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“ Detection of Planted Solutions for Flat Satisfiability Problems”

Quentin Berthet and Jordan Ellenberg

Appendix A: Technical proofs

Proof [of Lemma 2] It holds that

Z =
∑
x∈Fn

2

m∏
i=1

1{x /∈ Vj} .

By linearity, symmetry of the distribution, and independence of the Vj , we have for any x0 ∈ Fn2

E[Z] = 2n(Punif(x0 /∈ V1))m .

Furthermore, for each k-flat of Fn2 , |V1| = 2n−k, which yields the desired result.

Proof [of Lemma 3] We derive the second moment of Z

Z2 =
∑

x,x′∈Fn
2

1{x ∈ S(V )}1{x′ ∈ S(V )}

=
∑
x

1{x ∈ S(V )}+
∑
x 6=x′

1{x ∈ S(V )}1{x′ ∈ S(V )} .

Taking expectation yields

E[Z2] = E[Z] +
∑
x 6=x′

Punif

(
{x ∈ S(V )} ∩ {x′ ∈ S(V )}

)
.

The uniform distribution is invariant under the action of the affine group G, which is doubly transitive on
Fn2 . Therefore, the term Punif

(
{x ∈ S(V )} ∩ {x′ ∈ S(V )}

)
is constant for all couples of distinct elements

(x, x′) of Fn2 . To compute this distribution, it thus suffices to consider that x and x′ are uniformly randomly
chosen among the set of pairs of distinct elements. For all j ∈ [m], this yields

Punif

(
{x /∈ Vj} ∩ {x′ /∈ Vj}

)
=

2n − 2n−k

2n
· 2n − (2n−k − 1)

2n − 1
= (1− 2−k)

(
1− 2−k +

2− 2−k

2n − 1

)
.

Using this in the derivation of the second moment, we have

E[Z2] = E[Z] + (22n − 2n)(1− 2−k)m
(

1− 2−k +
2− 2−k

2n − 1

)m
≤ E[Z] + 22n(1− 2−k)2m

(
1 +

2− 2−k

1− 2−k
1

2n − 1

)m
≤ E[Z] + E[Z]2

(
1 +

2− 2−k

1− 2−k
1

2n − 1

)∆n
.

Note that the last term is a 1 + o(1).

Proof [of Theorem 4] We first note that 2(1− 2−k)∆k = 1, so that E[Z] = [2(1− 2−k)∆]n is exponentially
large when ∆ < ∆k, and exponentially small when ∆ > ∆k.
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• For ∆ < ∆k, Markov’s inequality yields

Punif(V ∈ FLAT) = Punif(Z(V ) ≥ 1) ≤ E[Z]→ 0 .

• For ∆ < ∆k, Paley-Zigmund’s inequality and the result of Lemma 3 yields

Punif(V ∈ FLAT) = Punif(Z(V ) > 0) ≥ E[Z]2

E[Z2]
→ 1 .

Proof [of Lemma 5] By definition of Pplanted

Pplanted(V )

Punif(V )
=

1

2n

∑
x∈Fn

2

Px∗(V )

Punif(V )
.

To compute the probabilities in the above ratios, we use the interpretation above of m drawings in N = 2kNk
possible flats independently if the distribution is Punif, or otherwise in N∗ = (2k − 1)Nk possible choices
corresponding to flats that do not contain x∗. Therefore, it holds for all V

Px∗(V )

Punif(V )
=

{
0 if x /∈ S(V )(

N
N∗

)m
otherwise

Therefore, the likelihood ratio can be expressed in terms of 1{x ∈ S(V )}, and N/N∗ = 1/(1− 2−k)

Pplanted

Punif
(V ) =

1

2n

∑
x∈Fn

2

( N
N∗

)m
1{x ∈ S(V )}

=
1

E[Z]

∑
x∈Fn

2

1{x ∈ S(V )} =
Z(V )

E[Z]
.

Proof [of Lemma 8] Consider a fixed Z ∈ FNk
2 such that Z∅ = 1. For an k-flat W described by (`, α), we

write Lα,`(Z) as a function qZ,` of α ∈ Fk2

qZ,`(α) =
∑
S⊂[n]
|S|≤k

cS(`, α)ZS .

We observe that each cS(`, ·) is a multivariate multilinear polynomial (with monomials that are squarefree),
so that qZ,` ∈ F2[α1, . . . , αk]. Furthermore, the coefficient of the monomial α1 . . . αk is Z∅ = 1. As the
squarefree monomials are linearly independent, there exists an element of Fk2 such that qZ,`(α) 6= 0. Therefore,
as α is uniformly distributed under the uniform distribution q0, it holds that

Punif(Lα,`(Z) = 0) = Punif(qZ,`(α) = 0) ≤ 1− 2−k .

As an aside, note that this bound is tight. Indeed, for all Z ∈ V, the event Lα,`(Z) = 0 is equivalent to
z /∈W , for z = φ−1(Z). The probability of this event is 1− 2−k, as seen in the proof of Lemma 2.

Let V = (V1, . . . , Vm) ∼ Punif. By independence, we obtain directly that

Punif(L`j ,αj
(X) = 0 , ∀j ∈ [m]) ≤ (1− 2−k)m .
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By a union bound over all elements of FNk
2 , it holds that

Punif(LV has a solution) ≤ 2Nk(1− 2−k)m .

