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Abstract

We study convergence acceleration schemes
for multi-step optimization algorithms. The
extrapolated solution is written as a nonlin-
ear average of the iterates produced by the
original optimization algorithm. Our anal-
ysis of Regularized Nonlinear Acceleration,
aka Anderson acceleration, does not need the
underlying fixed-point operator to be sym-
metric, hence handles e.g. algorithms with
momentum terms such as Nesterov’s acceler-
ated method, or primal-dual methods such as
Chambolle-Pock. The weights are computed
via a simple linear system and we analyze
performance in both online and offline modes.
We use Crouzeix’s conjecture to show that
acceleration is controlled by the solution of a
Chebyshev problem on the numerical range of
a non-symmetric operator modelling the be-
havior of iterates near the optimum. Numer-
ical experiments are detailed on image pro-
cessing and logistic regression problems.

1 Introduction

Extrapolation techniques, such as Aitken’s ∆2 or
Wynn’s ε-algorithm, provide an improved estimate of
the limit of a sequence using its last few iterates, and
we refer the reader to (Brezinski and Zaglia, 2013) for
a complete survey. These methods have been extended
to vector sequences, where they are known as e.g. An-
derson acceleration (Walker and Ni, 2011), minimal
polynomial extrapolation (Cabay and Jackson, 1976)
or reduced rank extrapolation (Eddy, 1979).

Classical optimization algorithms typically retain only
the last iterate or the average (Polyak and Juditsky,
1992) of iterates as their best estimate of the opti-
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mum, throwing away all the information contained in
the converging sequence. This is highly wasteful from
a statistical perspective and extrapolation schemes es-
timate instead the optimum using a weighted average
of the last iterates produced by the underlying algo-
rithm, where the weights depend on the iterates (i.e. a
nonlinear average). Overall, computing those weights
means solving a small linear system, so nonlinear ac-
celeration has marginal computational complexity.

Recent results by (Scieur et al., 2016) adapted classical
extrapolation techniques related to Aitken’s ∆2 and
minimal polynomial extrapolation to design extrapo-
lation schemes for accelerating the convergence of basic
optimization methods such as gradient descent. They
showed that by using only iterates from fixed-step gra-
dient descent, these extrapolation algorithms achieve
the optimal convergence rate of (Nesterov, 2013) with-
out any modification to the original algorithm. How-
ever, these results are only applicable to iterates pro-
duced by single-step algorithms such as gradient de-
scent, where the underlying operator is symmetric,
thus excluding much faster momentum-based methods
such as SGD with momentum or Nesterov’s algorithm.

Our results here seek to extend those of (Scieur et al.,
2016) to multi-step methods, i.e. to accelerate ac-
celerated methods. We use Crouzeix’s recent results
(Crouzeix, 2007; Crouzeix and Palencia, 2017; Green-
baum et al., 2017) to show that, in the general non-
symmetric case, acceleration performance is controlled
by the solution of a Chebyshev problem on the numer-
ical range of the linear, non-symmetric operator mod-
elling the behavior of iterates near the optimum. We
characterize the shape of this numerical range for var-
ious classical multi-step algorithms such as Nesterov’s
method (Nesterov, 1983), and Chambolle-Pock’s algo-
rithm (Chambolle and Pock, 2011).

We then study the performance of our techniques on
several classical applications, e.g. image processing
problems using extrapolation on Chambolle-Pock’s al-
gorithm.
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2 Nonlinear Acceleration

Consider the following optimization problem

min
x∈Rn

f(x) (1)

in the variable x ∈ Rn, where f(x) is strongly convex
with parameter µ with respect to the Euclidean norm,
and has a Lipschitz continuous gradient with parame-
ter L with respect to the same norm. Assume we solve
this problem using an iterative algorithm of the form

xi = g(xi−1) for i = 1, ..., k, (2)

where xi ∈ Rn, k is the number of iterations. As
in (Scieur et al., 2016) we will focus on improving our
estimates of the solution to problem (1) by tracking
only the sequence of iterates xi produced by an op-
timization algorithm, without any further oracle calls
to g(x). As in (Scieur et al., 2016), we will first focus
here on the case where g is a linear mapping

g(x) = A(x− x∗) + x∗. (3)

However, the main difference with (Scieur et al., 2016)
is that we allow the mapping A to be non-symmetric,
which is typically the case for methods with momen-
tum terms, or primal-dual algorithms (where x is a
concatenation of several iterates xi, xi−1, . . . , of the
primal and dual iterates).

