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Abstract

In this paper we propose a novel metric of bas-
ketball game success, derived from a team’s
dynamic social network of game play. We
combine ideas from random effects models for
network links with taking a multi-resolution
stochastic process approach to model passes
between teammates. These passes can be
viewed as directed dynamic relational links in
a network. Multiplicative latent factors are
introduced to study higher-order patterns in
players’ interactions that distinguish a suc-
cessful game from a loss. Parameters are
estimated using a Markov chain Monte Carlo
sampler. Results in simulation experiments
suggest that the sampling scheme is effective
in recovering the parameters. We also apply
the model to the first high-resolution optical
tracking data set collected in college basket-
ball games. The learned latent factors demon-
strate significant differences between players’
passing and receiving patterns in a loss, as
opposed to a win. Our model is applicable to
team sports other than basketball, as well as
other time-varying network observations.

1 INTRODUCTION

Basketball is a sport played between two teams of
five players, in which a game is won by seeing which
team can score the most points from baskets in the
time alloted. Starting from the beginning, a basketball
game continuously evolves in time and space and is
comprised of a constant flow of player movements, in-
teractions, and decision making that contribute to the
game’s outcome. As a team sport, basketball requires
collaboration of the players to successfully bring the
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ball to the basket, and such collaboration relies heavily
on passing the ball between teammates. Understand-
ing and evaluating the decisions made by players on
whether to pass, when to pass, and whom to pass to is
an ongoing challenge in sports analytics.

Passes between teammates can be modeled as interac-
tions within a network, and a variety of previous meth-
ods have taken a network approach to studying passing
sequences. [Fewell et al. (2012)) focus on exploratory
network analysis to explain key facets of the game like
key players and styles of team play, where the roles
of different players on a team are explained through
weighted graphs of passing frequencies. [Gudmundsson
and Horton| (2017)) calculate rebound probability with
spatial coordinates to measure team and player per-
formance in a graph theoretical framework. Xin et al.
(2017) implement a continuous-time stochastic block
model to cluster players based on passing networks.

Although basketball games were traditionally analyzed
in a discretized manner based on “box score” statistics
for forecasting (Hollinger, |2005) and player evaluation
(Omidiran, [2011]), the installment of optical tracking
systems in professional basketball arenas in 2013 has
allowed for more detailed statistical analyses. High-
resolution spatial and temporal information has been
leveraged to model the temporal sequences of games
and characterize basketball strategies that were over-
looked in low-resolution analyses. Miller et al.| (2014])
summarize player shot locations as low dimensional
spatial bases by smoothing empirical shot locations
through non-negative matrix factorization (NMF). The
spatial bases for each player translate well in deter-
mining a player’s position on the team. [Pelechrinis
and Papalexakis| (2017)) use tensor decomposition to
create a weighted shot chart from a 12-dimensional
representation of each player. [Franks et al.| (2015) char-
acterize the spatial structure of defensive basketball
play and quantitatively evaluate the guarding choices
and movements of defending players. |Cervone et al.
(2016) develop a multi-resolution stochastic process
model to calculate the expected points the offense will
score in a possession conditioned on the evolution of
the game up to a time point.
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In recent years, an NCAA Division I basketball team
partnered with SportsVu to install optical tracking
systems in their home stadium, collecting the first
high-resolution spatio-temporal dataset of college-level
basketball games (a detailed description of this dataset
is given in section 4.2). This paper aspires to evalu-
ate player interactions and develop metrics for game
success that are applicable to (but not restricted to)
collegiate basketball settings. We build on the work
conducted by [Cervone et al.| (2016) by modeling passes
from a network perspective and introducing multiplica-
tive latent factors to study players’ passing choices
and preferences. These multiplicative effects provide
a novel assessment of the efficacy and effectiveness of
the passing game of a team.