Taking ∆ > ∆k yields the desired result.

Proof [of Lemma 10] For all x ∈ Fn2 , we observe that under the null hypothesis, the variable s(x, V ) has
distribution B(m, 1− 2−k). Therefore, by Hoeffding’s inequality,

Punif

(
s(x, V ) > [(1− 2−k) + α]m

)
≤ exp(−2α2m) .

A union bound on Fn2 yields

Punif

(
σ(V ) > [(1− 2−k) + α]m

)
≤ 2n exp(−2α2m) ≤ exp

(
−
[
2α2∆− log(2)

]
n
)
.

Under Px∗ the variable s(x∗, V ) has distribution B
(
m, (1− 2−k) + π2−k

)
. By Hoeffding’s inequality,

Px∗,π

(
s(x∗, V ) < [(1− 2−k) + π2−k − α]m

)
≤ exp(−2α2m) .

By definition of Pplanted,π and σ(V ) ≥ s(x, V ) for all x ∈ Fn2 , we obtain the desired result.

Proof [of Theorem 11] For ∆ > ∆̃k,π, taking α = π2−(k+1) in the results of Lemma 10 yields the desired
upper bound, as 2α2∆− log(2) > 0.

For ∆ < ∆k,π, we derive a bound on the total variation distance dTV(Punif,Pplanted,π), through the
inequality

dTV(Punif,Pplanted,π) =
1

2
E
[∣∣∣Pplanted,π

Punif
(V )− 1

∣∣∣] ≤ 1

2

√
E
[(Pplanted,π

Punif
(V )− 1

)2]
.

The term inside the square root being equal to the chi-square divergence χ2(Pplanted,π,Punif) between the
two distributions. We write Px,π = q⊗mx,π and Punif = q⊗m0 as products of the distribution of each independent
Vj . Writing out Pplanted,π as a uniform mixture of the Px,π yields

χ2(Pplanted,π,Punif) =
1

22n

∑
x,x′∈Fn

2

E
[Px,π

Punif

Px′,π

Punif
(V )
]
− 1

=
1

22n

∑
x,x′∈Fn

2

E
[qx,π
q0

qx′,π
q0

(V1)
]m
− 1

=
1

22n

∑
x∈Fn

2

E
[(qx,π

q0
(V1)

)2]n
+

1

22n

∑
x 6=x′

E
[qx,π
q0

qx′,π
q0

(V1)
]m
− 1 .

Note that qx,π = (1− π)q0 + πqx, where qx is the uniform distribution on k-flats that do not contain x (the
planting distribution), so that

qx,π
q0

= 1 + π
[qx
q0
− 1
]
.

Substituting this in the above yields

χ2(Pplanted,π,Punif) =
1

22n

∑
x∈Fn

2

(
1 + π2

[
E
[(qx
q0

(V1)
)2]
− 1
])m

+
1

22n

∑
x6=x′

(
1 + π2

[
E
[qx
q0

qx′

q0
(V1)

]
− 1
])m

− 1 .
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Furthermore, for any k-flat V1, it holds that qx/q0(V1) = (N/Nk)1{x /∈ V1}. We give the following upper
bound the last two terms of this equation’s RHS,

1

22n

∑
x6=x′

(
1 + π2

[
E
[qx
q0

qx′

q0
(V1)

]
− 1
])m

− 1 ≤ 1

22n
2n
(

1− π2 + π2Punif(x, x
′ /∈ V1)

(1− 2−k)2

)m
− 1

≤
(1− π2

2

)n(
1 +

π2

1− π2

2− 2−k

(1− 2−k
1

2n − 1

)∆n
− 1

≤
(

1 +
ckπ

2

2n − 1

)ckn/π2

− 1 ,

for some constant ck > 0 (independent of n and π), by the formula for Punif(x, x
′ /∈ V1) derived in the proof

of Lemma ??. The last term converges to 0 when n → +∞. We bound as well the first term of the main
equation’s RHS

1

22n

∑
x∈Fn

2

(
1 + π2

[
E
[(qx
q0

(V1)
)2]
− 1
])m

≤ 1

22n
2n(1 + π2(Punif(x /∈ V1)− 1))m

≤ 1

2n

(
1 +

π2

2k − 1

)∆n
.

Taking ∆ < ∆k,π = 2k log(2)/π2 yields 1/2(1 + π2/(2k − 1))∆ < 1, and all the terms of χ2(Pplanted,π,Punif)
go to 0 when n→ +∞.

Proof [of Lemma 12] In all cases, the k-flats are independent, and the m sets of k linear forms are uniformly
distributed. If (A, b) is uniformly random, so are the bj , and as a consequence, the εj . This yields the desired
V ∼ Punif. However, if there is a secret x, φj(x) = 1−bj with probability η. The distribution of 1−bj−φj(x)
is therefore is a mixture of the uniform distribution on F2 (with weight 1 − π) and of the unit mass at 1
(with weight π). The distribution of εj − `j(x) is thus the mixture of the uniform distribution on Fn2 (with
weight 1 − π) and of the the distribution on Fk2 \ {0} generated by placing a 1 in one of the coefficients
of εj − `j(x), and letting the others be independent and uniform. As shown in Remark 1, the flat Vj has
distribution qx,π and V ∼ Px,π, as desired.
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