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Abstract

We study the problem of hypothesis testing
between two discrete distributions, where we
only have access to samples after the action of
a known reversible Markov chain, playing the
role of noise. We derive instance-dependent
minimax rates for the sample complexity of
this problem, and show how its dependence
in time is related to the spectral properties
of the Markov chain. We show that there
exists a wide statistical window, in terms of
sample complexity for hypothesis testing be-
tween different pairs of initial distributions.
We illustrate these results in several concrete
examples.

1 INTRODUCTION

Random walks on graphs, or Markov chains more gen-
erally, have long served as a natural model for data
observed through a noisy channel. In many applica-
tions, one wishes to determine the origin of a random
walk, after a certain number of steps: Where has a
rumor started in a social network? What is the dis-
tribution of a deck of cards before shuffling? What
are the ancestors of current species before evolution?
What is the initial configuration of spins in Glauber
dynamics? In these cases, the initial distribution is
considered as the true information, and observations
are made after the action of a few steps of the Markov
chain. In this work, we consider the problem of testing
for the initial distribution: determining which of two
candidate distributions p and u' is the initial distri-
bution, based on an i.i.d. sample after ¢ steps. The
mixing time of the chain can be interpreted as the time
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at which “all” starting information is lost. However,
depending on the two candidate distributions over the
starting states, this total loss of information may oc-
cur at a time much sooner than the mixing time. In
this work, we characterize precisely this rate of loss of
information in terms of spectral properties of the tran-
sition matrix: we give a theoretical guarantee on the
performance of a test in terms of necessary sample size
as a function of all the parameters of the problem, and
show that this dependency is tight, using information-
theoretic tools. In particular, we show that the sample
complexity of the hypothesis testing problem between
u and p/, and its dependency in time ¢, depends criti-
cally on the pair (g, ) in an explicit manner. We call
this wide range of sample complexities the statistical
window. Pairs of distributions that exhibit behaviour
at the extreme ends of this statistical window can be
explicitly constructed using the spectrum of the associ-
ated Markov chain and we illustrate this phenomenon
on several concrete examples.

Recovering information about a discrete distribution
with access to samples is one of the central problems
of statistical theory, going back at least to Laplace
(1812). This essential problem has attracted much at-
tention in the modern treatment of learning theory,
on problems related to learning, testing and estima-
tion. Recently, there has been renewed focus on learn-
ing discrete distributions from a sample—typically, it
is assumed that the (unknown) distribution satisfies
certain properties such as k-modality or monotonic-
ity, which, in certain cases, allows significantly im-
proved sample complexity over the basic approach of
using the empirical distribution (see e.g. Chan et al.
(2013), Daskalakis et al. (2012), Kamath et al. (2015),
Diakonikolas et al. (2014), Daskalakis et al. (2015), Di-
akonikolas (2016), Diakonikolas and Kane (2016), Di-
akonikolas et al. (2017b,a), Valiant and Valiant (2014,
2016)). A related area of research is that of prop-
erty testing, i.e. to test whether a distribution satis-
fies some property such as uniformity or monotonic-
ity, from a sample (see e.g. Batu et al. (2000), Valiant
(2011), Chan et al. (2014), Diakonikolas et al. (2015),
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Canonne (2017)). Yet another area of interest has been
estimating quantities related to a discrete distribution,
such as support size or entropy (see e.g. Valiant and
Valiant (2011), Acharya et al. (2014), Wu and Yang
(2016a,b), Orlitsky et al. (2016)).

In much of this literature, it is often assumed that one
has direct access to independent samples from the true
unknown distribution of interest .

As stated above, we consider in this work a setting
where we only have access to these samples after a re-
versible Markov chain has acted on them ¢ > 0 times.
In doing so, we allow for the introduction of noise, in
the form of the action of a known Markov chain with
transition matrix P. Formally, this is equivalent to
learning about p, with access to u; = pP?, and can be
seen as a statistical inverse problem. In our setting, as
t increases and p; approaches the stationary distribu-
tion, more information is lost and the statistical prob-
lem becomes more difficult. This is in stark contrast
to the usual applications of Markov chains in statis-
tical learning, in particular for Markov Chain Monte
Carlo methods, where the stationary distribution 7 is
the quantity of interest, from which it is difficult to
sample, and a large t is desirable. In our setting, ¢
can be understood as a way to measure the amount
of noise, and we seek to understand how the difficulty
increases with it. This is a common point of view in
some continuous settings: if u = §, for some z € R,
the action of the heat kernel for time ¢ leads to a distri-
bution p; = N(x,t), and the impact of 02 =t on the
statistical difficulty of recovering z is clear. We trans-
fer this idea to discrete distributions, and the action of
a Markov chain is the most natural way to introduce
noise.