Treating a pass from player i to player j at time ¢ as a
dynamic relational link from 4 to j, the observations of
whether and between whom a pass is made in a bas-
ketball possession conditional on the spatio-temporal
evolution of the possession up to time ¢ are analogous
to repetitive observations of relational ties on networks.
In the last two decades, some authors have used non-
additive random effects on top of fixed covariate effects
to model nodal links on networks. [Nowicki and Snijders
(2001) assume that the probability of a link between
two nodes depends on the shared membership in a
collection of latent classes. The more general class of
latent space models maps nodal characteristics onto
an unobserved social space with ties depending on the
similarity between actors within the latent space (Hoff
et al., |2002; Hoff, [2005). This class of models has been
extended to allow heterogeneous additive and multi-
plicative sender- and receiver-effects (Hoff, |2009; [Hoff
et al., |2013; [Hofl, [2018]) as well as to dynamic net-
works (Durante and Dunson, 2014} |Sewell and Chen,
2015). This work extends the class of latent factor
network models by modeling link occurrences as non-
homogeneous Poisson processes on a dynamic network
in the complex spatio-temporal setting of basketball
games.

The novelty of this work is as follows:

e Our model is built upon the stochastic process
model proposed by |Cervone et al.|(2016), but in-
cludes additional multiplicative latent factors from
a network perspective that distinguish the effects of
making a pass and receiving a pass, thus capturing
additional information on pair-wise interactions
among team players;

e Instead of modeling probabilities of binary network
edges (Hoff, |2005, [2009)), we model the intensity
function of a non-homogeneous spatio-temporal
Poisson process, while adjusting for game-related
and player-specific covariates;

e We present the first analysis of high-resolution
optical tracking data for college basketball, which
differs from professional basketball (like NBA) in
rules, court conditions, and player characteristics.

The remainder of the paper is organized as follows. In
the next section we provide an overview of the key
aspects of both the stochastic model by |Cervone et al.
(2016) and a latent factor social network model, in a
basketball setting. In section 3, we present our novel
latent factor stochastic passing model in detail and
discuss our parameter estimation procedure. Section
4 presents experimental results on synthetic datasets
and real optical basketball tracking data, and lastly,
the conclusion is in section 5.

2 BACKGROUND

2.1 Multiresolution Stochastic Process
Model

The model introduced by |Cervone et al| (2016) begins
with a coarsened view of a basketball possession. At
any time point, the going-ons in a game fall into one of
the three types of states: a possession state, a transition
state, and an end state. The ball does not change hands
in a possession state, and thus this state can be modeled
by the micro movements of players. An end state, as
suggested by the name, simply represents the end of the
possession via points (0, 2, or 3) earned by the offenseﬂ
It is within a transition state that the dynamics of
a basketball game changes qualitatively: a transition
can be a pass, a shot attempt, or a turnover, after
which either the ball carrier changes or the possession
ends. Based on the assumption that, given the ending
state of a transition, a future possession is conditionally
independent of the history up to the beginning of that
transition, modeling the occurrence and end state of
a transition is essential to predict the outcome of a
possession well.

Among the three transitions (pass, shot attempt,
turnover), a shot attempt results in either a made
shot or a failed shot, a turnover leads to a change
of possession, but a pass has four potential outcomes
corresponding to the four other teammates as poten-
tial receivers, which depend on various spatio-temporal
factors. More specifically, assuming player i possesses
the ball at time ¢, let §; ;(t) be the hazard for the
occurrence of a pass to teammate j in (¢,t + €],

8, (1) = 61_i>%1+ P({i passes to j ien (t, t+ e]}|”;'—[(t))7
(1)

!Possessions with fouls are not considered, so free throws
(which result in 1 point) are not included.
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where H(t) denotes the history of the game up to time
t. Further assume the hazard is log-linear,

1og (0,5 (t)) = Wi ; () 0.5 + & (s:(t)) + Gij(s; (t))(7 :
2

where W; ;(¢) is a time-varying covariate vector, 7; ;
is the corresponding coefficient vector, and &; ;(s;(t))
and (; ;(s;(t)) are functions that map the ball carrier’s
location and the potential receiver’s location on the
court to additive spatial effects (a detailed description
follows in section 3).