We now briefly recall the key ideas driving nonlinear
acceleration schemes. Nonlinear acceleration aims to
find an approximation of the fixed point x∗ (assumed
to be unique) of g, i.e.

x∗ = g(x∗)

using a linear combination of previous iterates xi with
coefficients ci. The optimal coefficients c∗ to approx-
imate the fixed point using

∑k
i=1 cixi are found by

minimizing the residual of the linear combination,

c∗ = arg min
c

∥∥∥∥∥g
(

k∑
i=1

cixi

)
−

k∑
i=1

cixi

∥∥∥∥∥ ,
in the variable c ∈ Rk. Of course, this subproblem can
be hard to solve for nonlinear functions g, so we will
solve instead

c∗ = arg min
c:cT 1=1

∥∥∥∥∥
k∑
i=1

cig (xi)−
k∑
i=1

cixi

∥∥∥∥∥
= arg min

c:cT 1=1

∥∥∥∥∥
k∑
i=1

ciri

∥∥∥∥∥ ,

Algorithm 1 Regularized Nonlinear Acceleration
(Complexity: O(k2d) if k � d)

Input: Sequences of k iterates xi generated by (2),
regularization parameter λ.
Compute matrix of residues R = [x1−x0, . . . , xk−
xk−1].
Solve the linear system (RTR+ λI)z = 1.
Normalize c = z/(1T z).

Output: The extrapolated point
∑k
i=1 cixi−1.

with xi = g(xi−1) and ri = xi − xi−1. Minimizing
on the residues may be unstable, so we add a Ty-
chonov regularization term, which leads to the Reg-
ularized Nonlinear Acceleration (RNA) algorithm in
(Scieur et al., 2016).

As in (Scieur et al., 2016), we can link the accuracy

of the extrapolation
∑k
i=1 cixi with the norm of a ma-

trix polynomial p(A) where A is the linear fixed point
operator in (3). In fact, (Scieur et al., 2016, Prop. 2.2)
shows

min
c:cT 1=1

∥∥∥∥∥
k∑
i=1

ciri

∥∥∥∥∥ = min
p∈Pk−1:p(1)=1

‖p(A)r1‖ (4)

≤ ‖r1‖ min
p∈Pk−1:p(1)=1

‖p(A)‖(5)

where Pk is the linear space of polynomials of degree at
most k. This then directly yields a convergence bound
on ‖

∑k
i=0 cixi−1 − x∗‖, since

∥∥∥∥∥
k∑
i=1

cixi−1 − x∗
∥∥∥∥∥ =

∥∥∥∥∥(A− I)−1
k∑
i=1

ci(xi − xi−1)

∥∥∥∥∥
≤

∥∥(A− I)−1
∥∥∥∥∥∥∥

k∑
i=1

ciri

∥∥∥∥∥ .
Thus, if the coefficients c∗ in (4) are used, and if we
assume A− I invertible, then,

∥∥∥∥∥
k∑
i=1

c∗i xi−1 − x∗
∥∥∥∥∥ ≤ ∥∥(A− I)−1

∥∥ ‖r1‖ min
p∈Pk−1

p(1)=1

‖p(A)‖.

(6)

Of course, these results hold only if xk is generated
with a linear mapping g(x). We show that these results
can be extended to nonlinear and stochastic iterations
in section 6.3 of the supplementary material.

In the next section, we will see how to control the
convergence bound using the numerical range of A.
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3 Crouzeix’s Conjecture & Chebyshev
Polynomials on the Numerical
Range

We have seen that the convergence rate of nonlinear
acceleration is bounded by the norm of a matrix poly-
nomial,

min
p∈Pk
p(1)=1

‖p(A)‖.

