
Infinite Task Learning in RKHSs

SUPPLEMENTARY MATERIAL
Acronyms

CSC Cost-Sensitive Classification
DLSE Density Level-Set Estimation
e. g. exempli gratia
∞-CSC Infinite Cost-Sensitive Classification
i. e. id est
i. i. d. independent identically distributed
ITL Infinite Task Learning
L-BFGS-B Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm for Bound con-

straind optimization
MC Monte-Carlo
MTL Multi-Task Learning
OCSVM One-Class Support Vector Machine
OVK Operator-Valued Kernel
PTL Parametric Task Learning
QMC Quasi Monte Carlo
QR Quantile Regression
RKHS Reproducing Kernel Hilbert Space
r. v. random variable
vv-RKHS Vector-Valued Reproducing Kernel Hilbert Space
w. r. t. with respect to

Below we provide the proofs of the results stated in the main part of the paper.

S.7 Quantile Regression

Let us recall the expression of the pinball loss (see Fig. S.3):

(18)vθ : (y, y ′) ∈ R2 #→ max (θ(y− y ′), (θ− 1)(y− y ′)) ∈ R.

Proposition S.7.1. Let X, Y be two random variables (r. v.s) respectively taking values in X and R, and
q:X → F([0, 1],R) the associated conditional quantile function. Let µ be a positive measure on [0, 1] such
that

∫1
0 E [vθ (Y, q(X)(θ))] dµ(θ) < ∞. Then for ∀h ∈ F (X; F ([0, 1] ; R))

R(h) − R(q) ! 0,

where R is the risk defined in Eq. (6).

Proof. The proof is based on the one given in (Li et al., 2007) for a single quantile. Let f ∈ F (X; F ([0, 1] ; R)),
θ ∈ (0, 1) and (x, y) ∈ X× R. Let also

s =

⎧
⎨

⎩
1 if y " f(x)(θ)
0 otherwise

, t =

⎧
⎨

⎩
1 if y " q(x)(θ)
0 otherwise

.

Romain Brault, Alex Lambert, Zoltán Szabó, Maxime Sangnier, Florence d’Alché-Buc

It holds that

vθ(y, h(x)(θ)) − vθ(y, q(x)(θ)) = θ(1 − s)(y− h(x)(θ)) + (θ− 1)s(y− h(x)(θ))
− θ(1 − t)(y− q(x)(θ)) − (θ− 1)t(y− q(x)(θ))

= θ(1 − t)(q(x)(θ) − h(x)(θ)) + θ((1 − t) − (1 − s))h(x)(θ)
+ (θ− 1)t(q(x)(θ− h(x)(θ))) + (θ− 1)(t− s)h(x)(θ) + (t− s)y

= (θ− t)(q(x)(θ) − h(x)(θ)) + (t− s)(y− h(x)(θ)).

Then, notice that

E[(θ− t)(q(X)(θ) − h(X)(θ))] = E[E[(θ− t)(q(X)(θ) − h(X)(θ))]|X] = E[E[(θ− t)|X](q(X)(θ) − h(X)(θ))]

and since q is the true quantile function,

E[t|X] = E[1{Y!q(X)(θ)}|X] = P[Y " q(X)(θ)|X] = θ,

so

E[(θ− t)(q(X)(θ) − h(X)(θ))] = 0.

Moreover, (t− s) is negative when q(x)(θ) " y " h(x)(θ), positive when h(x)(θ) " y " q(x)(θ) and 0 otherwise,
thus the quantity (t− s)(y− h(x)(θ)) is always positive. As a consequence,

R(h) − R(q) =
∫

[0,1]
E[vθ(Y, h(X)(θ)) − vθ(Y, q(X)(θ))]dµ(θ) ! 0

which concludes the proof.

The Proposition S.7.1 allows

θ− 1
θ

y− h(x)

vθ(y, h(x))

Figure S.3: Pinball loss for θ = 0.8.

us to derive conditions under
which the minimization of the
risk above yields the true quan-
tile function. Under the as-
sumption that (i) q is contin-
uous (as seen as a function of
two variables), (ii) Supp(µ) =
[0, 1], then the minimization of
the integrated pinball loss per-
formed in the space of continu-

ous functions yields the true quantile function on the support of PX,Y .

S.8 Representer Propositions

Proof of Proposition 3.1. First notice that

J : h ∈ HK #→ 1
n

n∑

i=1

m∑

j=1
wjv(θj, yi, h(xi)(θj)) + λ

2∥h∥
2
HK

∈ R (19)

is a proper lower semicontinuous strictly convex function (Bauschke et al., 2011, Corollary 9.4), hence J admits
a unique minimizer h∗ ∈ HK (Bauschke et al., 2011, Corollary 11.17). Let

(20)U = span
{

(K(·, xi)kΘ(·,θj))n,m
i,j=1

∣∣ ∀xi ∈ X, ∀θj ∈ Θ
}
⊂ HK.

Infinite Task Learning in RKHSs

Then U is a finite-dimensional subspace of HK, thus closed in HK, and it holds that U⊕U⊥ = HK, so h∗ can be
decomposed as h∗ = h∗

U + h∗
U⊥ with h∗

U ∈ U and h∗
U⊥ ∈ U⊥. Moreover, for all 1 " i " n and 1 " j " m,

h∗
U⊥(xi)(θj) = ⟨h∗

U⊥(xi), kΘ(·,θj)⟩HkΘ
= ⟨h∗

U⊥ , K(·, xi)kΘ(·, θj)⟩HK = 0,

so J(h∗) = J(h∗
U) + λ

∥∥h∗
U⊥

∥∥2
HK

. However h∗ is the minimizer of J, therefore h∗
U⊥ = 0 and there exist (αij)

n,m
i,j=1

such that ∀x,θ ∈ X× Θ, h∗(x)(θ) =
∑n,m

i,j=1 αijkX(x, xi)kΘ(θ,θj).