Formally, we focus here on the fundamental problem of
hypothesis testing between two known distributions p
and 4/, based on samples from p; = uP? or p) = /Pt
(cf. Fig. 1). This choice allows us to illustrate, for
many natural examples, the impact of the pair u, u’
on the instance-dependent sample complexity of this
problem, the required sample size ny, , , to solve this
problem with a small probability of error, and in par-
ticular its dependency in time. There is much focus
in the field of mathematical statistics on the analy-
sis of the maximum probability of error in hypothesis
testing. It is well-understood that it is equivalent to
studying the total variation distance drv(u™, 1=™)
between the two distributions of samples of size n.
This quantity grows in n and decays in ¢, and the
goal of our analysis is to describe the trade-off be-
tween these two phenomena: we establish how large

!There have been some recent advances where some of
these problems can be solved even when some (small) frac-
tion of the data has been adversarially tampered with.
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Figure 1: The hypothesis testing problem between
and  is easier if we have direct sample access to these
distributions. It is harder with the action of P?, as the
distributions look increasingly alike. For very large ¢,
the distribution is very close to stationarity and all
initial information is lost.

n and how small ¢t need to be for the total variation
distance to be bounded away from 0, for testing to
be possible. We are particularly interested in showing
that the behaviour in t is far from universal: we ex-
hibit pairs (u, p’) for which it is very different, as well
as a systematic manner to construct them.

Our analysis bridges two fields where studying this
quantity is a central problem. On the one hand, for
fixed t, given p; and py, understanding the growth in
n of this distance is one of the central problems of
mathematical statistics and information theory. It is
difficult to establish the growth of dry(u®™, u™) in
terms of n and dyv (s, pe) directly (see, e.g. Berthet,
2014, Berthet and Ellenberg, 2019).

In our analysis, this quantity is controlled by compari-
son to other notions of “distances”. On the other hand,
one of the most important questions in the study of
Markov chains is the behavior of u;, and in particular
the decay of its total variation distance to the station-
ary distribution, as a function of t. One key quantity
is that of mixing time, which describes the time ¢ at

which the total variation goes to e~ !.

After mixing, the total variation distance to the sta-
tionary distribution 7 decays exponentially. The mix-
ing time represents the time at which the sample com-
plexity of the hypothesis testing problem explodes, for
all pairs of initial distributions pu,p’. What emerges
from our analysis in Section 3 is that for ¢ less than
the mixing time, this is far from universal over all pairs
i, i/, and that in many natural Markov chains, the
sample complexity can vary dramatically. In particu-
lar, asking when u; and p} are close is a very differ-
ent question from asking when u; is close to the sta-
tionary distribution 7. In particular, we construct ex-
plicitly examples of pairs of initial distributions (u, ")
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whose sample complexity has a very different behavior
in time.

Our main results are in Section 3.3, where we show
that the instance sample complexity is

d
e = 1/ Y N (e — af)?,
i=2

where the \; are the eigenvalues of P and the o,
are components of ¢ and p’ along its eigenvectors. In
particular, a very rich structure emerges, where all the
eigenvalues play a role: depending on the values of
(i — ), the sample complexity as a function of time
can be driven by terms of order A for any i, and
does not only depend on the spectral gap. At the
extremes, we describe the statistical window, the ratio
of sample complexities ny, ., /ni;ﬁ’,t’ for pairs u, u’
and vy, v’ of initial distributions with comparable initial
total sample complexity. We show that

a0 N/
is governed by the ratio between the eigenvalues of the
Markov chain with the largest and smallest absolute
value (see Theorem 8). We illustrates these findings
by deriving the sample complexity for several concrete

examples of Markov chains in Section 4. All original
proofs are given in the appendix.

