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Abstract

Multi-armed bandit (MAB) is a class of on-
line learning problems where a learning agent
aims to maximize its expected cumulative re-
ward while repeatedly selecting to pull arms
with unknown reward distributions. We consider
a scenario where the reward distributions may
change in a piecewise-stationary fashion at un-
known time steps. We show that by incorporat-
ing a simple change-detection component with
classic UCB algorithms to detect and adapt to
changes, our so-called M-UCB algorithm can
achieve nearly optimal regret bound on the or-
der of O(

√
MKT log T ), where T is the number

of time steps, K is the number of arms, and M is
the number of stationary segments. Comparison
with the best available lower bound shows that our
M-UCB is nearly optimal in T up to a logarithmic
factor. We also compare M-UCB with the state-of-
the-art algorithms in numerical experiments using
a public Yahoo! dataset and a real-world digi-
tal marketing dataset to demonstrate its superior
performance.

1 Introduction

Multi-armed bandit (MAB) is a class of fundamental
problems in online learning and sequential decision making,
where at each step a learning agent adaptively selects to pull
one arm of a K-arm bandit based on its past observations,
and receives one reward accordingly. The learning
agent’s objective is to maximize its expected cumulative
reward in the first T time steps. MAB has found an
extensive list of applications including communication sys-
tems [Thompson, 1933, Alaya-Feki et al., 2008], clinical
trials [Vermorel and Mohri, 2005, Villar et al., 2015],
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online recommendation systems [Li et al., 2011,
Bouneffouf et al., 2012, Kveton et al., 2014], and
online advertisement campaign [Girgin et al., 2012,
Schwartz et al., 2017].

Most existing literature on MAB problems focuses
on two types of models: (i) the stochastic ban-
dit model [Lai and Robbins, 1985, Auer et al., 2002a],
where each of the K arms has a time-invariant
reward distribution, and (ii) the adversarial bandit
model [Littlestone and Warmuth, 1994, Auer et al., 2002b],
where the reward distribution of each arm may change adver-
sarially at all the time steps. However, in many real-world
applications, neither of the above two models is realistic.
Specifically, in such applications, the arms’ reward distri-
butions do vary with time, but much less frequently than
what the adversarial bandit model assumes. For instance,
in recommender systems, each item is modeled as an arm
and users’ clicks are modeled as rewards. In practice, a
user’s click probability on an item is unlikely to be time-
invariant, or change significantly at all the time steps. Thus,
for this case, it is too ideal to assume the stochastic bandit
model and too conservative to assume the adversarial bandit
model. Similar situations arise in dynamic pricing systems
and investment options selection [Yu and Mannor, 2009,
Cesa-Bianchi and Lugosi, 2006]. Motivated by this, we ex-
amine a scenario that lies “in between” the above two stan-
dard models, namely, the piecewise-stationary bandit that
we describe below. The piecewise-stationary reward func-
tions can also be viewed as an approximation to the slowly
time-varying reward functions.

In this paper, we consider a class of non-stationary
bandit problems, where the reward distribution of each
arm is piecewise-constant and shifts at some unknown
time steps called the change-points. This setting has
been considered in prior works [Hartland et al., 2007,
Garivier and Moulines, 2008, Yu and Mannor, 2009] as a
more realistic scenario to model the users’ preferences and
in [Auer, 2002] to model an adversarial setting. We propose
a simple but efficient algorithm called Monitored-UCB (M-
UCB) by incorporating a change-point detection component
into a classic Upper Confidence Bound (UCB) algorithm.
M-UCB monitors the estimated mean of the reward dis-
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tribution for the currently selected arm; once a change is
detected, M-UCB algorithm will reset and learn the new
optimal arm.

We show that, somewhat surprisingly, this simple M-UCB
algorithm is nearly optimal for the considered scenario,
in the sense that it achieves an O(

√
MKT log T ) regret

bound under mild technical assumptions (see Section 5),
where T is the number of time steps, K is the number of
arms, and M is the number of stationary segments. This
regret bound matches the Ω(

√
T ) lower bound proven in

[Garivier and Moulines, 2011] up to a logarithmic factor. In
practice, M-UCB is also robust, since it requires minimum
parameter specification: we do not need to specify the pre-
and post-change detection as the classic CUSUM procedure
does [Liu et al., 2017]; the change detection is achieved by
a simple two sample test for the running sample means over
a sliding window. This result conveys a message that sim-
ple (rather than more sophisticated) change-point detection
might suffice for piecewise stationary bandit. To the best of
our knowledge, M-UCB is the first practical algorithm for
piecewise-stationary multi-armed bandits that uses change-
point detection and whose near optimality is proved without
strong parametric assumptions.