Derivative shapes constraints: Reminder: for a function h of one variable, we denote ∂h the derivative
of h. For a function k(θ,θ ′) of two variables we denote ∂1k the derivative of k with respect to θ and ∂2k the
derivative of k with respect to θ ′. From Zhou (2008), notice that if f ∈ Hk, where Hk is a scalar-valued RKHS
on a compact subset Θ of Rd, and k ∈ C2(Θ × Θ) (in the sense of Ziemer (2012)) then ∂f ∈ Hk. Hence if one
add a new term of the form:

λnc

n∑

i =1

m∑

j =1
Ωnc ((∂ [h(xi)]) (θj)) = λnc

n∑

i=1

m∑

j=1
Ωnc ((∂h(xi))(θj))

where g is a strictly monotonically increasing function and λnc > 0, a new representer theorem can be obtained
by constructing the new set

U = span
{

(K(·, xi)kΘ(·, θj))n,m
i,j=1

∣∣ ∀xi ∈ X, ∀θj ∈ Θ
}
∪
{

(K(·, xi)(∂2kΘ)(·,θj))n,m
i,j=1

∣∣ ∀xi ∈ X, ∀θj ∈ Θ
}
⊂HK.

The proof is the same as Proposition 3.1 with the new set U to obtain the expansion h(x)(θ) =∑n
i=1

∑m
j=1 αijkX(x, xi)kΘ(θ,θj) + βijk(x, xi)(∂2kΘ)(θ,θj). For the regularization notice that for a symmet-

ric function (∂1k)(θ,θ ′) = (∂2k)(θ ′, θ). Hence ⟨(∂1k)(·, θ ′), k(·, θ)⟩Hk = ⟨k(·,θ ′), (∂2k)(·, θ)⟩Hk and (∂kθ′)(θ) =
(∂∗kθ)(θ ′) and

∥h∥2
HK

= ⟨h, h⟩HK

=
n∑

i=1

m∑

j=1

n∑

i′=1

m∑

j′=1
αijαi′j′kX(xi, xi′)kΘ(θj, θj′) + αijβi′j′kX(xi, xi′)(∂2kΘ)(θj, θj′)

+ αi′j′βijkX(xi, xi′)(∂1kΘ)(θj, θj′) + βijβi′j′kX(xi, xi′)(∂1∂2kΘ)(θj, θj′)

Eventually (∂h(x))(θ) =
∑n

i=1
∑m

j=1 αijkX(x, xi)(∂1kΘ)(θ,θj) + βijk(x, xi)(∂1∂2kΘ)(θ,θj).

To prove Proposition 3.2, the following lemmas are useful.
Lemma S.8.1. (Carmeli et al., 2010) Let kX : X × X → R, kΘ : Θ × Θ → R be two scalar-valued kernels
and K(θ ′, θ) = kΘ(θ,θ ′)IHkX

. Then HK is isometric to HkX
⊗ HkΘ by means of the isometry W : f ⊗ g ∈

HkX
⊗HkΘ #→ (θ #→ g(θ)f) ∈ HK.

Remark 1. Given kX : X× X → R, kΘ : Θ × Θ → R two scalar-valued kernels, we define K : (x, z) ∈ X× X #→
kX(x, z)IHkΘ

∈ L(HkΘ), K ′ : (θ,θ ′) ∈ Θ × Θ #→ kΘ(θ,θ ′)IHkX
∈ L(HkX

). Lemma S.8.1 allows us to say that
HK and HK′ are isometric by means of the isometry

W : h ∈ HK′ #→ (x #→ (θ #→ h(θ)(x))) ∈ HK. (21)

Lemma S.8.2. Let kX : X×X → R, kΘ : Θ×Θ → R be two scalar-valued kernels and K : (θ,θ ′) #→ kΘ(θ,θ ′)IHkX
.

For θ ∈ Θ, define Kθ : f ∈ HkX
#→ (θ ′ #→ K(θ ′, θ)f) ∈ HK. It is easy to see that K∗

θ is the evaluation operator
K∗
θ : h ∈ HK #→ h(θ) ∈ HkX

. Then ∀m ∈ N∗, ∀(θj)mj=1 ∈ Θm,

(22)
(
+m

j=1 Im (Kθj)
)
⊕
(
∩m
j=1 Ker (K∗

θj
)
)

= HK

Romain Brault, Alex Lambert, Zoltán Szabó, Maxime Sangnier, Florence d’Alché-Buc

Proof. The statement boils down to proving that V :=
(

+m
j=1 Im (Kθj)

)
is closed in HK, since it is straightforward

that V⊥ =
(
∩m
j=1 Ker

(
K∗
θj

))
. Let (ej)

k
j=1 be an orthonormal basis of span

{
(kΘ(·, θj))mj=1

}
⊂ HkΘ . Such

basis can be obtained by applying the Gram-Schmidt orthonormalization method to (kΘ(·,θj))mj=1. Then, V =
span { ej · f, 1 " j " k, f ∈ HkX

}. Notice also that 1 " j, l " k, ∀f, g ∈ HkX
,

(23)⟨ej · f, el · g⟩HK = ⟨ej, el⟩HkΘ
· ⟨f, g⟩HkX

Let (hn)n∈N∗ be a sequence in V converging to some h ∈ HK. By definition, one can find sequences
(f1,n)n∈N∗ , . . . , (fk,n)n∈N∗ ∈ HkX

such that ∀n ∈ N∗, hn =
∑k

j=1 ej · fn,j. Let p, q ∈ N∗. It holds
that, using the orthonormal property of (ej)

k
j=1 and Eq. (23), ∥hp − hq∥2

HK
=
∥∥∥
∑k

j=1 ej(fj,p − fj,q)
∥∥∥

2

HK

=
∑k

j=1∥fj,p − fj,q∥2
HkX

. (hn)n∈N∗ being convergent, it is a Cauchy sequence, thus so are the sequences (fj,n)n∈N∗ .
But HkX

is a complete space, so these sequences are convergent in HkX
, and by denoting fj = limn→∞ fj,n, one

gets h =
∑k

j=1 ek · fj. Therefore h ∈ V, V is closed and the orthogonal decomposition Eq. (22) holds.