*
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Related Work. There has been considerable work
regarding reconstruction of a signal observed through
noisy channels. An area of particular interest has been
information flow on (rooted) trees, where the label
(color) of the root of a (possibly infinite) tree is cho-
sen according to a discrete distribution. Each edge
of the tree acts a noisy channel, given by the tran-
sition matrix of a Markov chain P. The goal is to
reconstruct the signal at the root, given the informa-
tion at the leaves. Sharp results are known for several
cases depending on the branching factor of the tree
and the eigenvalues of P (Evans et al., 2000, Mossel
et al., 2003, Mossel, 2001). Although, the noise model
is similar to the one we consider in this paper, the goal
is significantly different—their focus is on reconstruc-
tion of a single signal from several (possibly correlated)
corrupted observations. Other problems based on sim-
ilar principles include population recovery (Dvir et al.,
2012, Polyanskiy et al., 2017) and trace reconstruction
(Levenshtein, 2001, McGregor et al., 2014, Hartung
et al., 2018, Holden et al., 2018). Our setting can also
shed light on problems where the sample complexity
of learning problems is affected by communication or
privacy constraints (Han et al., 2018, Acharya et al.,
2018, Gupta et al., 2018).

A recent line of work has focused on testing whether a
Markov chain P is identical to a fixed chain P’ or suffi-
ciently far from it, given a single trajectory Xy, ..., X
generated from P (Daskalakis et al., 2017). Their work
does not assume the knowledge of P. In contrast, for
the testing problem considered in this work, it is easy
to see that in the absence of some knowledge of P, the
testing problem is impossible, e.g. one can easily con-
struct pairs of starting distribution and transition ma-
trix, (i, P) and (y', P’), such that the distributions uP
and p/ P’ are identical. Also, there is little to be gained
by observing the trajectory in our setting as all the rel-
evant information is contained in the first observation
of the trajectory. Other statistical problems based on
the observations from a Markov Chain include learn-
ing a graphical model from Glauber dynamics (Bresler
et al., 2014), the mixing time (Hsu et al., 2015), or the
entropy rate (Kamath and Verdd, 2016). The notions
of statistical distances in relation with Markov chains,
in particular with respect to their stationary distribu-
tions have also been explored in (Bresler and Nagaraj,
2017). The problem of how initial information is lost
with the action of a Markov chain is also considered in
(Goldfeld et al., 2018), who study the case of Glauber
dynamics in the context of information storage.

Notation. Throughout the paper, § is the proba-
bility of error and ¢ € (0,1) is a measure of non-
degeneracy of distributions. The notation =< indicates
equality up to factors that may depend only on § and
€. Standard notions from information theory which we
use are defined in Appendix

2 PROBLEM DESCRIPTION

Let X be a set of size d, and P the transition matrix
of a known irreducible reversible Markov chain on X.
We observe X1,..., X, that are i.i.d. draws from this
Markov chain after ¢ > 0 steps, with an unknown ini-
tial distribution v. The distribution of the X; is there-
fore vy = vPt. Our objective is to determine, given
two distributions p or p’ on X, which one of these is
the initial distribution v, based on the observation of
a sample (X;);e). This is equivalent to a hypothesis
testing problem between p; = uP' and u, = p/ P, for
known t and P, based on an i.i.d. sample of size n.

For any test ¢ : X" — {u,u'}, its performance is
measured in terms of its mazimum probability of error

PE" (4 £ vo) = Py # ) VRS0 £ 4).

max
vo€{p,n'}

In this work, we analyze the sample complexity of this
problem, i.e. the required sample size nj, , , to have a

small probability of error. Formally, for n 2 Ny, 0 We

have that the probability of error is smaller than § for
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some test, and for n < nz’u,,“ that it is greater than
1/2—¢ for all tests, for a fixed probability § € (0,1/4),
up to multiplicative constants. If p; = puj for some
t, the statistical problem is impossible and we write

* —
nlw%t = Q.

As discussed in the introduction, the maximum prob-
ability of error is related to the total variation dis-
tance drv(ud", 1/2™), and our analysis relies on un-
derstanding the behavior of this quantity. We analyze
its growth in n using tools of mathematical statistics,
and its decay in t through the lens of spectral analysis
for reversible Markov chains in Section 3.3.