In additional, we validate numerically the scalings of the
M-UCB’s regret in M and K. Experiment results in Sec-
tion 6.1 show that the scalings are roughly O(

√
M) and

O(
√
K), which suggests that our O(

√
MKT log T ) regret

bound also reflects the right scalings of the M-UCB’s regret
inM andK. Finally, we compare M-UCB with state-of-the-
art algorithms in numerical experiments based on a public
Yahoo! dataset (Section 6.2) and a real-world digital mar-
keting dataset (Section 6.3). In both experiments, M-UCB
achieves at least 50% regret reduction with respect to the
best performing state-of-the-art algorithm. The remainder
of the paper is organized as follows: we briefly review
the relevant literature in Section 2, then we describe the
piecewise-stationary bandit model in Section 3. We discuss
how to perform change-detection in the considered scenario
in Section 3.3, and motivate and propose M-UCB algorithm
in Section 4. We prove the regret bound in Section 5 and
demonstrate experiment results in Section 6. We conclude
the paper in Section 7.

2 Literature Review

Most existing work on piecewise-stationary bandit prob-
lems are based on the idea to adapt to changes
passively by adjusting the weights on the rewards.
For instance, Discounted UCB (D-UCB) algorithm
introduced in [Kocsis and Szepesvári, 2006] (see also
[Garivier and Moulines, 2011]) averages the past rewards
with a discount factor, so it weighs more on the
recent rewards to compute the UCB index of each
arm. In [Garivier and Moulines, 2011], D-UCB pol-

icy has been proved to achieve an O(K
√
MT log T )

regret. As a slight modification of D-UCB, the
Sliding-Window UCB (SW-UCB) algorithm introduced
in [Garivier and Moulines, 2011] computes the UCB index
based on only the most recent w rewards and the regret
is proved to be O(K

√
MT log T ). In [Auer et al., 2002b],

the authors present EXP3.S algorithm which uses a reg-
ularization method to control the action switches and
achieves anO(

√
MKT log(KT )) regret. Using the idea in

[Herbster and Warmuth, 1998], a similar algorithm called
SHIFTBAND is established in [Auer, 2002], which achieves
anO(

√
MKT log(T 3K/δ)) regret with probability at least

1 − δ. Finally, Rexp3 presented in [Besbes et al., 2014]
achieves an O((K logKVT )1/3T 2/3) regret, where VT is
the total variation budget up to time T .

There has also been work exploring the idea of monitoring
the reward distributions by a change-detection (CD) algo-
rithm and triggering the reset of the learning algorithm. In
contrast to the above algorithms that passively adapt to the
changes, this type of algorithms actively locate the change-
points and hence usually demonstrate better performance in
practice. The Adapt-EvE algorithm [Hartland et al., 2007]
uses Page-Hinkley Test for change-detection and restart
UCB1 algorithm once a change-point is detected. Tak-
ing a Bayesian point of view, [Mellor and Shapiro, 2013]
provides an algorithm by combining a Bayesian CD al-
gorithm and Thompson Sampling. Combining one sim-
ple CD algorithm with any other MAB algorithm with
a logarithm regret, [Yu and Mannor, 2009] offers a win-
dowed mean-shift detection (WMD) algorithm that achieves
an O(KM log T ) regret. However, their algorithm needs
to query and observe the past rewards of some unpicked
arms, which violates the bandit feedback model. Com-
bining classic MAB algorithm used in adversarial setting
such as EXP3, in [Allesiardo and Féraud, 2015], the au-
thors present a EXP3.R algorithm which resets EXP3 al-
gorithm if one CD algorithm detects that a sub-optimal
arm becomes the optimal. The EXP3.R algorithm achieves
an O(NK

√
T log T ) regret, where N is the number of

switches of the best arm during the run. Note that N ≤M
in general and N = M in the worst case.

A recent and related work [Liu et al., 2017] uses the
CUSUM algorithm for change-point detection. Compared
to this work, there are two major differences. First, we use
a different change-point detection (CD) method rather than
CUSUM. Our CD method is simpler, and does not require
to specify any parameters. Consequently, our algorithm
is applicable to general piecewise-stationary bandits with
bounded rewards, while [Liu et al., 2017] is restricted to the
special case with Bernoulli rewards. Second, we use differ-
ent analysis techniques to derive regret bounds. Leveraging
renewal processes and classic metrics of change detection,
a generalizable proof structure is established. It unlocks
opportunities to prove similar regret bound with different
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CD methods, without taking much extra effort.