2.2 Multiplicative Latent Factor Model

Observations on a social network can be characterized
by an n x n matrix Y = {y;;} where y;; is a binary
variable representing the existence of a link from node
i to node j. Given a set of covariate vectors X =
{xi;}, a common approach to modeling the association
between Y and X that also accounts for unobserved
dependencies is to use random effects models,

yij = 1[B'%x5 + zi; > 0], (3)

where 1[z > 0] is an indicator function that returns 1
if z > 0 and 0 otherwise. z;; is the unobserved random
effect of pair (7,7), and the z;;’s are not necessarily
independent so as to capture potential dependencies
in the relational observations. |[Hoff] (2005) and [Hoff
(2009) motivate multiplicative effects on top of additive
effects to model z;; to represent higher-order network
structure,

zij = a; + bj + upv; + €ij, (4)

where a; and b; are additive row-specific and column-
specific effects that respectively represent the proclivity
of player i to pass the ball and the popularity of player
j as a receiver of the ball, u; and v; are multiplica-
tive latent space factors, and the ¢;;’s are independent
random errors.

A variation of such model, an additive and multiplica-
tive effects (AME) model was previously fit on aggre-
gated passing networks in possessions using a subset of
the college basketball optical tracking data to model
the passing structure of the Division I basketball team.
Let y;; be the indicator of whether player i passes to
player j in a possession, and assume that

Yij = 1[6(193(1 +r; + S + U;-T”Uj + €ij > O], (5)

where s; = B;x; + b; represent additive sender effects
and r; = B;x; + a; represent additive receiver effects.
The dyadic features are represented by B4x4, and the
multiplicative sender and receiver effects by ulv;. The
additive sender and receiver effects include row- and

column- specific effects (a;, b;) and row- and column-
specific nodal features (3;, ;).

For this model, the dyadic features include indicators
for shared basketball position, shared height, shared
weight, and shared college class between players. Nodal
features include binary variables of whether a player
was in a previous possession, whether a player is in a
current possession,and points earned per game by a
player.

In direct contrast to modeling the risk of a pass at a
particular time, this setup is inherently non-temporal.
As such, it cannot capture the variability in any given
play but instead provides a high level overview of the
structure of the passing network for each individual
play. The results presented below provide a strong mo-
tivation for integrating the multiplicative latent effect
framework into the temporal modeling of basketball
possessions.
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Figure 1: Learned multiplicative sender-specific effects
(“s” in blue) and receiver-specific effects (“r” in red) by
the AME model in a lost game (top) and a won game
(bottom). Effects for players 126161 and 109412 are
represented by letter “s” or “r” together with their id
codes for demonstration purposes.

Parameters are inferred for each game separately using
the Markov chain Monte Carlo sampling algorithm
suggested by [Hoff] (2008) implemented in Hoff et al.
(2014). Figure |1] presents the posterior means of the
multiplicative sender/passer (blue) and receiver (red)
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effects for a win and a loss.

Players whose multiplicative effects are in the same

quadrant and differing colors are more likely to interact.

Operationally, to form an effective attack, we would
expect a forward (like player 126161) to receive the ball
at a reasonable rate from his teammates (like player
109412, a guard and frequent passer), but we only
see this phenomenon in the win plot (in the bottom
left quadrant) but not in the loss plot. And in fact,
player 126161’s receiver effect is separated from all
his teammates’ sender effects, indicating very limited

assists to 126161 from his teammates in the lost game.

We can also evaluate the overall passing in the game
using these plots. In the win the players are clustered
together, suggesting that they move the ball among
themselves with approximately the same probability.
Such behavior is not observed in the loss plot where the
multiplicative effects are more spread out and the ball
movement is more fragmented: the overlap between
the sender and receiver effects is restricted in the upper
left quadrant, where only two players are likely to
receive passes from their teammates. The products of
the multiplicative effects for the remaining players are
negative suggesting a reduction in pass rates among
them compared to baseline.

3 MODEL

The findings of the AME model presented in section
2.2 demonstrate that the learned latent factors are
directly translatable to players’ passing patterns which
are distinctive between a win and a loss, and that latent
factor models help uncover the network characteristics
in passing which are predictive of basketball game
outcomes. In this section we introduce latent factors
in spatio-temporal stochastic modeling of basketball
passes and state our full model.

3.1 Model Formulation

Let Y; ; 4(t) denote the event that the ball carrier ¢
passes the ball to teammate j during the time period
(t,t+ 6] in game g, and let 6; ; 4(t) be the log-risk of
Y ;. q(t) given H,(t), the history up to time ¢ in game

9,
P(Yi5.q(0)[Hg(t))
: . (6)

exp(i(1)) = lim.