We use the following notion of two distributions hav-
ing a bounded-likelihood ratio and state an immediate
consequence below.

Definition 1 (Bounded likelihood-ratio). Two distri-
butions p and p' have an e-bounded likelihood-ratio if
forallx € X, e < p,/pl, <1/e.

Proposition 2. If u, u’ have an e-bounded likelihood-
ratio, so do p; = pPt and u, = p' Pt

We make the assumption in some of our results, that
the three distributions, 7, the stationary distribution
of the Markov chain P, and pu, p, the initial distri-
butions, pairwise have an e-bounded likelihood-ratio;
this is to avoid some pathological cases where the sta-
tistical complexity is very small, e.g. if gy and u; do
not have the same support, some observations suffice
to solve the testing problem with probability of error
0. This assumption therefore ensures that it cannot be
a trivial problem. For the Markov chains that we con-
sider, this property is eventually satisfied for ¢ larger
than some fixed quantity, provided P is aperiodic.

Our main interest is to exhibit the statistical win-
dow phenomenon: we exhibit pairs of initial distri-
butions for which the hypothesis testing problem has
very different sample complexities. These distribu-
tions all satisfy the assumption above. Further, we
show in Section 3.4 that these results can be extended
to more general cases: if the distributions u,pu’ do
not satisfy the bounded likelihood-ratio assumption
(Definition 1), the hypothesis testing question can be
rephrased in terms of distributions that do, up to a
loss in multiplicative factors.

3 SAMPLE COMPLEXITY

3.1 Reversible Markov chains

In this problem, we have access to a sample of size
n from either p; of wj. It is therefore important to
understand the behavior of these two distributions as
t increases, and in particular how quickly they be-
come similar, depending on the initial starting points

1 and p’. We state some basic properties of reversible
Markov chains and their spectra without proof; these
can be found in standard texts on Markov chains (e.g.
Levin et al. (2008)). Recall that P is the transition
matrix of an irreducible reversible Markov Chain on
a finite state space X’ with stationary distribution 7.
We adopt the convention that F;; is the probability of
transitioning from state ¢ to j; as P is reversible we
have m;P;; = m;Pj; for all 7,j. Denote by II the di-
agonal matrix with II;; = m; and consider the matrix
Q:= 12 PII~z. As P is reversible and 7 is the station-

ary distribution, Q;; = , /Z=P;; = /2L Pj; = Qj;, and
4 ] ;

as a result @) is symmetric. The following proposition

holds for reversible Markov Chains.

Proposition 3. Let vy,...,vq be the eigenvectors®
and 1 = Xy > Ay > A3 > -+ > A\g > —1 the corre-
sponding eigenvalues of Q. Then,

— v, =12y, is a right eigenvector of P with eigen-
value \;i; for \y =1, vy = (1,---,1)T.

— w; = 2y, = I; is a left eigenvector of P with
eigenvalue \;; for \y =1, uy = 7.

We consider 1 = Aigj, Apg), .-+, Ajg) as the ordering of
the eigenvalues by their absolute values, i.e. 1 =
|/\[1]| 2 ‘/\[2]| Z Z |>‘[d]| Z 0. It is worth pOiIlt—
ing out that A\g) = A\g = —1 is possible if and only if P
is periodic with period 2, i.e. the underlying graph on
X is bipartite. It is common to consider lazy chains,
where one considers the transition matrix (1—¢)P+qLI.
An eigenvalue A of the original chain yields an eigen-
value (1 — ¢)A + ¢ for the lazy chain. In particular,
for ¢ > 1/2, all eigenvalues become non-negative. We
discuss the impact of adding laziness to the problem
of testing initial distributions in Section 3.3.

Inner Product and Norm with respect to 7. As
P is irreducible, 7w, > 0 for every z € X. Thus, we can
define an inner product over R? as follows:

(i) = 3 e (1)

x

We denote the associated norm as |ul|» = v/ (u, u)r.
The following lemma states that the left eigenvectors
form an orthonormal basis with respect to the inner
product (-, ).