3 Problem Formulation

3.1 Piecewise-Stationary Bandit

A piecewise-stationary bandit is characterized by a triple
(K, T , {fk,t}k∈K,t∈T ), where K = {1, . . . ,K} is a set of
K arms, T = {1, . . . , T} is a sequence of T time steps, and
fk,t is the reward distribution of arm k at time t. Assume
that arm k’s reward at time t, Xk,t, is independently drawn
from fk,t, both across arms and across time steps. Without
loss of generality, assume that the support of fk,t is a subset
of [0, 1] for all k ∈ K, t ∈ T .

We define M , the number of piecewise-stationary segments
in the reward process to be

M = 1 +
∑T−1
t=1 I{fk,t 6= fk,t+1 for some k ∈ K}, (1)

where I{·} is the indicator function. Notice that by def-
inition, the number of change-points is M − 1. We use
ν1, ν2, . . . , νM−1 to denote those M − 1 change-points,
and define ν0 = 0 and νM = T to simplify the exposi-
tion. To emphasize the “piecewise stationary" nature of
this problem, for each stationary segment i = 1, 2, . . . ,M
with t ∈ [νi−1 + 1, νi], we use f ik and µik to respectively
denote the reward distribution and the expected reward of
arm k on the ith segment. Define a vector that contains all
expected rewards for the ith segment µi = (µi1, . . . , µ

i
K)>,

i = 1, . . . ,M . Note that our model allows asynchronous
changes to happen at arms, i.e., the changes do not have to
happen at the same time cross multiple arms. Also note that
the piecewise stationary bandit model is more general than
both the stochastic and the adversarial bandit models. The
stochastic bandit model can be viewed as a special case of
our model with M = 1, and the adversarial bandit model
can also be viewed as a special case of our model with
M = T .

A learning agent will repeatedly interact with this piecewise
stationary bandit for T times. The agent knows T and K,
but does not know {fk,t}k∈K,t∈T or any of its statistics such
as M and µi’s. At each time step t ∈ T , the agent chooses
an action At based on its past actions and observations, and
will receive and observe the reward XAt,t.

3.2 Regret Minimization

The agent’s objective is to maximize its expected cumulative
reward in the T time steps, i.e. maxE[

∑T
t=1XAt,t], which

is equivalent to minimize its T -step cumulative regretR(T )
defined as

R(T ) =
∑T
t=1 maxk∈K E [Xk,t]−E

[∑T
t=1XAt,t

]
. (2)

Note that the regret metric defined in (2) is stricter than the
regret metric considered in most adversarial bandit papers,

which is defined as

R̃(T ) = maxk∈K
∑T
t=1 E [Xk,t]−E

[∑T
t=1XAt,t

]
. (3)

Clearly R(T ) ≥ R̃(T ), since the regret defined in (2) is
measured with respect to the optimal piecewise stationary
policy, while the regret defined in (3) is measured with
respect to the optimal action in hindsight.

3.3 Sequential Change-Point Detection
Sequential change-point detection, which is rooted in
classical statistical sequential analysis [Siegmund, 1985,
Basseville et al., 1993], aims to detect the change in under-
lying distributions of a sequence of observations as quickly
as possible. Commonly used methods for change-point de-
tection include CUSUM and the generalized likelihood ratio
(GLR) procedure [Page, 1954, Willsky and Jones, 1976].
However, for piecewise-stationary bandits, both pre-change
and post-change distributions are unknown, and thus
CUSUM is not suitable since it requires specifying both
pre- and post-change distribution parameters. GLR can al-
low for unknown parameters (e.g. [Lai and Xing, 2010]),
however, it is non-recursive and thus computationally expen-
sive and not suitable for online implementation, especially
for the high-dimensional setting.

Thus, we are not going to use CUSUM or GLR, but rather
a simple change-point detection component based on com-
paring running sample means over a sliding window, as
presented in Algorithm 1. This is computationally efficient
and robust, since it has minimum parameter specification.
We will show this is sufficient to guide bandit decisions as
it achieves a nearly optimal regret bound.