Here and in the rest of this paper, ‖ · ‖ is the `2
norm. The results in (Scieur et al., 2016) recalled
above handle the case where the operator A is sym-
metric. Bounding ‖p(A)‖2 when A is non-symmetric
is not as direct. Fortunately, Crouzeix’s conjecture
(Crouzeix, 2004) allows us to bound ‖p(A)‖2 by solv-
ing a Chebyshev problem on the numerical range of A,
in the complex plane.

Theorem 3.1 (Crouzeix (2004)) Let A ∈ Cn×n,
and p(x) ∈ C[x], we have

‖p(A)‖2 ≤ c max
z∈W (A)

|p(z)|

for some absolute constant c ≥ 2.

Here W (A) ⊂ C is the numerical range of the matrix
A ∈ Rn×n, i.e. the range of the Rayleigh quotient

W (A) , {x∗Ax : ‖x‖2 = 1, x ∈ Cn} . (7)

(Crouzeix, 2007) shows c ≤ 11.08 and Crouzeix’s con-
jecture states that this can be further improved to
c = 2, which is tight. A more recent bound in
(Crouzeix and Palencia, 2017) yields c = 1 +

√
2 and

there is significant numerical evidence in support of
the c = 2 conjecture (Greenbaum et al., 2017). This
conjecture has played a vital role in providing conver-
gence results for e.g. the GMRES method (Saad and
Schultz, 1986) (see (Choi and Greenbaum, 2015)).

Crouzeix’s result allows us to turn the problem of find-
ing uniform bounds for the norm of the matrix poly-
nomial ‖p(A)‖2 to that of bounding p(z) over the nu-
merical range of A in the complex plane, an arguably
much simpler two-dimensional Chebyshev problem.

3.1 Numerical Range Approximations

There are no tractable methods for computing the ex-
act numerical range of a general operator A. However,
efficient numerical methods approximate the numeri-
cal range based on its key properties. The Toeplitz-
Hausdorff theorem (Hausdorff, 1919; Toeplitz, 1918)
in particular states that the numerical range W (A) is
a closed convex bounded set. Therefore, it suffices to
characterize points on the boundary, the convex hull
then yields the numerical range.

Johnson (1978) made the following observations using
the properties of the numerical range,

max
z∈W (A)

Re(z) = max
r∈W (H(A))

r = λmax(H(A)) (8)

W (eiθA) = eiθW (A), ∀θ ∈ [0, 2π), (9)

where Re(z) is the real part of complex number z,
H(A) is the Hermitian part of A, i.e. H(A) =
(A+A∗)/2 and λmax(H(A)) is the maximum eigen-
value of H(A). The first property implies that the
line parallel to the imaginary axis is tangent to W (A)
at λmax(H(A)). The second property can be used to
determine other tangents via rotations. Using these
observations Johnson (1978) showed that the points
on the boundary of the numerical range can be char-
acterized as pθ = {v∗θAvθ : θ ∈ [0, 2π)} where vθ is the
normalized eigenvector corresponding to the largest
eigenvalue of the Hermitian matrix

Hθ =
1

2
(eiθA+ e−iθA∗) (10)

The numerical range can thus be characterized as fol-
lows.

Theorem 3.2 (Johnson, 1978) For any A ∈ Cn×n,
we have

W (A) = Co{pθ : 0 ≤ θ < 2π}

where Co{Z} is the convex hull of the set Z.

Note that pθ cannot be uniquely determined as the
eigenvectors vθ may not be unique but the convex hull
above is uniquely determined.

3.2 Chebyshev Bounds & Convergence Rate

Crouzeix’s result means that bounding the conver-
gence rate of accelerated algorithms can be achieved
by bounding the optimum of the Chebyshev problem

min
p∈C[z]
p(1)=1

max
z∈W (A)

|p(z)| (11)

where A ∈ Cn×n. This problem has a trivial answer
when the numerical range W (A) is spherical, but the
convergence rate can be significantly improved when
W (A) is less isotropic.