Lemma S.8.3. Let kX, kΘ be two scalar kernels and K : (θ,θ ′) #→ kΘ(θ,θ ′)IHkX
. Let also m ∈ N∗ and

(θj)mj=1 ∈ Θm, and V =
(

+m
j=1 Im (Kθj)

)
. Then I : V → R defined as I(h) =

∑m
j=1∥h(θj)∥2

HkX
is coercive.

Proof. Notice first that if there exists θj such that kΘ(θj,θj) = 0, then Im (Kθj) = 0, so without loss of
generality, we assume that kΘ(θj, θj) > 0 (1 " j " m). Notice that I is the quadratic form associated to
the L : HK → HK linear mapping L(h) =

∑m
j=1 KθjK

∗
θj

. Indeed, ∀h ∈ V, I(h) =
∑m

j=1⟨K∗
θj
h,K∗

θj
h⟩HkX

=∑m
j=1⟨h,KθjK

∗
θj
h⟩HK = ⟨h, Lh⟩HK . Moreover, ∀1 " j " m, KθjK

∗
θj

has the same eigenvalues as K∗
θj
Kθj , and

∀f ∈ HkX
, K∗
θj
Kθjf = kΘ(θj, θj)f, so that the only possible eigenvalue is kΘ(θj, θj). Let h ∈ V, h ̸= 0. Because of

the Eq. (22), h cannot be simultaneously in all Ker (K∗
θj

), and there exists i0 such that I(h) ! kΘ(θi0 , θi0)∥h∥2
HK

.
Let γ = min

1!j!m
kΘ(θj, θj). By assumption γ > 0, and it holds that ∀h ∈ V, I(h) ! γ∥h∥2

HK
, which proves the

coercivity of I.

Proof of Proposition 3.2. Let K : (x, z) ∈ X × X #→ kX(x, z)IHkΘ
∈ L(HkΘ), K ′ : (θ,θ ′) ∈ Θ × Θ #→

kΘ(θ,θ ′)IHkX
∈ L(HkX

), and define

J:

⎧
⎪⎪⎨

⎪⎪⎩

HK ×Hkb → R

(h, t) #→ 1
n

n,m∑

i,j=1

wj

θj
|t(θj) − h(xi)(θj)|+ +

m∑

j=1
wj

(
∥h(·)(θj)∥2

HkX
− t(θj)

)
+ λ

2∥t∥
2
Hkb

.

Let V = W
(

+m
j=1 Im (K ′

θj
)
)

where W:HK′ → HK is defined in Eq. (21). Since W is an isometry, thanks
to Eq. (22), it holds that V ⊕ V⊥ = HK. Let (h, t) ∈ HK × Hkb , there exists unique hV⊥ ∈ V⊥, hV ∈
V such that h = hV + hV⊥ . Notice that J(h, t) = J(hV + hV⊥ , t) = J(hV, t) since ∀1 " j " m, ∀x ∈ X,
hV⊥(x)(θj) = W−1hV⊥(θj)(x) = 0. Moreover, J is bounded by below so that its infinimum is well-defined, and

inf
(h,t)∈HK×Hkb

J(h, t) = inf
(h,t)∈V×Hkb

J(h, t). Finally, notice that J is coercive on V×Hkb endowed with the sum of

the norm (which makes it a Hilbert space): if (hn, tn)n∈N∗ ∈ V×Hkb is such that ∥hn∥HK
+∥tn∥Hkb

→
n→∞

+∞,
then either (∥hn∥HK

)n∈N or (∥tn∥Hkb
)n∈N has to diverge :

• If ∥tn∥Hkb
→

n→∞
+∞, since tn(θj) = ⟨tn, kb(·, θj)⟩Hkb

" kb(θj, θj)∥tn∥Hkb
" κb∥tn∥Hkb

(∀1 " j " m),
then J(hn, tn) ! λ

2 ∥tn∥
2
Hkb

−
∑m

j=1 wjt(θj) →
n→∞

+∞.

• If ∥hn∥HK
→

n→∞
+∞, according to Lemma S.8.3, J(hn, tn) →

n→∞
+∞ as long as all wj are strictly positive.

Infinite Task Learning in RKHSs

Thus J is coercive, so that (Bauschke et al., 2011, Proposition 11.15) allows to conclude that J has a minimizer
(h∗, t∗) on V × Hkb . Then, in the same fashion as Eq. (20), define U1 = span

{
(K(·, xi)kΘ(·,θj))n,m

i,j=1

}
⊂ V

and U2 = span
{

(kb(·, θj))mj=1

}
⊂ Hkb , and use the reproducing property to show that (h∗, t∗) ∈ U1 × U2, so

that there there exist (αij)
n,m
i,j=1 and (βj)

m
j=1 such that ∀x,θ ∈ X × Θ, h∗(x)(θ) =

∑n,m
i,j=1 αijkX(x, xi)kθ(θ,θj),

t∗(θ) =
∑m

j=1 βjkb(θ,θj).

S.9 Generalization error in the context of stability

The analysis of the generalization error will be performed using the notion of uniform stability introduced in
(Bousquet et al., 2002). For a derivation of generalization bounds in vv-RKHS, we refer to (kadri2016operator).
In their framework, the goal is to minimize a risk which can be expressed as

(24)RS,λ(h) = 1
n

n∑

i=1
ℓ(yi, h, xi) + λ∥h∥2

HK
,

where S = ((x1, y1), . . . , (xn, yn)) are i. i. d. inputs and λ > 0. We almost recover their setting by using losses
defined as

ℓ:

⎧
⎨

⎩
R×HK × X → R

(y, h, x) #→ Ṽ(y, f(x)),

where Ṽ is a loss associated to some local cost defined in Eq. (8). Then, they study the stability of the algorithm
which, given a dataset S, returns

(25)h∗
S = arg min

h∈HK

RS,λ(h).