Assume that

0;,5,9(t)
=Wi g (t) i + i (5ig(t) + Cij(s5.4(1)) + zi,];g(f),
7

and that

Zij.g(t) = Ui gvjg + €ijg(t). (8)

In Eq (7) W;;4(t) is a 5-dimensional covariate vector
w.r.t. players i,j at time t in game g, including a
constant 1 representing the baseline passing rate, an
indicator of whether player ¢ has started dribbling,
the log-transformed distance between player ¢ and his
nearest defender, j’s rank of closeness to ¢ (from 1 to
4, with 1 indicating the closest teammate), a numeric
evaluation of how open the passing route is from 1
to j (a metric introduced by (Cervone et al., [2016)),
while &; ; maps player i’s location on the half court to
an additive spatial effect of passing off the ball to j,
and (; ; maps a player j’s location on the half court
to an additive spatial effect of receiving a pass from
i based on j’s basketball position, with €, ; 4(¢) as an
independent standard normal errors. In Eq , Usg
and v; 4 are R-dimensional vectors representing sender-
specific and receiver-specific attributes of ballcarrier 4
and teammate j mapped onto an R-dimensional latent
space. The subscript g indicates that these latent
spaces are allowed to vary across games.

Furthermore, let
§.(8) = 71,56i(8),  Gig(S) = FijCipos(i(s),  (9)

where pos(j) denotes player j’s basketball posi-
tion, and [s&j(s)ds = [ (s)ds = 1, with
S as the half court and s as a pair of coordi-
nates corresponding to a location on S. Setting
Xijg(t) = (Wigg(t)T, & i(si4(t)), Cij(s5,4(1))T and
Big = (73> %i45)" 5 Eq (7) becomes

10g(0:,5,4(t)) = Xij.g(t) Bij+ul v g+€isg(t). (10)

We would like to emphasize that the model formula-
tion is not only an extension of Eq , but also an
extension of Eq and . A hierarchical structure in
the multiplicative latent factors is introduced to allow
differing sender-specific and receiver-specific effects in
different games, and here we model the time-varying
risk (intensity function) of a non-homogeneous spatio-
temporal Poisson process rather than the probability
of binary links using logistic (or probit) regression.

3.2 Parameter Estimation

Conditioning on all the covariate vectors X ; ,(t) re-
garding n players in G games in total and the latent
space dimentionality R, the unknown quantities of the
model are

e O ={0;;4(t)}, the set of log-risks;

o 5 = {Bi;}, the set of coefficients for all player
pairs;

e U = {U,}, the set of n x R matrices, with each row
representing the sender-specific effect of a player in
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a game, and V = {V;}, the set of n x R matrices,
with each row representing the receiver-specific
effect of a player in a game.

Given priors for parameters §; j,u; o and v; ¢, a fully
Bayesian inference procedure is deployed that estimates
the full posterior distribution of the parameters via
Markov Chain Monte Carlo. We adopt an efficient
Metropolis-within-Gibbs sampling scheme that allows
us to adequately address the complex dependence issues
that are visible in network models and are typically
challenging to address with variational inference or a
more complicated sampling scheme.

Given all the observations Y = {Y] ;. ( )} and a set
of initial values ¢(©) = {©©) 0 U ), VO g se-
quence of parameter samples {qb( )} can be iteratively
generated from the full conditional distributions of the
parameters. In each iteration, based on the latest pa-
rameter sample ¢~ a new sample ¢*) is acquired
through the following steps:

1. For each pair (i,7), 1 < i # j < n, sample Bi(z_)
from p(ﬂz ‘@(s 1) U(s 1) V(é 1))

2. Forgameg=1,...,Gandi=1,...,n

(a) sample Uy[i,]) from
p(U[i,]|00 D, =1, Vi =h),

(b) sample V,[i,]*) from
p(Vyli,]|O0=1, 501, U™

3. For each pair (i, ) and time point ¢ in game g, set
0:5.0(1) = Xigg(1)T B + (Ugli, ] D)V, 5] +

el . (t), where e”g(t) is a standard normal

03,9
1
error; set 9(,81)9() = 0(;757)(15) first, and

then replace it by 67, (t) with probability

min | 2020010500 4
p(Yi s (D165 D (1))

We choose the priors for §; ;,u;4 and v; 4 to be non-
informative and independent multivariate normal dis-
tributions. This allows us to derive the full conditional
distributions for all the parameters. Details are pro-
vided in the Supplement.

