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1 Studied environments

The environments we dealt with were provided
through the OpenAl Gym (Brockman ef”all, PUIH)
API, building on the MuJoCo physics engine
(Codorov_efall, Z007), to model physical interactive
scenarios between an agent and the environment she
is thrown into. The control tasks modelled by the en-
vironments involve locomotion tasks as well as tasks
in which the agent must reach and remain in a state
of dynamic balance.

Environment s DoFs a DoFs
InvertedPendulum-v2 4 1
InvertedDoublePendulum-v2 11 1
Reacher-v2 11 2
Hopper-v2 11 3
Walker2d-v2 17 6

Figure 1: Degrees of freedom (DoF) of the consid-
ered MUJoCo simulated environments. DoFs of both
continuous action and state spaces are presented, for
the studied physical control tasks. Actions spaces are
bounded along every dimension, while the state spaces
are unbounded.

2 Reward function variants

The reward is defined as the negative of the generator
loss. As for the latter, the former can be stated in two
variants, the saturating version and the non-saturating
version, respectively

7y (st,a¢) = —log(l — Dy(st, ar)) (1)
Ty (st,a¢) = log Dy(s¢, ar) (2)
The non-saturating alternative is recommended in the
original GAN paper as well as in (Fedus“et_all, 2O17)
more recently, as the generator loss suffers from vanish-

ing gradients only in areas where the generated sam-
ples are already close to the real data. GAIL relies
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on policy optimization to update the generator, which
makes this vanishing gradient argument vacuous. Be-
sides, in the context of simulated locomotion environ-
ments, the saturated version proved to prevail in our
experiments, as our agents were unable to overcome
the extremely low rewards incurred early in training
when using the non-saturating rewards. With the sat-
urated version, signals obtained in early failure cases
were close to zero, which was more numerically forgiv-
ing for our agents to kick off.

3 Experimental setup

Both our algorithm and GAIL baseline model imple-
ment the MPI interface: each experiment has been
launched concurrently with X parallel workers (each
with its own random seed), each having its own inter-
action with the environment, its own replay buffer, its
own optimisers and its own network updates. However,
every iteration and for a given network, the gradients
of the X ApaM (Kingma and Ba, PIIT4d) optimisers are
pulled together, averaged, and a unique average gradi-
ent is distributed to the worker for immediate usage.
In the experiments reported in this paper, we used 4
parallel workers.

Our experiments have all been conducted on
a single 16-core CPU workstation (AMD Ryzen
Threadripper® 1950X CPU).

4 Hyperparameters settings

In our training procedure, we adopted an alternating
scheme consisting in performing 3 training iterations of
the actor-critic architecture for one training iteration
of the synthetic reward, in line with common practices
in the GAN literature (the actor-critic acts as gener-
ator, while the synthetic reward plays the role of dis-
criminator). This training pattern applies for both the
GAIL baseline and our algorithm, SAM.
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Hyperparameter Value

# MPI workers 4

policy # layers 2

policy layer widths (100, 100)

policy hidden activations tanh

discriminator # layers 2

discriminator layer widths (100, 100)

discriminator hidden activations leaky ReLLU

discount factor 0.995

generator training steps 3

discriminator training steps 1

non-saturating reward? false

entropy regularization coefficient A 0.

gradient penalty coefficient 10.
(Gulrajani et all, PI017)

one-sided label smoothing true

# interactions per iteration 1024

minibatch size 128

normalize observations? true

Figure 2: Hyperparameters used to train GAIL agents.

As supported by the ending discussion of the GAIL pa-
per, performing a behavioral cloning (Pomerleau, [989,
[990) pre-training step to warm-start GAIL can po-
tentially yield expert-like policies in fewer number of
ensuing GAIL training iterations. It is especially ap-
pealing in so far as the behavioral cloning agent does
not interact with the environment at all while train-
ing. We therefore intended to precede the training of
our experiments (for GAIL and SAM) with a behav-
ioral cloning pre-training phase. However, although
the previous training pipeline enables a reduction of
training iterations for GAIL, we did not witness a con-
sistent benefit for SAM in our preliminary experiments.
Our proposed explanation of this phenomenon is that
by pre-training both policy and critic individually as
regression problems over the expert demonstrations
dataset, we hinder the entanglement of the policy and
critic training procedures exploited in SAM. We be-
lieve that by adopting a more elaborate pre-training
procedure, we will be able to overcome this issue, and
therefore leave further exploration for future work.

5 Enhanced plots

The following figures show the performance compari-
son between SAM and GAIL in terms of episodic return.
The horizontal axis depicts, in logarithmic scale, the
number of interactions with the environment. While
there is no ambiguity for GAIL, we used the unper-
turbed SAM policy pp (without parameter noise and
additive action noise) to collect those returns during a
per-iteration evaluation phase. The figures show that

Hyperparameter Value
# MPI workers 4
policy # layers 2
policy layer widths (64,64)
policy hidden activations leaky ReLLU
policy layer normalisation true
(BaZef~all, DOTH)
policy output activation tanh
critic # layers 2
critic layer widths (64,64)
critic hidden activations leaky ReLU
critic layer normalisation true
discriminator # layers 2
discriminator layer widths (64,64)
discriminator hidden activations leaky RelLU
discount factor ~y 0.99
generator training steps 3
discriminator training steps 1
non-saturating reward? false
entropy regularization coefficient 0.
gradient penalty coefficient 10.
(Gulrajani et all, PIiTa)
one-sided label smoothing true
# interactions per iteration 4
minibatch size 32
# training steps per iteration 20
replay buffer size 100K
normalise observations? true
normalise returns? true
Popr-ART? true
(kan_Hasselt_ef all, PIIT6)
reward scaling factor 1.
critic weight decay coefficient v 0.001
critic 1-step TD loss coefficient 1
critic n-step TD loss coefficient 1
TD lookahead length n 96
adaptive parameter noise for my 0.2
Ornstein-Uhlenbeck additive noise 0.2

Figure 3: Hyperparameters used to train SAM agents.
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our method has a considerably better sample-efficiency
than GAIL in various continuous control tasks, often
by several orders of magnitude. We use scatter plots to
visualise every episodic return, for every random seed.
Solid blue and green lines represent the mean episodic
return across the random seeds for the given number of
interactions. The filled areas are confidence intervals
around the solid lines, corresponding to a fixed frac-
tion of the standard deviation around the mean for
the given number of interactions. Every item coloured
in red relates to the expert performance, for a given
environment. The solid red line corresponds to the
mean episodic return of the demonstrations present in
the expert dataset associated with the given environ-
ment. The filled red region is a trust region whose
width is equal to the standard deviation of returns in
the expert dataset. The dotted line depicts the min-
imum return in the demonstration dataset while the
dashed line represents the maximum. Having statis-
tics about the demonstration datasets is particularly
insightful when evaluating the results of experiments
dealing with few demonstrations.
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