Lemma 4. The left eigenvectors ui,...,uq of P form
an orthonormal basis with respect to the inner product
(- Yx. Purthermore, for any u € R with Y u, =1,
we have {u,m), = 1; in particular for uy = m, we
have ||7||z = 1. By orthogonality, we also have that
fori>2,%" i, = (u;,m)x = 0; henceforth without

2As @ is symmetric the left and right eigenvectors are
the same.
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loss of genmerality, we will assume that they form an
orthonormal basis, i.e. ||u;||l= =1 for each i.

The distance || — p'[|x might seem strange at first

sight. Note that [[u—u/[|2 =3, % Let us con-
sider the case when one of the two distributions, say
1’ is the stationary distribution s: then, it is simply
the x? divergence, D, (u, 7) between p and 7. In our
analysis, we compare this distance to other notions of
distances between p; and pj, to obtain guarantees on
the sample complexity of this problem. We rely on the
spectral properties of the transition matrix to under-
stand the temporal evolution of an initial distribution
over X.

3.2 Guarantees for likelihood-ratio test

For this testing problem, we show guarantees for the
performance of the likelihood ratio test. It is based on
the log-likelihood ratio statistic L,, between p; and p},
given by

Ln = Z l:[’tﬂ? lOg(Mt7I/M;,E) = <€)/:Lt> ,

zeX

where [i; is the empirical or observed distribution of
the (Xi)ie[n]v and £, = IOg(/fdt,r/M{t,z)'

Definition 5. The likelihood ratio test Y r takes
(Xi)iemn) € X™ as input and outputs yu or y' such that

I if L, >0,
R i if L, <0.

The Kullback-Leibler divergences between p; and pu;
are naturally associated to the quantity L,, as its ex-
pected value under these distributions. This diver-
gence is a statistical measure of divergence that cap-
tures well the sample complexity of the problem, and
also appears in large deviations, in the description of
the asymptotic behavior of fi;. The connections be-
tween notions of “distances” between distributions and
sample complexity have been extensively studied, see
e.g. (Polyanskiy and Wu, 2017) and references therein,
and (Berend et al., 2014).

3.3 Sample Complexity Guarantees

Theorem 6. For two initial distributions u, p', with
w, i, all pairwise having e-bounded likelihood-ratios
and P reversible, for some ¢ € (0,1), the likelihood-
ratio test Y r has probability of error less than § if

d
n > C(e,0)) SN (i 1)z — i, )2)°.

=2

for C(e,8) = 16e5/?1og(1/6).

This result is not obtained by focusing on the behav-
ior of the random variable L,, and using concentration
inequalities, as is usually the case in such problems,
but directly by analyzing and linking several notion of
distances between the distributions p$" and p,®™. In-
deed, this allows us to understand simultaneously the
growth in n and convergence in t of these distances
and to give guarantees on how large n needs to be for
any fixed t. We present the alternate point of view,
more common in the analysis of Markov chains, in
Section 3.5 below. Furthermore, using a different anal-
ysis of other measures of statistical distance between
distributions, we show that this guarantee on the per-
formance of the likelihood ratio test is optimal: up to
constants, it is tight for all tests depending only on the
observation of a sample of size n.

Theorem 7. For two initial distributions p, ', with
1y i1, all pairwise having e-bounded likelihood-ratios
for some € € (0,1) and P reversible, all tests have
probability of error greater or equal to 1/2 — ¢ if

d
n < 0(576)/2/\?t(<uiaﬂ>ﬂ - <ui7.uj>7\')25

i=2
for c(g,8) = 862

When the sample size is smaller than this bound, no
test can accurately identify the correct distribution,
and significantly outperform a coin flip. Together,
these results give a complete picture of the statistical
complexity of the hypothesis testing problem defined
in Section 2. The sample complexity of this problem
is of order

d
n;,p/,t = 1/Z>\12t(<u27,u>7r - <uinu‘/>ﬂ')2 .
1=2

This expression gives a very clear understanding of
how the initial information is lost over time. The com-
ponent of the difference between p and i (seen as vec-
tors in RY) aligned with eigenvectors with eigenvalues
close to 0 will be lost fast, while that along those with
eigenvalues close to —1 and 1 will be retained longer.
As a consequence, different pairs of initial distributions
have very different statistical complexities. The results
above allow us to describe exactly this phenomenon.
The range of sample complexities for this problem can
therefore be very large, and is governed by the spectral
properties of the matrix.