3.2.1 Exact Bounds on Ellipsoids

We can use an outer ellipsoidal approximation of
W (A), bounding the optimum value of the Chebyshev
problem (11) by

min
p(z)∈C[x]
p(1)=1

max
z∈Er
|p(z)| (12)
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where

Er , {z ∈ C : |z − 1|+ |z + 1| ≤ r + 1/r}. (13)

This Chebyshev problem has an explicit solution in
certain regimes. As in the real case, we will use Cn(z),
the Chebyshev polynomial of degree k. Fischer and
Freund (1991) derived the optimal solution to prob-
lem (12) on ellipsoids, recalled as Theorem 6.2 in the
supplementary material.

The optimal polynomial for a general ellipse E can be
obtained by a simple change of variables. That is,
the polynomial Ck( c−zd )/Ck( c−1d ) is optimal for the
problem (12) over any ellipse E with center c, focal
distance d and semi-major axis a. It can be easily
seen that the maximum value is achieved at the point
a on the real axis. That is the solution to the min
max problem is given by T̄k(a). Figure 1 shows the
surface of the optimal polynomial with degree 5 for
a = 0.8, d = 0.76 and c = 0.
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Figure 1: Surface of the optimal polynomial T̄n(z) with
degree 5 for a = 0.8, d = 0.76 and c = 0.

Figure 2 shows the solutions to the problem (12) with
degree 5 for various ellipses with center at origin, vari-
ous eccentricity values e = d/a and semi-major axis a.
Here, zero eccentricity corresponds to a sphere, while
an eccentricity of one corresponds to a line.

4 Accelerating Non-symmetric
Algorithms

We have seen in the previous section that control-
ling the convergence rate of the nonlinear acceleration
scheme in Algorithm 1 means bounding the optimal
value of the Chebyshev optimization problem in (11)
over the numerical range of the operator driving itera-
tions. In what follows, we explicitly detail this opera-
tor and approximate its numerical range for two clas-
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Figure 2: Optimal value of the Chebyshev problem
(12) for ellipses with centers at origin. Lower val-
ues of the maximum of the Chebyshev problem mean
faster convergence. The higher the eccentricity here,
the faster the convergence.

sical algorithms, Nesterov’s accelerated method (Nes-
terov, 1983) and Chambolle-Pock’s Primal-Dual Algo-
rithm (Chambolle and Pock, 2011).

4.1 Nesterov’s Accelerated Gradient Method

The iterates formed by Nesterov’s accelerated gradi-
ent descent method for minimizing smooth strongly
convex functions with constant stepsize follow{

xk = yk−1 − α∇f(yk−1)

yk = xk + β(xk − xk−1)
(14)

with β =
√
L−√µ√
L+
√
µ

, where L is the gradient’s Lipschitz

continuity constant and µ is the strong convexity pa-
rameter. This algorithm is better handled using the
results in (Scieur et al., 2018), and we only use it here
to better illustrate our results on non-symmetric op-
erators.

4.1.1 Nesterov’s Operator in the quadratic
case

When minimizing quadratic functions f(x) = 1
2‖Bx−

b‖2, using constant stepsize 1/L, these iterations be-
come,{

xk − x∗ = yk−1 − x∗ − 1
LB

T (Byk−1 − b)
yk − x∗ = xk − x∗ + β(xk − x∗ − xk−1 + x∗).

or again,[
xk − x∗
yk − x∗

]
=

[
0 A
−βI (1 + β)A

] [
xk−1 − x∗
yk−1 − x∗

]
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where A = I− 1
LB

TB. We write O the non-symmetric
linear operator in these iterations, i.e.

O =

[
0 A
−βI (1 + β)A

]
(15)

The results in Section 2 show that we can accelerate
the sequence zk = (xk, yk) if the solution to the min-
max problem (11) defined over the numerical range of
the operator O is bounded.