3.3 Spatial Effect Estimation

Although treated as known covariates in parameter
estimation, the normalized additive spatial effect func-
tions in Eq @, & and C_Lpos(j), are not readily avail-
able in the optical tracking data and thus need to be
estimated. We employ a different, simpler and more ef-
ficient method than the Gaussian Markov random field
approximation used by (Cervone et al.| (2016]). Beyond
reducing computation time, this method also does not

require a massive volume of data to produce reasonable
estimates of the additive spatial effect functions.

We first divide the half court & (47 feet by 50 feet)
into 1ft x 1ft tiles and use thin plate splines regression
(Duchonl, [1977) to estimate smooth 2-d functions based
on empirical counts on the tiles. For each player ¢, the
estimation of &; is based on the total number of times
player 7 stood on each tile when he made a pass, and
for each possible basketball position of his teammate,
pos(j) € {forward (F),center (C), guard (G)}, the es-
timation of (; pos(j) is based on the total number of
times any teammate playing position pos(j) stood on
each tile when he received the ball from the player i.

(a) & (make a pass). (b) Gi.r (pass to F).

(c) ¢i,c (pass to C). (d) ic

Figure 2: Estimated spatial effects € and ¢ for a player
i (id code 601140). A redder/darker color corresponds
to a higher log-risk of making a pass. For example,
this player most frequently passes off the ball when
he is outside the center of the three-point line, and he
tends to pass the ball to a center who is approaching
the restricted area from either side.

(pass to G).

Take the spatial effect function &; for a certain player 4
for example. Suppose {nk}szl are the empirical counts
of i’s passing location on tiles k = 1,..., K centered at
{cr}E_|. Set fy = ﬁ, and the function & : S —
R is obtained by minikrfllizing

62,
Znnk—@ck 2+ / 155 s, )

where || - ||F is the Frobenius norm of matrices, and
the smoothness parameter A is chosen by generalized
cross validation, as introduced by |Green and Silverman
(1993).
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Figure[2] visualizes the estimated spatial effect functions
for one player 601140, who plays as a guard. There are
distinct spatial patterns in his passing choices and pref-
erences, where he tends to pass off the ball outside the
center three-point line (subplot (a)), and his forward
teammate(s) is more likely to receive the ball from him
when this teammate is at a corner of the three-point
line (subplot (b)).

4 EXPERIMENTS

4.1 Synthetic Data

A synthetic dataset including records in 2 games in-
volving 8 players in total is generated from our model.
Around 10,000 observations are generated in total. For
each game, the first 90% of observations are used for
model training, and the last 10% observations are held
out as the testing data. We evaluate the log-likelihoods
of the training data and the held-out data for each of
these three models:

1. The full model with 2-dimensional multiplicative
latent factors (labeled as “Latent”);

2. A subset model with only the time-varying co-
variates and spatial effects X ;,(t) (labeled as
“Covariate”);

3. A further subset model with only the spatial ef-
fects (that is, without the time-varying covariates
Wi j.q(t)) (labeled as “Spatial”).

Quality of sampling algorithm: The plots in Fig-
ure [3] validate the effectiveness of the sampling scheme
(in section 3.2) in recovering the parameters. Plot (a)
shows the histogram of the posterior samples of 3; ; 1,
the baseline log-risk for player 7 to pass to j, with @
and j randomly selected. The posterior samples are ap-
proximately centered around the true parameter value
(denoted by the red vertical line). Plot (b) visualizes
the squared errors (measured by squared euclidean dis-
tances) between the samples of sender-specific effect
vector and receiver-specific effect vector between the
respective true vector values for a random player pair
1,7 in the first game. The squared errors fluctuate in
the early iterations due to the random nature of the
sampling algorithm, but drop down and stabilize at
the end.

Model performance: Numerical results based on
repeated experiments are presented in Table [l The
full model can accommodate both spatial, temporal
and multiplicative effects and fits the synthetic data
better than competitors. The good performance on
the held-out likelihood demonstrates that this is not
an artifact of overfitting by a larger model.

Table 1: Log-likehoods of the threes models in simu-
lation experiments. The full model constantly outper-
forms the subset models.