Theorem 8. For P reversible, there are pairs of
initial distributions p, ' and v,7', with p,p', 7™ and
v, , 7 pairwise having e-bounded likelihood-ratios for
some € € (0,1), such that

* * 2t
Pt _ Mug 0 (A[2]>

* *
Pyt M0 Ald)
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if the initial statistical complexities
4,0 are similar, the ratio scales like

In particular,
ny, o and n;
()\[2]/)\ a)* and we refer to it as the statistical win-
dow. If there is an eigenvalue that is negative, we
can arbitrarily increase the size of the statistical win-
dow with laziness, moving the eigenvalue closer to 0,
or even make it infinite. We analyze this window for
examples of Markov chains in the following section,
describing as well the extremal pairs of initial distri-
butions at the two ends of this statistical window: the
hypothesis testing problems that become hard quickly,
and those which are the least affected by the action of
Pt. In many applications, this provides an intuitive
understanding of the type of questions that become
hard, for several natural random processes, through
the lens of loss of information.

3.4 Guarantees without likelihood-ratio
bounds

Our main message is that there exist pairs of distri-
butions whose associated hypothesis testing problems
have vastly different sample complexity, and in partic-
ular that this phenomenon can be exhibited by taking
distributions satisfying a bounded likelihood-ratio as-
sumption. To analyze the sample complexity for two
distributions that do not satisfy this assumption, one
can reduce the problem to the case of two distributions
that do.

Definition 9. For any n € (0,1), p,p distributions
on X and a reversible Markov chain P with stationary
distribution m, we consider

B=(pn+up +m)/3,

the average of u, p', and w. The centered versions |i
and [’ are defined for any n € (0,1) as
(1 —n)

=1-nu+ns, [i= + 8.

Considering the hypothesis testing problem between
i and i’ only makes the statistical problem harder:
it can be interpreted as drawing each sample point
from £ instead of either p or p’, with probability 7.
Note that f, i/, and 7 all pairwise having 7/3-bounded
likelihood-ratios. Using these distributions, we gener-
alize Theorem 6 as follows.

Theorem 10. For two initial distributions u, p’ and P
reversible, the likelihood-ratio test W r has probability
of error less than § if

d
n > clog(l/é)/z)\?t(<ui,li>7r — (g, 1')x)?

for a universal constant ¢ > 0.

This result rests on the proof of Theorem 6 describing
the sample complexity for the pair (fi, i), and control-
ling the difference in sample complexity with testing
for the pair (u, p').

However, the sample complexity could be much
smaller: if p and g/ have different supports, if this
property still holds for y; and pj}, the sample complex-
ity can be of the order of a constant. Outside of such
degenerate cases, if they have full supports, the lower
bound of Theorem 7 can be recovered up to a multi-
plicative factor of the maximum of 7, /u; , - which is
always finite, by following the same proof. Both upper
and lower bounds are therefore valid up to constants if
one of the two distributions is m, and the other has the
same support. This last case allows also to showcase
the full width of the statistical window, by taking dis-
tributions p such that p — 7 is aligned along different
left eigenvectors of P.

3.5 Statistical time guarantees

Our results are presented in a fixed time, fixed proba-
bility setting, and we give guarantees in terms of how
large the sample size n needs to be. However, in most
of the literature on Markov chains, there is no sample
size, and results are given in terms of guarantees on
the time t. Some of our results can be formulated in
a similar manner: given a fixed sample size n, what is
the statistical time t}, , . such that the testing prob-
lem is possible when t < by n and becomes impossi-
ble when ¢ >t} ., up to terms involving only 6 and
€. There is no general expression for this statistical
time, however it can be made explicit for many pairs
of initial distributions pu, i/, also a direct consequence
of Theorem 6 and 7 (cf. Fig. 2).

Theorem 11. For any reversible Markov chain P,
and for every i € [d], there exists a pair of initial dis-
tributions p, i’ such that

1 log(n/no)

o = tim X =
Elm = 2 log(1/A)

[NTRD

for some initial sample complexity ng, i.e. the sample
complexity to distinguish p and p' without the action
of P.