Algorithm 1 Change detection: CD(w, b, Y1, . . . , Yw)

Require: An even number w, w observations Y1, . . . , Yw
and a prescribed threshold b > 0

1: if |
∑w
i=w/2+1 Yi −

∑w/2
i=1 Yi| > b then

2: Return True
3: else
4: Return False
5: end if

4 M-UCB Algorithm

Now we present the Monitored UCB (M-UCB) algorithm
(as described in Algorithm 2) using a simple change-point
detection component for the piecewise-stationary bandits.
On a high level, M-UCB combines three ideas: (1) uni-
form sampling exploration to ensure that sufficient data are
gathered for all arms to perform CD, (2) UCB-based explo-
ration to learn the optimal arm on each segment, and (3) a
simple change-point detection component Algorithm 1 that
monitors changes and triggers exploration.
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Algorithm 2 Monitored UCB (M-UCB)

Require: T , K, even integer w > 0, b > 0 and γ ∈ [0, 1]
1: Initialization: τ ← 0 and nk ← 0 ∀k ∈ K
2: for all t = 1, 2, . . . , T do
3: A← (t− τ) mod bK/γc.
4: if A ≤ K then
5: At ← A.
6: else
7: for all k = 1, . . . ,K do
8: UCBk ← 1

nk

∑nk
n=1 Zk,n +

√
2 log(t−τ)

nk
.

9: end for
10: At ← arg maxk∈K UCBk.
11: end if
12: Play arm At and receive the reward XAt,t.
13: nAt ← nAt + 1;ZAt,nAt ← XAt,t.
14: if nAt ≥ w then
15: if CD(w, b, ZAt,nAt−w+1, . . . , ZAt,nAt ) = True

then
16: τ ← t and nk ← 0 ∀k ∈ K.
17: end if
18: end if
19: end for

Additional explanations to Algorithm 2 are as follows. The
inputs include the time horizon T , the number of arms K,
and three tuning parameters w, b, and γ. Here, w and b are
tuning parameters for the CD algorithm (line 15), which
control the power of the CD algorithm; and γ controls the
fraction of the uniform sampling (line 3). Let τ denote
the last detection time, and let nk denote the number of
observations from the kth arm after τ . In Remark 1 of
the subsequent section, we discuss how to choose these
parameters based on our theoretical analysis.

At each time t, M-UCB proceeds as follows. First, M-UCB
determines whether to perform a uniform sampling explo-
ration or a UCB-based exploration at each time, according
to conditions given in line 3 and 4 to ensure that the fraction
of time steps performing uniform sampling is roughly γ. If
UCB-based exploration is used at time t, then the standard
UCB1 indices are computed using observations from the
last detection time τ to the current time, and an action is
chosen greedily based on the UCB1 indices (line 7-10). By
playing the chosen arm, we observe the reward and update
some statistics (line 12-13). Finally, when at least w obser-
vations for the chosen arm have been gathered after the last
detection time τ , M-UCB will perform CD via Algorithm 1
and restarts exploration if necessary.

We would like to emphasize that the uniform sampling ex-
ploration is crucial to M-UCB. This is because that the
standard UCB exploration tends to select very infrequently
the arms which it believes to be suboptimal. Thus, standard
UCB exploration cannot quickly detect changes in these
“infrequently visited” arms.

5 Near Optimality of M-UCB

In this section, we present our main result: the M-UCB
algorithm based on simple change-point detection algorithm
achieves a nearly optimal regret bound.

Recall that T is the time horizon, K is the number
of arms, M is the number of piecewise-stationary seg-
ments, ν0, . . . , νM are the change-points, and for each
i = 1, . . . ,M , µi ∈ [0, 1]K is a vector encoding the ex-
pected rewards of all arms on segment i. We also use P
and E to respectively denote the probability measure and
the expectation according to the piecewise-stationary bandit
characterized by the tuple (T,K,M, {νi}Mi=0, {µi}Mi=1). To
simplify the exposition, we define the “sub-optimal gap” of
arm k on the i-th piecewise-stationary segment as

∆
(i)
k = maxk̃∈K{µik̃} − µ

i
k ∀1 ≤ i ≤M, k ∈ K, (4)

and the amplitude of the change of arm k at the ith change-
point as

δ
(i)
k = |µi+1

k − µik|, ∀1 ≤ i ≤M − 1, k ∈ K. (5)

Moreover, recall that w, b and γ are the tuning parameters
for Algorithm 2. We define L = wdK/γe for shorthanded
notation.

We make the following assumptions for our theoretical anal-
ysis:

Assumption 1. The learning agent can choose w and
γ s.t. (a) M < bT/Lc and νi+1 − νi > L, ∀0 ≤
i ≤ M − 1, and (b) ∀1 ≤ i ≤ M − 1, ∃k ∈ K s.t.
δ

(i)
k ≥ 2

√
log(2KT 2)/w + 2

√
log(2T )/w.

We would like to clarify that Assumption 1 is only re-
quired for the analysis; Our proposed M-UCB algorithm
(Algorithm 2) can be implemented regardless of this as-
sumption. As is shown in Section 6, in the real-world
experiments, our algorithm works well even if Assump-
tion 1 does not hold. Notice that relevant literature, such
as [Liu et al., 2017], makes similar assumptions. Moreover,
compared with [Liu et al., 2017], we have relaxed a major
assumption: they also assume the rewards are Bernoulli,
which is not assumed in our algorithm and analysis.