There is a slight difference between their setting and ours, since they use losses defined for some y in the output
space of the vv-RKHS, but this difference has no impact on the validity of the proofs in our case. The use
of their theorem requires some assumption that are listed below. We recall the shape of the OVK we use :
K : (x, z) ∈ X×X #→ kX(x, z)IHkΘ

∈ L(HkΘ), where kX and kΘ are both bounded scalar-valued kernels, in other
words there exist (κX, κΘ) ∈ R2 such that sup

x∈X
kX(x, x) < κ2

X and sup
θ∈Θ

kΘ(θ,θ) < κ2
Θ.

Assumption 1. ∃κ > 0 such that ∀x ∈ X, ∥K(x, x)∥L(HkΘ) " κ2.
Assumption 2. ∀h1, h2 ∈ HkΘ , the function (x1, x2) ∈ X× X #→ ⟨K(x1, x2)h1, h2⟩HkΘ

∈ R, is measurable.
Remark 2. Assumptions 1, 2 are satisfied for our choice of kernel.
Assumption 3. The application (y, h, x) #→ ℓ(y, h, x) is σ-admissible, i. e. convex with respect to f and Lipschitz
continuous with respect to f(x), with σ as its Lipschitz constant.
Assumption 4. ∃ξ ! 0 such that ∀(x, y) ∈ X× Y and ∀S training set, ℓ(y, h∗

S, x) " ξ.
Definition S.9.1. Let S = ((xi, yi))ni=1 be the training data. We call Si the training data Si =
((x1, y1), . . . , (xi−1, yi−1), (xi+1, yi+1), . . . , (xn, yn)), 1 " i " n.
Definition S.9.2. A learning algorithm mapping a dataset S to a function h∗

S is said to be β-uniformly stable
with respect to the loss function ℓ if ∀n ! 1, ∀1 " i " n, ∀S training set, ||ℓ(·, h∗

S, ·) − ℓ(·, h∗
Si , ·)||∞" β.

Proposition S.9.1. (Bousquet et al., 2002) Let S #→ h∗
S be a learning algorithm with uniform stability β with

respect to a loss ℓ satisfying Assumption 4. Then ∀n ! 1, ∀δ ∈ (0, 1), with probability at least 1 − δ on the
drawing of the samples, it holds that

R(h∗
S) " RS(h∗

S) + 2β+ (4β+ ξ)
√

log (1/δ)
n

.

Proposition S.9.2. (kadri2016operator) Under assumptions 1, 2, 3, a learning algorithm that maps a
training set S to the function h∗

S defined in Eq. (25) is β-stable with β = σ2κ2

2λn .

Romain Brault, Alex Lambert, Zoltán Szabó, Maxime Sangnier, Florence d’Alché-Buc

S.9.1 Quantile Regression

We recall that in this setting, v(θ, y, h(x)(θ)) = max (θ(y− h(x)(θ)), (1 − θ)(y− h(x)(θ))) and the loss is

(26)ℓ:

⎧
⎨

⎩
R×HK × X → R

(y, h, x) #→ 1
m

∑m
j=1 max (θj(y− h(x)(θj)), (θj − 1)(y− h(x)(θj))).

Moreover, we will assume that |Y| is bounded by B ∈ R as a r. v.. We will therefore verify the hypothesis for
y ∈ [−B,B] and not y ∈ R.
Lemma S.9.3. In the case of the QR, the loss ℓ is σ-admissible with σ = 2κΘ.

Proof. Let h1, h2 ∈ HK and θ ∈ [0, 1]. ∀x, y ∈ X× R, it holds that

v(θ, y, h1(x)(θ)) − v(θ, y, h2(x)(θ)) = (θ− t)(h2(x)(θ) − h1(x)(θ)) + (t− s)(y− h1(x)(θ)),

where s = 1y!h1(x)(θ) and t = 1y!h2(x)(θ). We consider all possible cases for t and s :
• t = s = 0 : |(t− s)(y− h1(x)(θ))|" |h2(x)(θ) − h1(x)(θ)|
• t = s = 1 : |(t− s)(y− h1(x)(θ))|" |h2(x)(θ) − h1(x)(θ)|
• s = 1,t = 0 : |(t− s)(y− h1(x)(θ))|= |h1(x)(θ) − y|" |h1(x)(θ) − h2(x)(θ)|
• s = 0,t = 1 : |(t− s)(y− h1(x)(θ))|= |y− h1(x)(θ)|" |h1(x)(θ) − h2(x)(θ)| because of the conditions on t, s.

Thus |v(θ, y, h1(x)(θ)) − v(θ, y, h2(x)(θ))|" (θ + 1)|h1(x)(θ) − h2(x)(θ)|" (θ + 1)κΘ||h1(x) − h2(x)||HkΘ
. By

summing this expression over the (θj)mj=1, we get that

|ℓ(x, h1, y) − ℓ(x, h2, y)|" 1
m

m∑

j=1
(θj + 1)κΘ||h1(x) − h2(x)||HkΘ

" 2κΘ||h1(x) − h2(x)||HkΘ

and ℓ is σ-admissible with σ = 2κΘ.

Lemma S.9.4. Let S = ((x1, y1), . . . , (xn, yn)) be a training set and λ > 0. Then ∀x,θ ∈ X × (0, 1), it holds
that |h∗

S(x)(θ)|" κXκΘ

√
B
λ .

Proof. Since h∗
S is the output of our algorithm and 0 ∈ HK, it holds that

λ||h∗
S||

2 " 1
nm

n∑

i=1

m∑

j=1
v(θj, yi, 0) " 1

nm

n∑

i=1

m∑

j=1
max (θj, 1 − θj)|yi|" B.

Thus ||h∗
S||"

√
B
λ . Moreover, ∀x,θ ∈ X × (0, 1), |h∗

S(x)(θ)|= |⟨h∗
S(x), kΘ(θ, ·)⟩HkΘ

|" ||h∗
S(x)||HkΘ

κΘ "
||h∗

S||HkΘ
κXκΘ which concludes the proof.

Lemma S.9.5. Assumption 4 is satisfied for ξ = 2
(
B + κXκΘ

√
B
λ

)
.

