∑
x

(
√

(1− η)µt,x + ηβt,x −
√

(1− η)µ̃′t,x + ηβt,x)2

≤ (1− η)
∑
x

(√
µt,x −

√
µ′t,x

)2
= (1− η)H2(µt, µ

′
t) .



Indeed the inequality is a consequence of
√
a+ c−

√
b+ c ≤

√
a−
√
b, for a ≥ b ≥ 0 and c ≥ 0. As a consequence,

we have that

max
ν∈{µ,µ′}

P⊗nνt (ψLR 6= ν) ≤
(

1− 1

2
H2(µt, µ

′
t)
)n
≤
(

1− 1

2(1− η)
H2(µ̃t, µ̃

′
t)
)n

.

By the proof of Theorem 6theorem.6, we therefore have that

max
ν∈{µ,µ′}

P⊗nνt (ψLR 6= ν) ≤
(

1− 1

2(1− η)
H2(µ̃t, µ̃

′
t)
)n
≤
(

1− (η/3)5/2

16(1− η)
‖µ̃t − µ̃′t‖2π

)n
.

Indeed, since µ̃ and µ̃′ have η/3-bounded likelihood ratios, so do µ̃t and µ̃′t. Further, by linearity, it holds that

‖µ̃t − µ̃′t‖2π = (1− η)2‖µt − µ′t‖2π .

As a consequence, we finally have

max
ν∈{µ,µ′}

P⊗nνt (ψLR 6= ν) ≤
(

1− (η/3)5/2(1− η)

16
‖µt − µ′t‖2π

)n
≤ e−cn‖µt−µ

′
t‖

2
π ,

with c > 0 for any choice of η ∈ (0, 1).

B.3 Proofs from Section 3.5Statistical time guaranteessubsection.3.5

of Theorem 11theorem.11. Let u[i] be the left eigenvector of P corresponding to eigenvalue λ[i]. Let µ = π+αu[i]
and µ′ = π − αu[i], where α > 0 is sufficiently small so that µ and µ′ are valid probability distributions and
µ, µ′, π pairwise satisfy the bounded likelihood ratio assumption with parameter ε. Let n0(ε, δ) > 0 be the sample
complexity required to distinguish between µ and µ′ with probability greater than 1

2 + δ.

Let n ≥ n0 be the sample complexity required to distinguish between distributions µt and µ′t. Using Theo-
rems 6theorem.6 and 7theorem.7, we know that n � ‖µt − µ′t‖−2π and n0 � ‖µ − µ′‖−2π . By definition, we have
that µ− µ′ = 2αu[i] and as a result ‖µ− µ′‖π = 2α and ‖µt − µ′t‖π = 2αλt[i]. Thus, we have:

n

n0
�
(
‖µ− µ′‖π
‖µt − µ′t‖π

)2

= λ−2t[i]

We can invert the above to express t in terms of n, n0 and λ[i] to get the required result, which is tight up to
terms involving only ε and δ.

B.4 Proofs from Section 4APPLICATIONSsection.4

Proof Sketch of Proposition 4. We write P = D−1U , where D is a diagonal matrix with Dii =
∑
x∈cX Ui,x.

Writing mU to be the mean of Ui,j , which we treat to be a constant, standard concentration inequalities imply
that ‖D‖ � ‖D−1‖ � mUd. It follows from (?, Theorem 1.2) that |λ[2](P )| � 1√

d
.

To establish bounds on |λ[d]|, we consider P−1 = U−1D (it is known that P is non-singular with probability

1 − o(1)), then |λ[d]|−1 ≤ ‖D‖ · ‖U−1‖. Using a result of ?, we know that ‖U−1‖ = O(
√
d), which gives us

|λ−1[d] | = O(mUd
3/2).

For a lower bound, we have ‖P−1‖ ≥ ‖U−1‖ · (‖D−1‖)−1. By using universality results for random matrices, it is
known that ‖U−1‖ ≥

√
d. (This can be achieved by subtracting a rank one matrix and using interlacing results

for eigenvalues, cf. ?.) This together with the bounds on ‖D−1‖ establishes that |λ−1[d] | = Ω(mUd
3/2)

of Proposition 6. In the case of two blocks, we simplify the notation a bit and assume that ∆1,1 = ∆2,2 = a · d
and ∆1,2 = ∆2,1 = b · d The, degree of every vertex in the graph is (a+ b)d. Let V1 ∪ V2 be a partition of the set
of nodes into the two parts. Consider v : V → R, where v(i) = 1 if i ∈ V1 and −1 if i ∈ V2. It is easily checked
that v is an eigenvector with eigenvalue (a− b)/(a+ b). This shows that λ[2] ≥ a−b

a+b .