Model Training log-likelihood Held-out log-likelihood
Latent —10025.93 + 189.31 —1219.80 £ 57.62
Covariates  —10719.68 + 120.26 —1314.00 £ 43.43
Spatial —14255.32 £ 92.88 —1689.61 £ 16.20

B

(a) Histogram of posterior samples of 3; ;1 for a random
pair (i, 7). The real parameter value is marked by the red
vertical line.

Latent Effect

u_i (sender)

L2 Error

2+ — v_j (receiver)

0 100 200 300 400
Iteration

(b) Squared errors of u;,4 samples and v;,, samples with
respect to the actual latent space vector values for game 1
and a random player pair ¢, j.

Figure 3: Parameter recovery checking plots in simula-
tion experiments.

4.2 Real Data

4.2.1 Data Description

The real dataset is collected by SportsVu optical track-
ing systems from the home arena of an NCAA Division
I basketball program. This is the first time a SportsVu
dataset for college basketball has been made available
for analysis. Previous NBA SportsVu datasets have
been released because every basketball stadium is man-
dated to retain a tracking video camera. Features were
created by taking snapshots of the game every 1/25th
of a second and recording each player’s location and
action, the location of the ball, and general identifica-
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tion information about the game, the teams, and the
player’l All of the observations were automatically
translated and stored into data files by the SportsVu
software, originally as 3 different types of files:

1. Boxscore: The overall player statistics (assists,
points, rebounds) for each game. It is used as a
reference for evaluating player performance.

2. Play by Play: The event summary (dribble, foul,
pass, etc.) for each observation in each game.
It is used to divide each game into basketball
possessions and to extract passing networks.

3. Sequence Optical: The locational summary of
each player and of the ball for each game at a
25Hz resolution. It is used to calculate relevant
spatio-temporal covariates and map the passing
order for each possession.

The final dataset was created by merging the three
datasets together by time, player id, and game id. Each
game was divided into possessions, which ended on
made shots, missed shots, and turnovers. Although
the end of a play may not have ended after a non-
turnover violation, the locations of the ball and players
were reset after these events. For this, non-turnover
possessions (i.e. kick ball violation) were also noted
as the end of a possession. Possessions that ended
with fouls were removed from the dataset to reduce
the number of transition states in the model, similar
to |Cervone et al.| (2016]).

4.2.2 Model Fitting and Results

We fit the full model (with the dimension of the latent
space R = 2) on the records for all the games from the
beginning of December 2014 to the end of January 2015.
For model validation, only 90% of the records in each
game are used for model fitting, with the rest 10% held-
out to test model predicting capabilities. Same as in
section 4.1, the full model (“Latent") is compared with
two subset models (i.e. “Covariate* and “Spatial®).
The log-likelihoods on training data and testing data
in Table [2| indicate that the addition of multiplicative
latent factors yields better explanation of the passing
patterns as well as better out-of-sample prediction of
passing occurrences in real-time basketball games.

Figure [4] visualizes the key results of our model: the
sender-specific effects U, and receiver-specific effects V
for a game of interest g. Each player i’s sender-specific
effect vector u; 4 corresponds to a 2-dimensional coor-
dinate marked in red, and his receiver-specific effect
vector v; 4 corresponds to a 2-dimensional coordinate

2In the dataset, every player and every team is identified
by a randomly assigned id, and every game is identified by
the date of the game.

Table 2: Log-likehoods of the full model and two subset
models on training data and testing data.

Model Training log-likelihood Held-out log-likelihood
Latent —679.33 + 114.51 —58.52 + 11.20
Covariates  —917.89 + 220.41 —64.68 + 12.59
Spaitial —904.76 + 151.81 —67.54 £ 7.91
R-842297
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o R s
e
&
-1
In a loss:
S sender
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R Receiver
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Figure 4: Passing decision multiplicative latent factors
in a loss (top) versus in a victory (bottom). Sender-
and receiver-specific effects are marked with “S” (in
blue) and “R” (in red) , respectively. The latent factors
for player 601140 and 842297 are also represented by
their player id codes for later demonstration.

marked in blue. For player i and j, if u; 4 and v; 4 reside
in the same quadrant, then 7 tends to pass to j more
frequently in game g. Here we present the sender- and
receiver-specific effects for two games, g1 and go, where
the home team lost the former (plot (a)) and won the
latter (plot (b)). Players’ passing behaviors are appar-
ently different in a loss than in a win. We demonstrate
this by highlighting two players, 601140 and 842297:
In a loss (plot (a)), 842297 passes frequently to 601140,
but hardly receives the ball back. On the other hand,
in a win (plot (b)), 601140 and 842297 pass to each
other with almost the same frequency.