Proof. Let S = ((x1, y1), . . . , (xn, yn)) be a training set and h∗
S be the output of our algorithm. ∀(x, y) ∈

X× [−B,B], it holds that

ℓ(y, h∗
S, x) = 1

m

m∑

j=1
max (θj(y− h∗

S(x)(θj)), (θj − 1)(y− h∗
S(x)(θj))) "

2
m

m∑

j=1
|y− h∗

S(x)(θj)|

" 2
m

m∑

j=1
|y|+|h∗

S(x)(θj)|" 2
(

B + κXκΘ

√
B

λ

)

.

Infinite Task Learning in RKHSs

Corollary S.9.6. The QR learning algorithm defined in Eq. (10) is such that ∀n ! 1, ∀δ ∈ (0, 1), with
probability at least 1 − δ on the drawing of the samples, it holds that

(27)R̃(h∗
S) " R̃S(h∗

S) + 4κ2
Xκ

2
Θ

λn
+
[

8κ2
Xκ

2
Θ

λn
+ 2

(

B + κXκΘ

√
B

λ

)]√
log (1/δ)

n
.

Proof. This is a direct consequence of Proposition S.9.2, Proposition S.9.1, Lemma S.9.3 and Lemma S.9.5.

Definition S.9.3 (Hardy-Krause variation). Let Π be the set of subdivisions of the interval Θ = [0, 1]. A
subdivision will be denoted σ = (θ1, θ2, . . . , θp) and f: Θ → R be a function. We call Hardy-Krause variation of
the function f the quantity sup

σ∈Π

∑p−1
i=1 |f(θi+1) − f(θi)|.

Remark 3. If f is continuous, V(f) is also the limit as the mesh of σ goes to zero of the above quantity.

In the following, let f: θ #→ EX,Y [v(θ, Y, h∗
S(X)(θ))]. This function is of primary importance for our analysis, since

in the Quasi Monte-Carlo setting, the bound of Proposition 4.1 makes sense only if the function f has finite
Hardy-Krause variation, which is the focus of the following lemma.
Lemma S.9.7. Assume the boundeness of both scalar kernels kXand kΘ. Assume moreover that kΘ is C1 and
that its partial derivatives are uniformly bounded by some constant C. Then

V(f) " B + κXκΘ

√
B

λ
+ 2κX

√
2BC
λ

. (28)

Proof. It holds that

sup
σ ∈Π

p−1∑

i =1
|f(θi+1) − f(θi)| = sup

σ∈Π

p−1∑

i=1

∣∣∣∣
∫
v(θi+1, y, h

∗
S(x)(θi+1))dPX,Y −

∫
v(θi, y, h∗

S(x)(θi))dPX,Y

∣∣∣∣

= sup
σ∈Π

p−1∑

i=1

∣∣∣∣
∫
v(θi+1, y, h

∗
S(x)(θi+1)) − v(θi, y, h∗

S(x)(θi))dPX,Y

∣∣∣∣

" sup
σ∈Π

p−1∑

i=1

∫
|v(θi+1, y, h

∗
S(x)(θi+1)) − v(θi, y, h∗

S(x)(θi))|dPX,Y

" sup
σ∈Π

∫ p−1∑

i=1
|v(θi+1, y, h

∗
S(x)(θi+1)) − v(θi, y, h∗

S(x)(θi))|dPX,Y .

The supremum of the integral is smaller than the integral of the supremum, as such

(29)V(f) "
∫
V(fx,y)dPX,Y ,

where fx,y: θ #→ v(θ, y, h∗
S(x)(θ)) is the counterpart of the function f at point (x, y). To bound this quantity,

let us first bound locally V(fx,y). To that extent, we fix some (x, y) in the following. Since fx,y is continuous
(because kΘ is C1), then using Choquet (1969, Theorem 24.6), it holds that

V(fx,y) = lim
|σ|→0

p−1∑

i=1
|fx,y(θi+1) − fx,y(θi)|.

Moreover since k ∈ C1 and ∂kθ = (∂1k)(·, θ) has a finite number of zeros for all θ ∈ ×, one can assume that
in the subdivision considered afterhand all the zeros (in θ) of the residuals y − h∗

S(x)(θ) are present, so that
y − h∗

S(x)(θi+1) and y − h∗
S(x)(θi) are always of the same sign. Indeed, if not, create a new, finer subdivision

Romain Brault, Alex Lambert, Zoltán Szabó, Maxime Sangnier, Florence d’Alché-Buc

with this property and work with this one. Let us begin the proper calculation: let σ = (θ1,θ2, . . . , θp) be a
subdivision of Θ, it holds that ∀i ∈ { 1, . . . , p− 1 }:

|fx,y(θi+1) − fx,y(θi)| = |max (θi+1(y− h∗
S(x)(θi+1)), (1 − θi+1)(y− h∗

S(x)(θi+1)))
− max (θi(y− h∗

S(x)(θi)), (1 − θi+1)(y− h∗
S(x)(θi)))|.

We now study the two possible outcomes for the residuals:

• If y− h(x)(θi+1) ! 0 and y− h(x)(θi) ! 0 then

|fx,y(θi+1) − fx,y(θi)| = |θi+1(y− h∗
S(x)(θi+1)) − θi(y− h∗

S(x)(θi))|
= |(θi+1 − θi)y + (θi − θi+1)h∗

S(x)(θi+1) + θi(h∗
S(x)(θi) − h∗

S(x)(θi+1))|
" |(θi+1 − θi)y|+|(θi − θi+1)h∗

S(x)(θi+1)|+|θi(h∗
S(x)(θi) − h∗

S(x)(θi+1))|.

From Lemma S.9.4, it holds that h∗
S(x)(θi+1) " κXκΘ

√
B
λ . Moreover,

|h∗
S(x)(θi) − h∗

S(x)(θi+1)| =
∣∣∣⟨h(x), kΘ(θi, ·) − kΘ(θi+1, ·)⟩HkΘ

∣∣∣
" ∥h(x)∥HkΘ

∥kΘ(θi, ·) − kΘ(θi+1, ·)∥HkΘ

" κX
√

B

λ

√
|kΘ(θi, θi) + kΘ(θi+1,θi+1) − 2kΘ(θi+1, θi)|

" κX
√

B

λ

(√
|kΘ(θi+1, θi+1) − kΘ(θi+1,θi)|+

√
|kΘ(θi, θi) − kΘ(θi+1,θi)|

)
.