4.1.2 Numerical Range

We can compute the numerical range of the operator
O using the techniques described in Section (2). In
the particular case of Nesterov’s accelerated gradient
method, the numerical range is a convex hull of ellip-
soids. We show this by considering the 2×2 operators
obtained by replacing the symmetric positive matrix
A with its eigenvalues, to form

Oj =

[
0 λj
−βI (1 + β)λj

]
for j ∈ {1, 2, · · · , n} (16)

where 0 < λ1 ≤ λ2 ≤ · · · ≤ λn < 1 are the eigenvalues
of the matrix A. We have the following result (proved
in the supplementary material).

Theorem 4.1 The numerical range of operator
O is given as the convex hull of the numeri-
cal ranges of the operators Oj, i.e. W (O) =
Co{W (O1),W (O2), · · · ,W (On)}.

To minimize the solution of the Chebyshev problem
in (11) and control convergence given the normaliza-
tion constraint p(1) = 1, the point (1, 0) should be out-
side the numerical range. Because the numerical range
is convex and symmetric w.r.t. the real axis (the op-
erator O is real), this means checking if the maximum
real value of the numerical range is less than 1.

For 2×2 matrices, the boundary of the numerical range
is given by an ellipse (Donoghue, 1957), so the numer-
ical range of Nesterov’s accelerated gradient method is
the convex hull of ellipsoids. The ellipse in (Donoghue,
1957) can be determined directly from the entries of
the matrix as in Johnson (1974), with details pro-
vided in Theorem 6.1 of the Supplementary Material.
This allows us to compute the maximum real value of
W (O), as the point of intersection of W (O) with the
real line which can be computed explicitly as,

re(O) = maxRe(W (O)) = max
j
Re(W (Oj))

=
1

2

(
(1 + β)λn +

√
λ2n(1 + β)2 + (λn − β)2

)
where λn = 1− µ

L .

We observe that re(O) is a function of the condition
number of the problem and takes the values in the
interval [0, 2]. Therefore, RNA will only work on Nes-
terov’s accelerated gradient method when re(O) < 1
holds, which implies that the condition number of the
problem κ = L

µ should be less than around 2.5 which
is highly restrictive.

An alternative approach is to use RNA on a sequence
of iterates sampled every few iterations, which is equiv-
alent to using powers of the operator O. We expect
the numerical radius of some power of operator O to be
less than 1 for any conditioning of the problem. This
is because the iterates are converging at an R−linear
rate and so the norm of the power of the operator is de-
creasing at an R−linear rate with the powers. There-
fore, using the property that the numerical radius is
bounded by the norm of the operator we have,

re(Op) = maxRe(W (Op)) ≤ rOp ≤ ‖Op‖ ≤ Cpρp

where rOp is the numerical radius of Op. Figure 3
shows the numerical range of the powers of the op-
erator O for a random matrix BTB with dimension
d = 50. We observe that after some threshold value
for the power p, (1, 0) lies outside the field values corre-
sponding toOp thus guaranteeing that the acceleration
scheme will work. We also observe that the boundaries
of the field values are almost circular for higher powers
p, which is consistent with results on optimal matrices
in (Lewis and Overton, 2018). When the numerical
range is circular, the solution of the Chebyshev prob-
lem is trivially equal to zp so RNA simply picks the
last iterate and does not accelerate convergence.
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Figure 3: Numerical range for the linear operator in
Nesterov’s method, on a random quadratic problem
with dimension 50. Left: Operator O. Right: Various
operator powers Op. The RNA scheme will improve
convergence whenever the point (1, 0) lies outside of
the numerical range of the operator.

The difficulty in performing RNA on Nesterov’s accel-
erated gradient method arises due to the fact that the
iterates can be non-monotonic. The restriction that
1 should be outside the numerical range is necessary
for both non-symmetric and symmetric operators. In
symmetric operators, the numerical range is a line seg-
ment on the real axis and the numerical radius and
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spectral radius are equal, so this restriction is equiva-
lent to having spectral radius less than 1, i.e. having
monotonically converging iterates.