Looking at all the sender- and receiver- effects, we can
see that in a game the team lost (plot (a)), the latent
effects are farther away from the origin than those in
a game the team won (plot (b)). This indicates that
in a loss player passing behavior is extremely variable
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and depends on who they are passing to, whereas in
a victory the players are more measured in terms of
passing and receiving behavior. That is, our results
provide a measurable indicator of consistent ball move-
ment between all the players and we see that this is
associated with positive game outcomes.

In a loss:

842301
Interaction

842298 1 . | :
intensity
842297 1 075
0.50

756883 1 0.25

Sender

0.00
—-0.25
-0.50

696290 A

696289

6011404 .
]

S ©
S F P
& & & @

AT I
P
L

Receiver

(a) Products of sender- and receiver- effects for all player
pairs in a loss.

In a win:
842301 1
842298 Interaction
intensity
842297 . 075
@ 0.50
e}
£ 7568331 0.25
»n
696290 . 0.00
-0.25
696289 050
601140 1
Q ) Q 3 A > N\
KPP PP
S & & A2 o P P

Receiver

(b) Products of sender- and receiver- effects for all player
pairs in a win.

Figure 5: Player interaction intensity matrix in a loss
versus in a victory. Darker color indicates stronger
tendency of passing.

The differences in player behaviors between a win and
a loss are more obvious when we directly examine
the inner product of the multiplicative latent effects,
uZ:gvjyg, for each player pair (4, j) in game g. According
to Eq (7) and (8), the higher the value of uj v 4 is, the
more likely ¢ passes to j in game g. In other words, the
matrix Uy VgT is a player interaction intensity matrix in
game g, after adjusting for the spatio-temporal factorsﬂ
We visualize the matrix entries in a loss (plot (a))

3Therefore, this matrix carries different (and deeper)
information than a simple frequency table of passes between
players in a game (see Figure 4 in Supplement for reference).

and in a win (plot (b)) in Figure If we revisit
the aforementioned example and take i = 601140 and
J = 842297, we observe that ugjgvj,g is noticeably larger
than u] jv; 4 in the lost game (plot (a)), while the two
quantities are approximately equal in the win (plot
(b)), which implies that the two players’ interactions
are somewhat one-sided in a loss but more balanced in
a victory. Further, this new set of plots allows us to
evaluate the overall passing tendencies in a game and
detect that they are higher for the majority of player
pairs in a successful game, which supports the idea that
more interactions and more active teamwork lead to
better outcomes. Furthermore, we can identify other
passing anomalies in these plots: in a loss, player 842298
holds both the highest and lowest passing intensities
of all players, a distinction that no player holds in the
win—this type of preferential passing behavior can be
extremely detrimental to game outcomes as it might
lead to under- and over-utilization of certain players.

5 CONCLUSION

We propose a novel social network metric of basket-
ball game success based on latent factors that capture
higher-order patterns in players’ passing choices and
preferences in basketball games. Our method expands
on both the state-of-the-art spatio-temporal stochastic
process model and latent factor models for binary re-
lational links. Parameter inference is carried out by a
Markov chain Monte Carlo sampler, which is effective
in estimating the parameters of interest values, as sug-
gested by experiments on synthetic data. Experiments
on the very first high-resolution optical tracking dataset
in college basketball show that our model outperforms
current state-of-the-art models in both goodness-of-fit
and out-of-sample prediction, and that the learned la-
tent sender-specific and receiver-specific effects offer
direct interpretation of the interactions among players
on the same team and provide an interpretable differ-
entiation between wins and losses. While this model
is applicable to basketball and other team sports, it
can also be translated into modeling longitudinal so-
cial networks observations, such as email conversations,
international trades, and regional conflicts.

In the future we plan to model interactions between
defenders and offenders as network links and scale up
the inference algorithm via sparse tensor techniques.
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