Since kΘ is C1, with partial derivatives uniformly bounded by C, |kΘ(θi+1,θi+1) − kΘ(θi+1, θi)| " C(θi+1 −

θi) and |kΘ(θi,θi) − kΘ(θi+1, θi)| " C(θi+1 − θi) so that |h∗
S(x)(θi) − h∗

S(x)(θi+1)| " κX
√

2BC
λ

√
θi+1 − θi

and overall

|fx,y(θi+1) − fx,y(θi)| "
(

B + κXκΘ

√
B

λ

)

(θi+1 − θi) + κX
√

2BC
λ

√
θi+1 − θi.

• If y − h(x)(θi+1) " 0 and y − h(x)(θi) " 0 then |fx,y(θi+1) − fx,y(θi)| =
|(1 − θi+1)(y− h∗

S(x)(θi+1)) − (1 − θi)(y− h∗
S(x)(θi))| " |h∗

S(x)(θi) − h∗
S(x)(θi+1)| + |(θi+1 − θi)y| +

|(θi − θi+1)h∗
S(x)(θi+1)| + |θi(h∗

S(x)(θi) − h∗
S(x)(θi+1))| so that with similar arguments one gets

(30)|fx,y(θi+1) − fx,y(θi)| "
(

B + κXκΘ

√
B

λ

)

(θi+1 − θi) + 2κX
√

2BC
λ

√
θi+1 − θi.

Therefore, regardless of the sign of the residuals y − h(x)(θi+1) and y − h(x)(θi), one gets Eq. (30). Since the
square root function has Hardy-Kraus variation of 1 on the interval Θ = [0, 1], it holds that

sup
σ∈Π

p−1∑

i =1
|fx,y(θi+1) − fx,y(θi)|" B + κXκΘ

√
B

λ
+ 2κX

√
2BC
λ

.

Combining this with Eq. (29) finally gives

V(f) " B + κXκΘ

√
B

λ
+ 2κX

√
2BC
λ

.

Infinite Task Learning in RKHSs

Lemma S.9.8. Let R be the risk defined in Eq. (6) for the quantile regression problem. Assume that (θ)mj=1 have
been generated via the Sobol sequence and that kΘ is C1 and that its partial derivatives are uniformly bounded by
some constant C. Then

|R(h∗
S) − R̃(h∗

S)|"
(

B + κXκΘ

√
B

λ
+ 2κX

√
2BC
λ

)
log(m)

m
. (31)

Proof. Let f: θ #→ EX,Y [v(θ, Y, h∗
S(X)(θ))]. It holds that |R(h∗

S)− R̃(h∗
S)|" V(f) log(m)

m according to classical Quasi-
Monte Carlo approximation results, where V(f) is the Hardy-Krause variation of f. Lemma S.9.7 allows then to
conclude.

Proof of Proposition 4.1. Combine Lemma S.9.8 and Corollary S.9.6 to get an asymptotic behaviour as n,m →
∞.

S.9.2 Cost-Sensitive Classification

In this setting, the cost is v(θ, y, h(x)(θ)) =
∣∣θ+1

2 − {−1 }(y)
∣∣|1 − yhθ(x)|+ and the loss is

ℓ:

⎧
⎨

⎩
R×HK × X → R

(y, h, x) #→ 1
m

∑m
j=1

∣∣∣θj+1
2 − {−1 }(y)

∣∣∣
∣∣1 − yhθj(x)

∣∣
+.

It is easy to verify in the same fashion as for QR that the properties above still hold, but with constants σ = κΘ,
β = κ2

Xκ
2
Θ

2λn , ξ = 1 + κXκΘ√
λ

. so that we get analogous properties to QR.
Corollary S.9.9. The CSC learning algorithm defined in Eq. (10) is such that ∀n ! 1, ∀δ ∈ (0, 1), with
probability at least 1 − δ on the drawing of the samples, it holds that

R̃(h∗
S) " R̃S(h∗

S) + κ2
Xκ

2
Θ

λn
+
(2κ2

Xκ
2
Θ

λn
+ 1 + κXκΘ√

λ

)√
log (1/δ)

n
.

S.10 Experimental remarks

We present here more details on the experimental protocol used in the main paper as well as new experiments.

S.10.1 Alternative hyperparameters sampling

Many quadrature rules such as Monte-Carlo (MC) and QMC methods are well suited for Infinite Task Learning.
For instance when Θ is high dimensional, MC is typically prefered over QMC, and vice versa. If Θ is one dimen-
sional and the function to integrate is smooth enough then a Gauss-Legendre quadrature would be preferable.
In Section 3.1 of the main paper we provide a unified notation to handle MC, QMC and other quadrature rules.
In the case of

• MC: wj = 1
m and (θj)mj=1 ∼ µ⊗m.

• QMC: wj = m−1F−1(θj) and (θj)mj=1 is a sequence with values in [0, 1]d such as the Sobol or Halton
sequence, µ is assumed to be absolutely continuous w. r. t. the Lebesgue measure, F is the associated cdf.

• Quadrature rules: ((θj, w ′
j))mj=1 is the indexed set of locations and weights produced by the quadrature rule,

wj = w ′
jfµ(θj), µ is assumed to be absolutely continuous w. r. t. the Lebesgue measure, and fµ denotes its

corresponding probability density function.

Romain Brault, Alex Lambert, Zoltán Szabó, Maxime Sangnier, Florence d’Alché-Buc

0.00 0.25 0.50 0.75 1.00 1.25 1.50
X

�2.5

0.0

2.5

Y
m = 2

0.00 0.25 0.50 0.75 1.00 1.25 1.50
X

�2.5

0.0

2.5

Y

m = 34

0.00 0.25 0.50 0.75 1.00 1.25 1.50
X

�2.5

0.0

2.5

Y

m = 67

0.00 0.25 0.50 0.75 1.00 1.25 1.50
X

�2.5

0.0

2.5

Y

m = 100

Figure S.4: Impact of the number of hyperparameters sampled.