Now, consider a vector v : V → R, with v(i) = 1√
2
, v(j) = − 1√

2
and v(l) = 0 for l 6= i, j. Note that ‖v‖2 = 1.

Let u = Pv, then, we have:

u(l) =


1

d(a+b)
√
2

if {l, i} ∈ E ∧ {l, j} 6∈ E
− 1
d(a+b)

√
2

if {l, j} ∈ E ∧ {l, i} 6∈ E
0 otherwise

If we let N(i) and N(j) denote the neighborhoods of i and j respectively, we have that,

‖u‖2 =
|N(i)∆N(j)|
2d2(a+ b)2

|S∆T | denotes the symmetric difference

We have that ‖Pu‖2 ≥ |λ[d]|. If we set ∆1,1 = ad = d/2− O(1), there exist i, j such that |N(i)∆N(j)| = O(1);
further, if we set b = o(1), then the result follows.

of Proposition 15theorem.15. The matrix P is symmetric, one can check directly that the given vectors are indeed
eigenvectors with corresponding eigenvalues, i.e. that Pvi = λivi. Finally, we have for 2 ≤ k ≤ r,

γk − γk+1 = 2βr+1−k − βr+2−k > 0 ,

by order of the β`. For k = 1, we have γ1 − γ2 = 2βr and γr+1 = β0 − β1 > 0.

C FURTHER APPLICATIONS

C.1 Random Walk on the Line Graph

The random walk on the line graph with d nodes is very similar to that on the cycle. In fact, the walk can be
viewed as a projection of the random walk on a cycle with 2(d− 1) nodes.

Definition 1 (Random Walk on d-Line). Let X = {0, . . . , d− 1} be the d nodes on a line. Let P be the Markov
Chain on X , where,

P(Xs = i|Xs−1 = j) =


1
2 for i ∈ j − 1, j + 1, j ∈ {1, . . . , d− 2}
1 if j = 0 ∧ i = 1, or j = d− 1 ∧ i = d− 2

0 otherwise

As in the case of the cycle, the spectrum is explicitly known (cf. (?, Chap. 12.3)). The result is stated as the
following lemma; this implies a statistical window of at least d2t.

Lemma 2. For any d ≥ 3, the eigenvalues of P are given by cos(πi/(d− 1)) for i ∈ {0, . . . , d−1}; the right eigen-
vector ui = (ui,0, . . . , ui,d−1) corresponding to eigenvalue cos(πi/(d− 1)), is given by ui,k = cos(πik/(d− 1)).

C.2 Random Markov chains

The notion of random Markov chains, and in general of random walks in random media, has been thoroughly
studied. We consider here the case of random reversible Markov chains, as studied by ??.

Definition 3. Consider a finite connected undirected graph G = (X , E); for every {i, j} ∈ E, let Ui,j be drawn
in an i.i.d. manner from a distribution on the positive part of the real line with bounded second moments; we set
Ui,j = Uj,i. (An edge {i} is allowed, which corresponds to a self-loop at i.) The coefficients of P are obtained by
normalization to a stochastic matrix

Pi,j = Ui,j/
∑
x∈X

Ui,x .

Understanding the spectra of random (symmetric) matrices has been intensely studied in recent years (see
e.g. ????). Below, we use results from this literature to understand the behavior of λ[2](P ) and λ[d](P ); again,
this yields a statistical window of d2t.

Proposition 4. Let P be the transition matrix of a random Markov chain as defined in Defn. 3 with G(X , E)
being the complete graph. As d→∞ d, it holds with probability going to 1 that

|λ[2](P )| � 1/
√
d , and |λ[d](P )| � 1/d3/2 ,



C.3 Random Walk on the Regular Block Model

We use a variant of the stochastic blockmodel (?) where the graph is regular (as opposed to approximately
regular). Note that the model is completely deterministic.

Definition 5 (Regular Blockmodel). A regular blockmodel with k blocks on d nodes with degrees (∆i,j) for
1 ≤ i, j ≤ k and ∆i,j = ∆j,i is defined as follows: The vertex set V is partitioned as V = V1 ∪ V2 ∪ · · · ∪ Vk,
with |Vi| = d/k. The induced subgraph Gi = (Vi, E(Vi)) is a ∆i regular graph for each i, and the subgraph
Gi,j = (Vi ∪ Vj , E(Vi ∪ Vj) \ (E(Vi) ∪ E(Vj))) is a ∆i,j regular bipartite graph for all i, j, i 6= j.