4.2 Chambolle-Pock’s Primal-Dual
Algorithm

Chambolle-Pock is a first-order primal-dual algorithm
used for minimizing composite functions of the form

min
x
hp(x) := f(Ax) + g(x) (17)

where f and g are convex functions and A is a contin-
uous linear map. Optimization problems of this form
arise in e.g. imaging applications like total variation
minimization (see Chambolle and Pock (2016)). The
Fenchel dual of this problem is given by

max
y

hd(y) := −f∗(−y)− g∗(A∗y) (18)

where f∗, g∗ are the convex conjugate functions of f, g
respectively. These problems are primal dual formula-
tions of the general saddle point problem,

min
x

max
y

< Ax, y > +g(x)− f∗(y), (19)

where f∗, g are closed proper functions. Chambolle
and Pock (2011) designed a first-order primal-dual al-
gorithm for solving these problems, where primal-dual
iterates are given by

yk+1 = Proxσf∗(yk + σAx̄k)

xk+1 = Proxτg(xk − τA∗yk+1)

x̄k+1 = xk+1 + θ(xk+1 − xk)

(20)

where σ, τ are the step length parameters, θ ∈ [0, 1] is
the momentum parameter and the proximal mapping
of a function f is defined as

Proxτf (y) = arg min
x

{
‖y − x‖2/(2τ) + f(x)

}
Note that if the proximal mapping of a function is
available then the proximal mapping of the conjugate
of the function can be easily computed using Moreau’s
identity, with

Proxτf (y) + Prox
1/τ
f∗ (y/τ) = y

The optimal strategy for choosing the step length pa-
rameters σ, τ and the momentum parameter θ depend
on the smoothness and strong convexity parameters
of the problem. When f∗ and g are strongly convex
with strong convexity parameters δ and γ respectively
then these parameters are chosen to be constant values
given as

σ =
1

‖A‖

√
γ

δ
τ =

1

‖A‖

√
δ

γ
θ =

(
1 +

2
√
γδ

‖A‖

)−1
(21)

to yield the optimal linear rate of convergence. When
only one of f∗ or g is strongly convex with strong con-
vexity parameter γ, then these parameters are chosen
adaptively at each iteration as

θk = (1 + 2γτk)−1/2 σk+1 = σk/θk τk+1 = τkθk
(22)

to yield the optimal sublinear rate of convergence.

A special case of the primal-dual algorithm with no
momentum term, i.e., θ = 0 in (20) is also known as the
Arrow-Hurwicz method (Mizoguchi (1960)). Although
theoretical complexity bounds for this algorithm are
worse compared to methods including a momentum
term, it is observed experimentally that the perfor-
mance is either on par or sometimes better, when step
length parameters are chosen as above.

We first consider algorithms with no momentum term
and apply RNA to the primal-dual sequence zk =
(yk, xk). We note that, as observed in the Nesterov’s
case, RNA can only be applied on non-symmetric oper-
ators for which the normalization constant 1 is outside
their numerical range. Therefore, the step length pa-
rameters τ, σ should be suitably chosen such that this
condition is satisfied.

4.2.1 Chambolle-Pock’s Operator in the
Quadratic Case

When minimizing smooth strongly convex quadratic
functions where f(Ax) = 1

2‖Ax − b‖2 and g(x) =
µ
2 ‖x‖

2, the proximal operators have closed form so-
lutions. That is

Proxσf∗(y) =
y − σb
1 + σ

and Proxτg(x) =
1

1 + τµ
.

Iterates of the primal-dual algorithm with no momen-
tum term can be written as,

yk+1 =
yk + σAxk − σb

1 + σ
, xk+1 =

xk − τAT yk+1

1 + τµ

Note that the optimal primal and dual solutions sat-
isfy y∗ = Ax∗ − b and x∗ = −1

µ A
T y. This yields the

following operator for iterations

O =

[
I

1+σ
σA
1+σ

τAT

(1+σ)(1+τµ)
I

1+τµ −
τσATA

(1+σ)(1+τµ) .

]
(23)

Note that O is a non-symmetric operator except when
σ = τ

1+τµ , in which case the numerical range is a line
segment on the real axis and the spectral radius is
equal to the numerical radius.