S.10.2 Impact of the number of hyperparameters sampled

In the experiment presented on Fig. S.4, on the sine synthetic benchmark, we draw n = 1000 training points and
study the impact of increasing m on the quality of the quantiles at θ ∈ { 0.05, 0.25, 0.5, 0.75, 0.95 }. We notice
that when m ! 34 ≈

√
1000 there is little benefit to draw more m samples are the quantile curves do not change

on the ntest = 2000 test points.

S.10.3 Smoothifying the cost function

The resulting κ-smoothed (κ ∈ R+) absolute value (ψκ1) and positive part (ψκ+) are as follows:

ψκ1 (p) :=
(
κ|·|#1

2 |·|
2
)

(p) =

⎧
⎨

⎩

1
2κp

2 if |p| " κ
|p|− κ

2 otherwise,

ψκ+(p) :=
(
κ|·|+#

1
2 |·|

2
)

(p) =

⎧
⎨

⎩

1
2κ |p|

2
+ if p " κ

p− κ
2 otherwise.

where # is the classical infimal convolution (Bauschke et al., 2011). All the smoothified loss functions used in
this paper have been gathered in Table S.2.

Remarks
• Minimizing the κ-smoothed pinball loss

vθ,κ(y, h(x)) = |θ− R−(y− h(x))|ψκ1 (y− h(x)),

yields the quantiles when κ→ 0, the expectiles as κ→ +∞. The intermediate values are known as M-quantiles
(Breckling et al., 1988).

• In practice, the absolute value and positive part can be approximated by a smooth function by setting the
smoothing parameter κ to be a small positive value; the optimization showed a robust behaviour w. r. t. this
choice with a random coefficient initialization.

Impact of the Huber loss support The influence of the κ parameter is illustrated in Fig. S.5. For this
experiment, 10000 samples have been generated from the sine wave dataset described in Section 5, and the model

Infinite Task Learning in RKHSs

Table S.2: Examples for objective (8). ψκ1 , ψκ+: κ-smoothed absolute value and positive part. hx(θ) := h(x)(θ).

loss penalty

Quantile
∫

[0,1]

∣∣∣θ− R− (y−hx(θ))
∣∣∣|y−hx(θ)|dµ(θ) λnc

∫
[0,1]

∣∣∣−dhx
dθ (θ)

∣∣∣
+
dµ(θ) + λ

2 ∥h∥2
HK

M-Quantile (smooth)
∫

[0,1]

∣∣∣θ− R− (y−hx(θ))
∣∣∣ψκ

1 (y−hx(θ))dµ(θ) λnc
∫

(0,1)ψ
κ
+
(
−dhx

dθ (θ)
)
dµ(θ) + λ

2 ∥h∥2
HK

Expectiles (smooth)
∫

[0,1]

∣∣∣θ− R− (y−hx(θ))
∣∣∣ (y−hx(θ))2 dµ(θ) λnc

∫
(0,1)

∣∣∣−dhx
dθ (θ)

∣∣∣
2
+
dµ(θ) + λ

2 ∥h∥2
HK

Cost-Sensitive
∫

[−1,1]

∣∣∣∣
θ+ 1

2 − {−1}(y)
∣∣∣∣|1 − yhx(θ)|+dµ(θ) λ

2 ∥h∥2
HK

Cost-Sensitive (smooth)
∫

[−1,1]

∣∣∣∣
θ+ 1

2 − {−1}(y)
∣∣∣∣ψ

κ
+ (1 − yhx(θ))dµ(θ) λ

2 ∥h∥2
HK

Level-Set
∫

[ϵ,1]
−t(θ) + 1

θ
|t(θ) −hx(θ)|+dµ(θ) 1

2

∫

[ϵ,1]
∥h(·)(θ)∥2

HkX
dµ(θ) + λ

2 ∥t∥2
Hkb

have been trained on 100 quantiles generated from a Gauss-Legendre Quadrature. When κ is large the expectiles
are learnt (dashed lines) while when κ is small the quantiles are recovered (the dashed lines on the right plot
match the theoretical quantiles in plain lines). It took 225s (258 iteration, and 289 function evaluations) to train
for κ = 1 · 101, 1313s for κ = 1 · 10−1 (1438 iterations and 1571 function evaluations), 931s for κ = 1e−3 (1169
iterations and 1271 function evaluations) and 879s for κ = 0 (1125 iterations and 1207 function evaluations).
We used a GPU Tensorflow implementation and run the experiments in float64 on a computer equipped with a
GTX 1070, and intel i7 7700 and 16GB of DRAM.

0.00 0.25 0.50 0.75 1.00 1.25 1.50
X

0

5

Y

 = 10.0

0.00 0.25 0.50 0.75 1.00 1.25 1.50
X

0

5

Y

 = 0.1

0.00 0.25 0.50 0.75 1.00 1.25 1.50
X

0

5

Y

 = 0.001

0.00 0.25 0.50 0.75 1.00 1.25 1.50
X

0

5

Y

 = 0

Figure S.5: Impact of the Huber loss smoothing of the pinball loss for differents values of κ.

S.10.4 Experimental protocol for QR

In this section, we give additional details regarding the choices being made while implementing the ITL method
for ∞-QR.

QR real datasets For ∞-QR, kX, kΘ were Gaussian kernels. We set a bias term kb = kΘ. The hyperpa-
rameters optimized were λ, the weight of the ridge penalty, σX, the input kernel parameter, and σΘ = σb, the
output kernel parameter. They were optimized in the (log)space of

[
10−6, 106]3. The non-crossing constraint

Romain Brault, Alex Lambert, Zoltán Szabó, Maxime Sangnier, Florence d’Alché-Buc

λnc was set to 1. The model was trained on the continuum Θ = (0, 1) using QMC and Sobol sequences. For all
datasets we draw m = 100 quantiles form a Sobol sequence
For JQR we similarly chose two Gaussian kernels. The optimized hyperparameters were the same as for ∞-QR.
The quantiles learned were θ ∈ { 0.1, 0.3, 0.5, 0.7, 0.9 }.
For the IND-QR baseline, we trained independently a non-paramatric quantile estimator as described in Takeuchi
et al. (2006). A Gaussian kernel was used and its bandwidth was optimized in the (log)space of

[
10−6, 106]. No

non-crossing was enforced.