We now briefly motivate and explain Assumption 1. Intu-
itively, Assumption 1(a) means that the length of the time
interval between two consecutive change-points is larger
than L. This guarantees that Algorithm 2 can select at least
w samples from every arm, and these samples are used to
feed the CD algorithm. Assumption 1(b) means that the
change amplitude is over certain threshold for at least one
arm at each change-point. This guarantees that the CD al-
gorithm is able to detect the change quickly with limited
information. If a lower bound δ > 0 on mini maxk∈K δ

(i)
k
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can be assumed, then one can choose

w ≈ (4/δ2) · [(log(2KT 2))1/2 + (log(2T ))1/2]2 (6)

to satisfy Assumption 1(b). Our main result is the following
regret bound:
Theorem 1. Running Algorithm 2 with w and γ satisfying
Assumption 1 and b = [w log(2KT 2)/2]1/2, we have

R(T ) ≤
∑M
i=1 C̃i︸ ︷︷ ︸
(a)

+ γT︸︷︷︸
(b)

+
∑M−1
i=1

2K·min(w2 ,d
b

δ(i)
e+3
√
w)

γ︸ ︷︷ ︸
(c)

+ 3M︸︷︷︸
(d)

,
(7)

where δ(i) = maxk∈K δ
(i)
k and C̃i = 8

∑
∆

(i)
k >0

log T

∆
(i)
k

+(
1 + π2

3 +K
)∑K

k=1 ∆
(i)
k .

Theorem 1 reveals that the regret incurred by M-UCB can
be decomposed into four terms. Terms (a) and (b) in equa-
tion (7) bound on the exploration costs: term (a) bounds
the cost of the UCB-based exploration, and term (b) bounds
the cost of the uniform sampling. On the other hand, terms
(c) and (d) bound the change-point detection costs: term (c)
bounds the cost associated with the detection delay of the
CD algorithm, and term (d) is incurred by the unsuccessful
and incorrect detections of the change-points. The following
corollary follows immediately from Theorem 1.
Corollary 1. Assume δ > 0 is a lower bound on
mini maxk∈K δ

(i)
k . If we run Algorithm 2 with a window-

length w,
b = [w log(2KT 2)/2]1/2,

and

γ =
√

(M − 1)K ·min(w/2, db/δe+ 3
√
w)/(2T ),

then we have

R(T ) ≤
∑M
i=1 C̃i

+ 4

√
(M − 1)TK ·min(w/2, db/δe+ 3

√
w) + 3M.

(8)

For any fixed w, the upper bound for the regret in equa-
tion (8) is

O(
√
MKT log T ) = Õ(

√
MKT ),

where Õ notation hides logarithmic factors. Compared with
the lower bound in Ω(

√
T ) [Garivier and Moulines, 2008],

our regret bound is asymptotically tight up to a logarithmic
factor. In Section 6.1, we validate numerically that when
scaled by 1/

√
T , the scalings of Algorithm 2’s regret in M

and K are roughly O(
√
M) and O(

√
K), as is suggested

in Corollary 1. We leave the derivation of the lower bound
in K and M to future work.

Corollary 1 also sheds some insights on how to choose
tuning parameters w, b, and γ in Algorithm 2.
Remark 1 (Algorithm Parameter Tuning). We now dis-
cuss how to choose algorithm parameters w, b, and γ
based on Corollary 1. In practice, we mainly care about
large changes since small changes do not incur much
regret. Assume an minimum change size δ̃ > 0 then
following from equation (6) and Corollary 1, we can
choose the window size w ≈ (4/δ̃2) · [(log(2KT 2))1/2 +
(log(2T ))1/2]2, b ≈ [w log(2KT 2)/2]1/2, and γ ≈
(
∑M−1
i=1 K ·min(w/2, db/δ̃e+ 3

√
w)/(2T )1/2.

The proof outline for Theorem 1 is provided in section 5.1
and more details for technical lemmas are given in Ap-
pendix A. The main steps of the proof are as follows. First,
we rely on standard bandit analysis to decompose R(T )
over a set of “good" events and a set of “bad" events: the
good events include all the sample paths that Algorithm 2
reinitializes the UCB algorithm quickly after any change-
point. The set of bad events includes all the sample paths
that Algorithm 2 that either fails to reinitialize the UCB
algorithm quickly when there is a change-point or incor-
rectly reinitializes the UCB algorithm when there is not any
change-point. This enables us to couple the change-point
detection analysis with bandit analysis, and we identify that
the parameters specified in Theorem 1 will ensure that the
set of good events occurs with a high probability.