4.2.2 Numerical Range

The numerical range of the operator can be computed
using the techniques described in Section 2. As men-
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tioned earlier, the point 1 should be outside the nu-
merical range for the Chebyshev polynomial to be
bounded. Therefore, using (8), we have, re(O) =

maxRe(W (O)) = λmax

(
O+O∗

2

)
The step length pa-

rameters σ, τ should be chosen such that the above
condition is satisfied. We observe empirically that
there exists a range of values for the step length param-
eters such that re(O) < 1. Figure 6 in the supplemen-
tary material shows the numerical range of operator
O for σ = 4, τ = 1/‖ATA‖ with two different regular-
ization constants and Figure 7 in the supplementary
material shows the regions for which re(Op) ≤ 1 (con-
verging) for different values of σ and τ .

We also consider non-smooth problems in addition to
the smooth strongly convex problems in the numeri-
cal experiments section. While our scheme does not
explicitly handle nonsmoothness but we report some
preliminary empirical results which show the benefits
of RNA.

5 Numerical Results

We now study the performance of our techniques on
several classical applications, e.g. image processing
problems using extrapolation on Chambolle-Pock’s al-
gorithm. We consider two different classes of prob-
lems: smooth strongly convex problems and non-
smooth convex problems.

5.1 Smooth Problems

We consider ridge regression and l2 regularized logis-
tic regression problems which are of the form h(x) :=
f(Ax) + g(x) where f(Ax) = 1

2‖Ax − b‖2 for ridge
regression and f(Ax) =

∑
log(1 + exp(−aTi xbi)) for

logistic regression, and g(x) = µ
2 ‖x‖

2. The following
methods are tested in this experiment.

• GD. Gradient descent, with xk+1 = xk −
1
L∇h(xk), where L is the gradient’s Lipschitz con-
stant.

• Nesterov. Nesterov’s accelerated gradient
method

xk+1 = yk −
1

L
∇h(yk), yk+1 = yk + β(yk − yk−1)

where β =
√
L−√µ√
L+
√
µ

, L is the gradient’s Lipschitz

constant.

• LBFGS. The LBFGS method (Liu and No-
cedal, 1989) xk+1 = xk − αkHk∇h(xk) where
the steplength parameter αk is chosen via Armijo
backtracking line search and the memory param-
eter is chosen to be 10.

• PDGM. The primal-dual gradient method
(Chambolle and Pock, 2011; Mizoguchi, 1960)

yk+1 = Proxσf∗(yk + σAxk)

xk+1 = Proxτg(xk − τA∗yk+1)

where σ = 1
‖A‖
√

µ
δ , τ = 1

‖A‖

√
δ
µ , δ is the strong

convexity parameters of f∗.

• PDGM + Momentum. The primal-dual gra-
dient method with momentum (Chambolle and
Pock, 2011)

yk+1 = Proxσf∗(yk + σAx̄k

xk+1 = Proxτg(xk − τA∗yk+1)

x̄k+1 = xk+1 + θ(xk+1 − xk)

where σ = 1
‖A‖
√

µ
δ , τ = 1

‖A‖

√
δ
µ , θ = 1

1+ 2
√
µδ

‖A‖
, δ

is the strong convexity parameters of f∗.

The Lipschitz constant L is ‖A‖2 + µ for ridge re-

gression and is ‖A‖
2

4 + µ for logistic regression. The
strong convexity parameter δ of the dual function f∗

is 1 for ridge regression and is 4 for logistic regression.
The proximal operators used in the primal - dual algo-
rithms have closed form solutions for ridge regression.
That is, Proxτg(x) = 1

1+τµ and Proxσf∗(y) = y−σb
1+σ .

In logistic regression, the approximate proximal oper-
ator of f∗ is obtained by running Newton’s method
till some tolerance on the accuracy is achieved or a
maximum of 100 iterations is reached. Note that the
dominant cost in computing the gradients or proximal
operators is the cost of computing the matrix vector
products Ax and A∗y which are of the order O(Nd)
and the cost of performing Newton’s method to obtain
the proximal operator is of order N times the maxi-
mum number of iterations t. Therefore, when t < d
one can ignore the additional cost of performing New-
ton’s method.