Yet again, this establishes that there is not only one
important time, such as mixing time, describing the
loss of information in this problem, but that this can
happen at different timescales; alternatively, the loss
of information is not only driven by the spectral gap,
but may depend on all the eigenvalues. Our results
rely on the reversibility of the Markov chain, as it is
expressed through its spectral properties.
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Figure 2: For different cases of starting distributions,
the time at which the squared distance between the
two distributions is much smaller than ny/n, and the
hypothesis testing problem becomes statistically im-
possible, can vary greatly.

4 APPLICATIONS

In this section, we consider several concrete examples
of Markov Chains on commonly studied graph topolo-
gies. Additional examples are included in Appendix

Let upy and upg denote the left eigenvectors corre-
sponding to the second largest and smallest eigenval-
ues when ordered by absolute values, i.e. Ajgj and A(gj,
respectively. For a sufficiently small o, we can consider
the pairs of distributions given by (u, ') and (v,7'),
where = 7 + aup, ' =T — aup), ¥ = T + au
and 7' = 7 — aupg); a is chosen to be small enough so
that wu,p’,v,~" are all valid probability distributions
and p, p', ™ pairwise satisfy the e-bounded likelihood
condition, as do the distributions v,~’, 7. Note that
by Theorems 6 and 7, the sample complexity of dis-
tinguishing between the pairs (u, p’) and (v,7’) is the
same up to factors depending only on € and d—in each
case it is given by 1/402 = [ — /|72 = ||y — 7/ 2.
However, when considering the statistical complexity
of distinguishing between (g1, 11}), the sample complex-
ity grows as A[;]Qt, whereas for distinguishing between
(v, ;) it grows as )\[fift. Thus, despite having roughly
the same sample complexity at time ¢ = 0, at a later
time the ratio of sample complexities grows to be as
large as (Appj/Ajq))?". In each of the concrete exam-
ples below, we discuss lower bounds on Az} and upper
bounds on Ay and the ratio of these bounds gives a
lower bound on the statistical window. In some of the
examples, we explicitly derive the eigenvectors associ-
ated with these eigenvalues and discuss the associated
pairs of initial distributions.

4.1 Random Walk on a Bipartite Clique

We start with the simple example of a random walk
on a bipartite clique. Let X = L U R be an equi-
partition and let £ = {{z,2'}|z € L,2’ € R}, then

the transition matrix P is given by:

PX,=z|X,_1=2"]=2/d if {z,2'} € E

The transition matrix P has exactly two non-zero
eigenvalues, 1 and —1; thus A\ = —1 and Alg = 0.
The eigenvector corresponding to the eigenvalue —1
has negative entries on one side of the bi-partite graph
and positive entries on the other. Thus, the compo-
nent of this eigenvector in the distribution controls the
imbalance of the distribution between the two sides.
If the initial distributions satisfy u(L) = p/(L), they
become indistinguishable after just one step of the
Markov Chain. On the other hand, the difference
|(L)—p/(L)| remains unaffected by the Markov chain.
Thus, the problem at any time ¢ > 1 remains exactly
as hard as the problem at time ¢ = 1, i.e. all initial in-
formation except for the starting side is lost in exactly
one time step. So the statistical window is infinite in
this case, for t > 1.

4.2 Random Walk on the Cycle

Definition 12 (Random Walk on the d-Cycle). Let
X ={0,1,...,d — 1} be the d nodes of the cycle. Let
P be the Markov chain on X, where,

Loyri=441 dd
P(X, =i|Xe1=7) =42 ifi S (mod d)
0 otherwise

The spectral properties of P are well known (see
e.g. (Levin et al., 2008, Chap. 12.3)); we summarize
them in the following lemma.

Lemma 13. For any d > 3, the eigenvalues of P
are giwven by cos(2mi/d) for i € {0,...,d — 1}; the
(right and left) eigenvector u; = (u;0,...,Uiq—1) cor-
responding to eigenvalue cos(2mi/d), is given by u, =
cos(2mik/d).