Proposition 6. There exist regular block models with k = 2 blocks on d nodes, satisfying

|λ[2](P )| = 1− o(1) , and |λ[d](P )| � 1/d

For blockmodels with k = 2, the eigenvector corresponding to λ[2] = λ2, correlates strongly (in fact for the
regular blockmodel with equal sized blocks, exactly), with the block structure. Thus, if µ and µ′ start off with
significantly different probability mass on the two blocks, the statistical problem remains easy essentially until
mixing time. On the other hand, if they have the same probability mass on the individual blocks (even though
the distributions may differ on the blocks significantly), in typical cases, the statistical problem becomes hard
quickly, e.g. if each block is an expander.

Remark 7. A special case of regular graphs is the class of Ramanujan graphs (?); the eigenvalues of the transition
matrix of a random walk on a Ramanujan graph are ±1 or satisfy |λ| = O(1/

√
d). In the non-bipartite case,

there is no guarantee that the statistical window is large.

C.4 Random Walk on the Hypercube

The hypercube on d = 2k nodes can be viewed as a graph with the node set denoted by {−1, 1}k. We first consider
the standard random walk on the hypercube which is defined below; for x, x′ ∈ {−1, 1}k, let |x−x′|H := 1

2‖x−x
′‖1

denote the Hamming distance between x and x′.

Definition 8. Let X = {−1, 1}k be the d nodes of the hypercube. Let P be the Markov chain on X , where

P(Xs = x|Xs−1 = x′) =

{
1
d if |x− x′|H = 1

0 otherwise

The spectral properties of P are summarized by the following lemma (c.f. ?, Chap 12.4); this implies a statistical
window of at least d2t.

Lemma 9. For d = 2k (with k ≥ 1), the eigenvalues of P are given by 1 − 2j/k, j = 0, . . . , k. The eigenvalue
1 − 2j/k appears with multiplicity

(
k
j

)
; the corresponding eigenvectors u are given by considering sets of size j.

A set S ⊆ {1, . . . , k}, |S| = j, yields the eigenvector u(x) =
∏
i∈S xi, for x ∈ {−1, 1}k. (These are the so-called

parity functions.)

Product Distributions on the Hypercube. One can consider other product distributions on the hypercube.
Consider a two state Markov chain, with states denoted by X2 = {−1, 1} and transitions given as:

Definition 10. Let X2 = {−1, 1}, 0 < p, q ≤ 1, define P : X2×X2 → [0, 1] as P (−1,−1) = 1− p, P (−1, 1) = p,
P (1,−1) = q, P (1, 1) = 1− q. The Markov chain on X2 defined by P is given by,

P(Xs = x|Xs−1 = x′) = P (x, x′)

The eigenvectors of P are easiest to express as functions from X2 → R. The right eigenvector corresponding to
eigenvalue 1 is given by u(x) = 1 for x ∈ X2. The stationary distribution is given by π(−1) = q/(p + q) and
π(1) = p/(p+ q), let ξ = Ex∼π[x] = (p− q)/(p+ q). The second eigenvalue is 1− (p+ q) and the corresponding

eigenvector is given by u(x) = (x− ξ)/
√

1− ξ2.

Definition 11 (Product Chain on the Hypercube). Let d = 2k, X = {−1, 1}k = X2⊗· · ·⊗X2, let P (1), . . . , P (k)

be transition matrices of the chain on X2 defined in Defn. 10 with parameters (p(1), q(1)), . . . , (p(k), q(k)), and let
w1, . . . , wk be positive weights such that

∑
i wk = 1. Then, for x, x′ ∈ X , we have the following Markov chain:

P(Xs = x|Xs−1 = x′) =

{∑k
j=1 wjP

(j)(xj , x
′
j) if |x− x′|H = 1

0 otherwise



The eigenvectors and eigenvalues of the product Markov chain on the hypercube are easily defined through the
eigenvectors and eigenvalues of Markov chain defined on X2. The following lemma follows from results stated
in (?, Chap 12.4).

Lemma 12. Let P be the transition matrix of the product Markov chain obtained using the transition matrices
P (1), . . . , P (k) of chains on X2. Let u(i) denote the eigenvector of P (i) with eigenvalue 1− (p(i) + q(i)), then for
each subset S ⊆ {1, . . . , k}, define uS : X → R as follows:

uS(x) =
∏
i∈S

u(i)(xi) =
∏
i∈S

xi − ξ(i)√
1− (ξ(i))2

where ξ(i) = (p(i) − q(i))/(p(i) + q(i)). Then uS is an eigenvector of P with eigenvalue 1−
∑
i∈S wi(p

(i) + q(i)).

Remark 13. It is easily observed that if we set p(i) = q(i) = 1 in all the chains and wi = 1
k for each i, then we

get exactly the standard random walk on the hypercube with d = 2k vertices.