We use online RNA (described in section 6.2 of supple-
mentary material) on GD, Nesterov and PDGM with
a fixed window size m = 10 and set λ = 10−8‖RTR‖2.
As discussed in Section 4, RNA can be applied only
with specific choices of the step-length parameters in
the case of primal-dual methods. In the case of smooth
problems, we observe that the choice τ = 1

‖A‖ and

σ = 1
‖A‖ yields stability for applying RNA on PDGM.

We note this choice is not an optimal choice and one
can improve the results by suitably tuning these pa-
rameters.

Figure 4 in the supplementary material shows the per-
formance of different variants of the primal-dual al-
gorithms on ridge regression problems for two differ-
ent regularization constants. We observe that there
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is no significant difference in the performance of the
method with the momentum term (θ) as compared
to the one with no momentum term. We also ob-
serve that although the choice of the steplength param-
eters mentioned above have consistent performance
across different problems, the improvements obtained
with RNA are not very significant. However, choos-
ing σ = τ = 1/‖A‖ and applying RNA to the PDGM
has consistently outperformed all other variants. This
is in consistent with theoretical observations made in
Section 4 that one can find optimal steplength param-
eters for which RNA is stable and obtains the optimal
performance. Additional results corresponding to dif-
ferent algorithms on logistic and ridge regression prob-
lems are given in section 6.5 of the supplementary ma-
terial.

We also compare the performance of offline, restart
(Scieur et al., 2016) and online versions of RNA on
primal-dual gradient methods in Figure 5 of the sup-
plementary material. We observe that the improve-
ment in the performance is more pronounced in the
online version (where the algorithm is restarted at each
iteration) of RNA as compared to the offline version.

5.2 Non-Smooth Problems

We consider denoising an image that is degraded by
Gaussian noise using total variation. We refer the
reader to Chambolle and Pock (2016) for details about
the total variation models. The optimization problem
is given as,

min
x
‖∇x‖1 + µ‖x− b‖2/2

where, ‖∇x‖1 =
∑
i,j

√
((∇x)1i,j)

2 + ((∇x)2i,j)
2 and b

is a 256 by 256 noisy input image. This optimization
problem is in the form (17) with f(∇x) = ‖∇x‖1 and
g(x) = µ

2 ‖x − b‖
2. The gradient operator ∇x is dis-

cretized by forward differencing (see Chambolle and
Pock (2011)). The convex conjugate of f is an indica-
tor function of the convex set P where,

P = {p : ‖p‖∞ ≤ 1}, |p‖∞ = max
i,j

√
(p1i,j)

2 + (p2i,j)
2

and so the proximal operator is a point wise projection
on to this set, so Proxσf∗(p)i,j = pi,j/max(1, |pi,j |).

We compare the performance of the two variants of
primal-dual methods with RNA for two different noise
levels ζ with two different regularization constants µ.
The step-length parameters are chosen adaptively at
each iteration as follows:

• PDGM

θ̂k = (1+2γτk)−1/2 σk+1 = σk/θ̂k τk+1 = τkθ̂k

with γ = 0.2µ, θ = 0, τ0 = 0.02, σ0 = 4
τ0‖∇‖2

• PDGM + Momentum as above with γ = 0.7µ
and σ0 = τ0 = 1/‖∇‖

with ‖∇‖2 = 8. These adaptive choices are the stan-
dard choices used in the literature and yield the opti-
mal theoretical convergence rates for the momentum
variants. We note that these parameters are not care-
fully fine-tuned to give the best performance for each
variant but are chosen based on some simple observa-
tions. We used the offline RNA instead of online RNA
as we consistently observed that the offline RNA is
more robust in the high accuracy regime and the on-
line variants needed some stability inducing techniques
like line searches. Moreover, for the online RNA, the
improvement in the performance on these non-smooth
problems is small and so the additional cost of solving
the linear system is not well justified. Results showing
the number of iterations required to achieve different
accuracy levels on image denoising problem are given
in Table 1 of the supplementary material. We observe
that the offline RNA variant of PDGM method consis-
tently outperformed PDGM and its momentum vari-
ant.
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