S.10.5 Experiments with CSC

In this section we provide numerical illustration concerning the CSC problem. We used the Iris UCI dataset
with 4 attributes and 150 samples, the two synthetic scikit-learn (Pedregosa et al., 2011) datasets Two-
Moons (noise=0.4) and Circles (noise=0.1) with both 2 attributes and 1000 samples and a third synthetic
scikit-learn dataset Toy (class sep=0.5) with 20 features (4 redundant and 10 informative) and n = 1000
samples.
As detailed in Section 2, Cost-Sensitive Classification on a continuum Θ = [−1, 1] that we call Infinite Cost-
Sensitive Classification (∞-CSC) can be tackled by our proposed technique. In this case, the hyperparameter θ
controls the tradeoff between the importance of the correct classification with labels −1 and +1. When θ = −1,
class −1 is emphasized; the probability of correctly classified instances with this label (called specificity) is desired
to be 1. Similarly, for θ = +1, the probability of correct classification of samples with label +1 (called sensitivity)
is ideally 1.
To illustrate the advantage of (infinite) joint learning we used two synthetic datasets Circles and Two-Moons
and the UCI Iris dataset. We chose kX to be a Gaussian kernel with bandwidth σX = (2γX)(−1/2) the median
of the Euclidean pairwise distances of the input points (Jaakkola et al., 1999). kΘ is also a Gaussian kernel with
bandwidth γΘ = 5. We used m = 20 for all datasets. As a baseline we trained independently 3 Cost-Sensitive
Classification classifiers with θ ∈ {−0.9, 0, 0.9 }. We repeated 50 times a random 50 − 50% train-test split of the
dataset and report the average test error and standard deviation (in terms of sensitivity and specificity)
Our results are illustrated in Table S.3. For θ = −0.9, both independent and joint learners give the desired
100% specificity; the joint Cost-Sensitive Classification scheme however has significantly higher sensitivity value
(15% vs 0%) on the dataset Circles. Similar conclusion holds for the θ = +0.9 extreme: the ideal sensitivity
is reached by both techniques, but the joint learning scheme performs better in terms of specificity (0% vs 12%)
on the dataset Circles.

Table S.3: ∞-CSC vs Independent (IND)-CSC. Higher is better.

Dataset Method θ= −0.9 θ= 0 θ= +0.9

sensitivity specificity sensitivity specificity sensitivity specificity

Two-Moons IND 0.3 ± 0.05 0.99 ± 0.01 0.83 ± 0.03 0.86 ± 0.03 0.99 ± 0 0.32 ± 0.06
∞-CSC 0.32 ± 0.05 0.99 ± 0.01 0.84 ± 0.03 0.87 ± 0.03 1 ± 0 0.36 ± 0.04

Circles IND 0 ± 0 1 ± 0 0.82 ± 0.02 0.84 ± 0.03 1 ± 0 0 ± 0
∞-CSC 0.15 ± 0.05 1 ± 0 0.82 ± 0.02 0.84 ± 0.03 1 ± 0 0.12 ± 0.05

Iris IND 0.88 ± 0.08 0.94 ± 0.06 0.94 ± 0.05 0.92 ± 0.06 0.97 ± 0.05 0.87 ± 0.06
∞-CSC 0.89 ± 0.08 0.94 ± 0.05 0.94 ± 0.06 0.92 ± 0.05 0.97 ± 0.04 0.90 ± 0.05

Toy IND 0.51 ± 0.06 0.98 ± 0.01 0.83 ± 0.03 0.86 ± 0.03 0.97 ± 0.01 0.49 ± 0.07
∞-CSC 0.63 ± 0.04 0.96 ± 0.01 0.83 ± 0.03 0.85 ± 0.03 0.95 ± 0.02 0.61 ± 0.04

References
Bauschke, H. H. and P. L. Combettes (2011). Convex analysis and monotone operator theory in Hilbert spaces.

Springer (cit. on pp. 11, 14, 19).
Bousquet, O. and A. Elisseeff (2002). “Stability and generalization.” In: Journal of Machine Learning Research

2, pp. 499–526 (cit. on p. 14).
Breckling, J. and R. Chambers (1988). “M-quantiles.” In: Biometrika 75.4, pp. 761–771 (cit. on p. 19).
Carmeli, C. et al. (2010). “Vector valued reproducing kernel Hilbert spaces and universality.” In: Analysis and

Applications 8 (1), pp. 19–61 (cit. on p. 12).

Infinite Task Learning in RKHSs

Choquet, G. (1969). Cours d’analyse: Tome II. Topologie. Masson et Cie. (cit. on p. 16).
Jaakkola, T., M. Diekhans, and D. Haussler (1999). “Using the Fisher kernel method to detect remote protein

homologies.” In: ISMB. Vol. 99, pp. 149–158 (cit. on p. 21).
Li, Y., Y. Liu, and J. Zhu (2007). “Quantile regression in reproducing kernel Hilbert spaces.” In: Journal of the

American Statistical Association 102.477, pp. 255–268 (cit. on p. 10).
Pedregosa, F. et al. (2011). “Scikit-learn: Machine learning in Python.” In: Journal of Machine Learning Research

12.Oct, pp. 2825–2830 (cit. on p. 21).
Takeuchi, I. et al. (2006). “Nonparametric quantile estimation.” In: Journal of Machine Learning Research 7,

pp. 1231–1264 (cit. on p. 21).
Zhou, D.-X. (2008). “Derivative reproducing properties for kernel methods in learning theory.” In: Journal of

computational and Applied Mathematics 220.1-2, pp. 456–463 (cit. on p. 12).
Ziemer, W. P. (2012). Weakly differentiable functions: Sobolev spaces and functions of bounded variation. Vol. 120.

Springer Science & Business Media (cit. on p. 12).