Let us first consider a cycle of length d with d =
O(mod 4). In this case, Az} = —1 and Ajqy = 0. The
associated eigenvectors, upy and ug, are (up to scal-
ing) given by: wy(i) = 1 for even i and —1 for odd
i; ug(i) = 1 for i = O(mod 4), —1 for i = 2(mod 4)
and 0 for ¢ = 1(mod 2). Now consider the pairs p, u/,
where p = m 4+ avp and p/ = 7 — avpy, and 7,7/,
where v = 7 4+ avjg and 7' = m — avyg. In the first
case, it is easy to see that the probability mass on odd
and even nodes is noticeably different under p and g/,
and this will remain so in perpetuity. On the other
hand, starting from v or ~/, stationarity is achieved in
one step. Observe that in this case nj , o =< n ., g,
so initially the two problems are roughly equally hard;
however, as t increases (in the simple case of cycle
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k 14 Vi || ||7r orthonormal eigenvectors
k 1 ’71260+61+ﬁ2+53:)\1:1 (171a171717171?1)/8
k=2 10=3|v=0+b+P—B:=X :(171,1,1,* -1)/8

B B B o =(1,1,-1,- 10000)/202
k=3 |10=2|v=0+F—F2=A3=N\ :(07070’0,1717 _1,-1)/25/2

— — — _ — — _ — _(17_1a0707 ) a 70)/4
h=dt=l]m=h=R=%=%=A=% |,/ (00,1,-1,0,0,0,0)/4, etc.

Table 1: Eigenvalues and eigenvectors of the Pachinko random walk for r = 3.

lengths being multiples of 4, even for ¢ = 1) the dif-
ference between the statistical hardness of these prob-
lems differs dramatically. This behavior will be ap-
proximately replicated with cycles of any length pro-
vided d is large enough; in particular we always have
Al = 1 —0(1/d*) and \gg = O(1/d), and so the
statistical window is of size d t

4.3 Pachinko random walk

We introduce the following random walk inspired by
the Japanese pinball game of Pachinko, on X = [d]
where d = 2" and the space X is understood as the
leaves of a dyadic tree of height r. It allows to further
illustrate the statistical window phenomenon.

Definition 14 (Pachinko Random Walk). Let P be
the Markov chain on the d = 2" leaves of a dyadic
tree such that for two leaves i and j with first common
ancestor at height £ between 0 and r, we have

P(X, =i|Xeo1=7) =pe = Be/2" 7",

where By > ...
to 1.

> B, are positive real numbers that sum

This can be understood as a random walk on a graph,
with a large amount of structure, that can be a conse-
quence of an underlying geometry: at every level, each
half of the vertices is “very far” from the other half,
and jumping from one half to the other is less probable
than staying in the same half.

Proposition 15. For each k between 2 and r+1, there
exists an eigenvalue v of multiplicity 272, associated
to the height { = r 4+ 2 — k. It is given by v, = Bo +
oot Braiok — Brgo—k = A, for 2872 41 < < 2kL
The 25=2 vectors associated to the 252 nodes at height
{ =r—+2—k - with coefficients equal to 1 for their
left descendants, —1 for their right descendants, and
0 otherwise - are eigenvectors with eigenvalue ~yy. For
k=1, v = X =1 is an eigenvalue with associated
simplex eigenvector m = 1/d. The eigenvalues satisfy
Y1 > 72 > 00> Yeg1 > 0.

This situation is summarized in the case r = 3 of Fig-
ure 3 in Table 1.

Figure 3: Analogously to the game of Pachinko, a ball
starts at a leaf, goes (up) in the dyadic tree, (peaks)
with probability 5, at height ¢, and goes (down) on
the other side of the highest point, going left or right
independently with probability 1/2 at each further de-
scendant node on the way down, thus stopping uni-
formly at random in one of the 2¢~! leaves. In this
figure r = 3, and we represent a trajectory that peaks
at height £ = 2.

As a consequence, if between height £ = r+ 1 — k and
{4+ 1 =r+4+2—k, there is a large gap between the
probabilities 8, and Sy (i.e., it is much harder for a
particle to “jump” to height £ 4+ 1 than to height ¢),
we have that

Ve = Ve+1 = 280 — Beg1 > Be — Bey1 > 0,

which implies a large gap between the eigenvalues of
eigenvectors associated to height superior to ¢ and
those associated to a height less or equal to ¢. From
a statistical point of view, in light of Theorem 6 and
similarly to Theorem 8, this implies that difference
between p and p’ which is observable at height ¢ + 1
or above, i.e. difference of mass between two sides of
nodes at these height) will be statistically observable
for much larger ¢ than difference at lower levels.
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