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Appendix A: Technical proofs

Proof [of Lemma 2| It holds that

Z=> []u=¢V}.

z€F7 i=1
By linearity, symmetry of the distribution, and independence of the V;, we have for any z¢ € Fy
E[Z] = 2n(l:)unif(xo ¢ m))m .

Furthermore, for each k-flat of F3, [V4| = 2"~* which yields the desired result.

Proof [of Lemma 3] We derive the second moment of Z

72 = Y YHzeSWV){r' eS(V)}

z,x’' €Fy

= Y 1z eSW)+ Y 1z e S(V)}1{z' € S(V)}.

T rF#x!

Taking expectation yields

E[Z’] =E[Z]+ Y Pui({z € S(V)}n{a’ € S(V)}).
r#x!

The uniform distribution is invariant under the action of the affine group G, which is doubly transitive on
F%. Therefore, the term Pyu({z € S(V)} N {z’ € S(V)}) is constant for all couples of distinct elements
(x,2") of F§. To compute this distribution, it thus suffices to consider that z and 2’ are uniformly randomly

chosen among the set of pairs of distinct elements. For all j € [m], this yields
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Using this in the derivation of the second moment, we have
227k
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Note that the last term is a 1 + o(1).

Proof [of Theorem 4] We first note that 2(1 — 27%)2* = 1, so that E[Z] = [2(1 — 27%)2]" is exponentially

large when A < Ag, and exponentially small when A > Ay.



e For A < Ag, Markov’s inequality yields
Punit(V € FLAT) = Puie(Z(V) > 1) <E[Z] — 0.

e For A < Ag, Paley-Zigmund’s inequality and the result of Lemma 3 yields

Pounit(V € FLAT) = Pyir(Z(V) > 0) >

Proof [of Lemma 5] By definition of Ppjanted

Pplanted(v) _ i Z Px*(v)
Punif(V) 2n xng Punif(v)
To compute the probabilities in the above ratios, we use the interpretation above of m drawings in N = 2*Nj,
possible flats independently if the distribution is Py, or otherwise in N* = (2% — 1)}, possible choices

corresponding to flats that do not contain x*. Therefore, it holds for all V'

P, (V) _{( 0 ifzgSV)

Poi(V) N )m otherwise

N*

Therefore, the likelihood ratio can be expressed in terms of 1{z € S(V)}, and N/N* =1/(1 —27F)

Ppantc o 1 N \m™

pey) = T‘xew(N*) 1{z € S(V)}
_ LN _Z2v)
= Bz x;F;{ € S(V)} 7]

Proof [of Lemma 8] Consider a fixed Z € F)'* such that Zy = 1. For an k-flat W described by (£, a), we
write Lo(Z) as a function gz of a € %

qze(a) = E cs(l, ) Zs .
ScCn]
|S|<k

We observe that each cg (¢, -) is a multivariate multilinear polynomial (with monomials that are squarefree),
so that gz¢ € Faai,...,a;]. Furthermore, the coefficient of the monomial ...y is Zyp = 1. As the
squarefree monomials are linearly independent, there exists an element of F'g such that gz ¢(a) # 0. Therefore,
as « is uniformly distributed under the uniform distribution gqg, it holds that

Punif(‘coc,f(Z) = 0) = Punif(QZ,ﬁ(a) = 0) <1- 2_k .

As an aside, note that this bound is tight. Indeed, for all Z € V, the event L, ,(Z) = 0 is equivalent to
z¢ W, for z = ¢~1(Z). The probability of this event is 1 — 27*, as seen in the proof of Lemma 2.

Let V = (Vi,..., Vi) ~ Punit- By independence, we obtain directly that

Punif(ﬁfj,aj (X) =0 ) Vj € [m]) < (1 - 2ik>m'



By a union bound over all elements of Fév kit holds that
P.nit(Ly has a solution) < 2V (1 — 27F)m

Taking A > Ay, yields the desired result. |

Proof [of Lemma 10] For all z € F, we observe that under the null hypothesis, the variable s(x, V') has
distribution B(m, 1 — 27%). Therefore, by Hoeffding’s inequality,

Punit(s(z, V) > [(1 - 27%) + a)m) < exp(—2a’m).
A union bound on Fj yields
Punit(a(V) > [(1 - 27F) + alm) < 2" exp(—2a’m) < exp (— [QaQA —log(2)]n).
Under P, the variable s(x*, V') has distribution B(m, (1—27%)+ 71'2"“). By Hoeffding’s inequality,
P (s, V) < [(1 —27F) + 727% — a]m) < exp(—2a°m).

By definition of Pplanted,» and o(V) > s(z, V) for all x € F5, we obtain the desired result. |

Proof [of Theorem 11] For A > Ak,m taking o = 72~ **1 in the results of Lemma 10 yields the desired
upper bound, as 2a2A — log(2) > 0.

For A < Ajr, we derive a bound on the total variation distance dtv(Punif, Pplanted,r), through the
inequality
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The term inside the square root being equal to the chi-square divergence X2(Pp1anted,,,, Punir) between the
two distributions. We write P, . = qﬁ?ﬂ? and P i = qg@m as products of the distribution of each independent
V;. Writing out Ppjanted,~ s a uniform mixture of the P » yields
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Note that ¢z » = (1 — 7)qo + 7qy, where g, is the uniform distribution on k-flats that do not contain x (the
planting distribution), so that

qL’”:lﬂ[qi—l]
% %

Substituting this in the above yields

s P = 3 5 (1 el(E00)] 1))

z€Fy 0
+2% 3 (1 + 72 [E[%%(Vl)] - 1})’” 1.

rH#x!
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Furthermore, for any k-flat Vi, it holds that ¢, /qo(V1) = (N/Nk)1{z ¢ Vi}. We give the following upper
bound the last two terms of this equation’s RHS,

1 2 qz Qx’ m 1 2 2Punif(x7xl¢vl) m
g 2 (L [B[EE0] - 1]) -1 s (1o e SRR )
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for some constant ¢, > 0 (independent of n and 7), by the formula for P¢(z, 2’ ¢ V4) derived in the proof
of Lemma ?77?. The last term converges to 0 when n — 400. We bound as well the first term of the main
equation’s RHS
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Taking A < A . = 28 log(2) /m? yields 1/2(1 + w2 /(2% — 1))A < 1, and all the terms of XQ(Pplanted,ﬂu Punif)
go to 0 when n — +o00.
|

Proof [of Lemma 12] In all cases, the k-flats are independent, and the m sets of k linear forms are uniformly
distributed. If (A, b) is uniformly random, so are the b;, and as a consequence, the ¢;. This yields the desired
V'~ Pnit. However, if there is a secret , ¢;(x) = 1—b; with probability n. The distribution of 1 —b; —¢;(z)
is therefore is a mixture of the uniform distribution on Fo (with weight 1 — 7) and of the unit mass at 1
(with weight 7). The distribution of €; — ¢;(z) is thus the mixture of the uniform distribution on F3 (with
weight 1 — 7) and of the the distribution on F% \ {0} generated by placing a 1 in one of the coefficients
of ¢j — £j(x), and letting the others be independent and uniform. As shown in Remark 1, the flat V; has
distribution g, » and V ~ P, ~, as desired. |



	Technical proofs