5.1 Proof Outline of Theorem 1

In this subsection, we outline the proof for Thereom 1. De-
tailed proofs are provided in Appendix A.

First, we bound the regret incurred by Algorithm 2 in the
stationary scenario with M = 1, ν0 = 0, and ν1 = T .
Lemma 1 (Regret bound for the M-UCB algorithm in sta-
tionary scenarios). Consider a stationary scenario with
M = 1, ν0 = 0, and ν1 = T . Under Algorithm 2 with
parameter w, b and γ, we have that

R(T ) ≤ T · P(τ1 ≤ T ) + C̃ + γT, (9)

where τ1 is the first detection time and

C̃ = 8
∑

∆
(1)
k >0

log T

∆
(1)
k

+
(

1 + π2

3 +K
)∑K

k=1 ∆
(1)
k .

Remark 2. Lemma 1 shows that the regret for the M-UCB
algorithm in the stationary scenario is incurred by three
sources. The term P(τ1 ≤ T ) on the right-hand side of (9)
is the probability of raising one false alarm. This can be
controlled to be small through setting appropriate algorithm
parameters. The term C̃ is the classic regret bound for the
UCB-based exploration in stationary scenarios. The term
γT is incurred by the uniform sampling exploration.
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Please refer to Appendix A.1 for the proof of Lemma 1.
Next, we bound the probability of restarting Algorithm 2
when there is no change-point. This probability is equivalent
to the probability of the CD algorithm raising a false alarm
in the stationary scenario discussed above.
Lemma 2 (Probability of raising false alarms in the station-
ary scenario). Consider a stationary scenario with M = 1.
Then under Algorithm 2 with parameter w < T , b and γ,
we have that

P(τ1 ≤ T ) ≤ wK
(

1−
(
1− 2 exp

(
−2b2/w

))bT/wc)
,

where τ1 is the first detection time.
Remark 3. Using the fact that (1 − x)a > 1 − ax for
any a > 1 and 0 < x < 1, we have that in Lemma
2 P(τ1 ≤ T ) ≤ 2KT exp(−2b2/w). Therefore, setting
b = [w log(2KT 2)/2]1/2 we have that P(τ1 ≤ T ) ≤ 1/T ,
which means that it is expected to raise at most only one
false alarm in a stationary scenario with T time steps.

Please refer to Appendix A.2 for the proof of Lemma 2.
Then, we establish a lower bound on the probability that the
CD algorithm (Algorithm 1) achieves a successful detection
in scenarios with one change-point, i.e. M = 2.
Lemma 3 (Probability of achieving a successful detection
with M = 2). Consider a piecewise-stationary scenario
with M = 2, and recall that L = wdK/γe. Assume that
ν2 − ν1 > L/2. For any µ1, µ2 ∈ [0, 1]K satisfying

δ
(1)

k̃
≥ 2b/w + c

for some k̃ ∈ K and c > 0, under Algorithm 2, we have that

P(ν1 < τ1 ≤ ν1 +L/2 | τ1 > ν1) ≥ 1−2 exp
(
−wc2/4

)
.

Remark 4. Setting b =
√
w log(2KT 2)/2 and c =

2
√

log(2T )/w in Lemma 3, we have that with probabil-
ity at least 1− 1/T , a change can be detected in L/2 steps
after the change occurs , provided that δ(1)

k̃
is greater than

C1/
√
w for some constant C1 that only depends on T and

K. This shows that we can set a larger w to achieve a
successful detection of a smaller change.

Please refer to Appendix A.3 for the proof of Lemma 3.
Lemma 3 relates the tuning parameter b and w to the small-
est change that the CD algorithm can successfully detect
with high probability.

In the next lemma, for scenarios with M = 2, we bound
the expected detection delay (EDD) by a function of the
change amplitude, given that the change can be detected
successfully. In other words, Lemma 3 characterizes a lower
bound on change amplitude to ensure that the detection
delay is no more than L/2 with high probability. When the
change amplitude is not so small, the EDD can be smaller
than L/2, as presented in the following lemma.

Lemma 4 (Expected detection delay). Consider a
piecewise-stationary scenario with M = 2, and recall
that L = wdK/γe. Assume that ν2 − ν1 > L/2. For
any µ1, µ2 ∈ [0, 1]K satisfying δ(1)

k̃
> 2b/w + c for some

k̃ ∈ K, we have that

E[τ1 − ν1 | ν1 < τ1 ≤ ν1 + L/2]

≤
min(L/2, db/δ(1)

k̃
e+ 3

√
w · dK/γe)

1− 2 exp (−wc2/4)
.

Please refer to Appendix A.4 for the proof of Lemma 4.

Theorem 1 can be proved based on the above four lemmas
and properties of renewal processes. Specifically, we de-
compose R(T ) over a set of “good" events and a set of
“bad" events: the good events include all the sample paths
that Algorithm 2 reinitializes the UCB algorithm correctly
and quickly after all change-points. The set of bad events in-
cludes all the sample paths that Algorithm 2 that either fails
to reinitialize the UCB algorithm quickly when there is a
change-point (large detection delay) or incorrectly reinitial-
izes the UCB algorithm when there is not any change-point
(false alarm). Lemma 2 and 3 can be used to upper bound
the probabilities of the bad events. Together with the naive
bound R(T ) ≤ T , we can bound the regret in the bad
events. On the other hand, Lemma 1 and 4 can be used to
upper bound the regret in the good events. Please refer to
Appendix A.5 for the detailed proof for Theorem 1.

6 Experiments

In this section, we present some numerical experiments to
validate the performance of M-UCB. We first verify the
scalings of M-UCB’s regret in M and K and then compare
M-UCB with state-of-the-art algorithms on a publicly avail-
able benchmark Yahoo! dataset and a real-world digital
marketing dataset.

6.1 Regret Scalings in M and K

To eliminate the scaling issue caused by different T ’s, in this
subsection we scale the empirical regret by 1/

√
T . For the

illustrative purposes, we assume the rewards are Bernoulli
distributed.

We first show the regret scaling in M . We fix K = 10, and
let the locations of change-points to be evenly spaced with
interval of length 20000 so for any M we have T = 20000 ·
M . For the reward sequence of each arm, we set µ(i) = µ
when i is odd and µ(i) = 1 − µ when i is even, where
µ ∈ [0, 1]K is randomly chosen such that the difference
between the largest and smallest entry is larger than 0.6.
Consider an upper bound 20000×25 for T , an upper bound
10 for K and a lower bound 0.6 for δ. Based on Remark
1, we can set w = 800 and b =

√
(w/2) · log(2KT 2) and
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γ =
√

(M − 1)K · (2b+ 3
√
w)/(2T ). For each M , we

randomly generate 100 instances, and for each instance, we
run the M-UCB algorithm for 50 times. We generate the
averaged regret by averaging over these 5000 simulations.
The results are shown in Figure 1, which can be fitted using
the simple model y = c+ axb to obtain an estimated order
b = 0.55, which means that the regret is roughly on the
order of O(

√
M).
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Figure 1: Cumulative regret of M-UCB up to time T scaled
by
√
T versus M .

We then demonstrate the regret scaling inK. We fixM = 4,
T = 3× 105 and let the change-points to be evenly spaced.
For each i = 1, . . . , 4, we randomly generate µ(i) ∈ [0, 1]K

such that the difference between the largest and smallest
entry is larger than 0.6 and one combination of K and
(µ(i))4

i=1 forms one instance. We set the same algorith-
mic parameters as those in the first simulation example. We
then generate 100 random instances, and for each instance
we repeat our algorithm for 50 times to obtain the averaged
regret. The results are shown in Figure 2, which again can
be fitted with the simple model y = c + axb to obtain an
estimated order b = 0.53, which means that the regret grows
roughly at a rate of O(

√
K).
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Figure 2: Cumulative regret of M-UCB up to time T scaled
by
√
T versus K.

The above results suggest that the regret bound in Corol-
lary 1 is roughly tight in M and K for M-UCB algorithm.

6.2 Experiment on Yahoo! Dataset

We compare the expected cumulative regret of different al-
gorithms using the benchmark dataset publicly published by
Yahoo!1. This dataset provides a binary value for each ar-
rival to represent whether the user clicks the specified article
[Chu et al., 2009, Li et al., 2011]. We use one arm to repre-
sent one article and assume a Bernoulli reward (one if the
user clicks the article and zero otherwise). The goal is set
to maximize the expected number of clicked articles using
strategies that select one article for each arrival sequentially.
We randomly select six different articles of which the click-
through rates are greater than zero within one five-day hori-
zon, where the click-through rates are computed by taking
the mean of the number of times each article being clicked
every 43200 seconds (which corresponds to a half day). If
the difference between the estimated click-through rate of
the current half day and that of the last half day is less than
0.01, we set the click-through rate of the current half day as
that of the last half day. In this way, we obtain a piecewise-
stationary scenario with T = 43200 × 10 = 4.32 × 105,
K = 6 and M = 9, as shown in Figure 3.
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Figure 3: Click-through rates computed from Ya-
hoo! dataset with T = 4.32 × 105,K = 6 and
M = 9.
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Figure 4: Expected cumulative regrets for different
algorithms under the piecewise-stationary scenario
shown in Figure 3.

Along with our algorithm using the same w, b and γ as
1Yahoo! Front Page Today Module User Click Log Dataset on

https://webscope.sandbox.yahoo.com
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those in subsection 6.1, we run five other algorithms, Dis-
counted UCB (D-UCB), Sliding-Window UCB (SW-UCB),
EXP3, EXP3.S and SHIFTBAND for comparison. Based on
the theoretical results in [Garivier and Moulines, 2008], we
choose γ = 1−0.25

√
(M − 1)/T and ξ = 0.5 for D-UCB

and choose τ = 2
√
T log T/(M − 1) in SW-UCB. Based

on Theorem 1 in [Auer, 2002], we choose δ = 0.05, α =
2
√

log(T 3K/δ), β = 1/T and η =
√

log(TK)M/(TK)
for the SHIFTBAND algorithm. For EXP3 and EXP3.S
algorithms we select parameters to be the same as those
in [Auer et al., 2002b]. 2 The expected cumulative regret
is computed by taking the average of the regrets for 100
independent Monte Carlo trials, as shown in Figure 4.

The results show that the M-UCB algorithm achieves a better
performance than other algorithms even if all the algorithms
seem to have a sub-linear regret. Compared with EXP3 and
EXP3.S, M-UCB achieves a 50% reduction of the cumula-
tive regret and this number is 60% if we make comparisons
with SW-UCB, D-UCB and SHIFTBAND algorithms.

It is worth clarifying that our experiment on the Yahoo
dataset does not satisfy Assumption 1 in the sense that it
contains many small-magnitude changes. Thus, we believe
it is a fair comparison for all algorithms. Specifically, in
this case K = 6 and T = 432000, and we choose w = 800
for M-UCB. Thus, Assumption 1 requires that all changes
have magnitude no less than 0.64. However, as is shown
in Figure 3, all changes have magnitude less than 0.1. This
experiment shows that M-UCB works well and outperforms
state-of-the-art baselines even if Assumption 1 does not
hold.

6.3 Digital Marketing

In addition to the experiment on Yahoo dataset, we have
also compared M-UCB (same w, b and γ as in 6.1) with the
state-of-the-art algorithms on a real-world digital marketing
dataset. The experiment setup is similar to the one with Ya-
hoo dataset with K = 10 and T = 2520000. The expected
arm rewards and the cumulative regrets are shown in Figure
5 and Figure 6, respectively.

Experiment results show that M-UCB can reduce the cu-
mulative regret of SW-UCB by 60%, and reduce the cumu-
lative regret of EXP3 by 93%. These experiment results
suggest that, by adaptively detecting and quickly adapting
to the changes, M-UCB algorithm is expected to achieve
significant regret reductions compared with the state-of-the-
art. Note that this setting also violates the Assumption 1.
Specifically, Assumption 1 requires that all changes have
magnitude no less than 0.68, but many changes have smaller
magnitudes.

The lower bound computed for δ is 0.68 but many changes

2Specifically, The parameters for EXP3 and EXP3.S are se-
lected based on Corollary 3.2 and 8.2 in [Auer et al., 2002b].

Figure 5: Expected rewards computed based on the
digital marketing dataset with T = 2.52×106,K =
10 and M = 12.

Figure 6: Expected cumulative regrets for different
algorithms under the piecewise-stationary scenario
shown in Figure 5.

have smaller magnitudes.

7 Conclusion

In this paper, we have developed a so-called M-UCB algo-
rithm (Algorithm 2) for piecewise-stationary bandits with
bounded rewards. M-UCB combines the UCB (with uni-
form exploration) with a simple change-point detection com-
ponent based on running sample means over a sliding win-
dow. We prove that M-UCB algorithm achieves a nearly
optimal regret bound on the order of O(

√
MKT log T ) un-

der mild technical conditions. Our experiment results also
show that it can achieve significant regret reduction with
respect to the state-of-the-art algorithms in numerical exper-
iments based on real-world datasets.

Our proposed M-UCB algorithm is based on the classical
UCB1 algorithm. We may improve by considering other
exploration schemes (e.g. KL-UCB, Thompson sampling)
in the current setup. One can foresee that as long as the
exploration schemes are statistically efficient, then a variant
of our analysis will carry through.
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