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Abstract

Motivated by applications in clinical trials
and finance, we study the problem of online
convex optimization (with bandit feedback)
where the decision maker is risk-averse. We
provide two algorithms to solve this prob-
lem. The first one is a descent-type algorithm
which is easy to implement. The second algo-
rithm, which combines the ellipsoid method
and a center point device, achieves (almost)
optimal regret bounds with respect to the
number of rounds. To the best of our knowl-
edge this is the first attempt to address risk-
aversion in the online convex bandit problem.

1 Introduction

In this paper we study the problem of Online Risk-
Averse Stochastic Optimization which generalizes On-
line Convex Optimization (OCO) when the loss func-
tions are sampled i.i.d from an unknown distribution.
During the last decade OCO has received a lot of at-
tention due to its many applications and tight relations
with problems such as Universal Portfolios [7, 17, 18],
Online Shortest Path [29], Online Submodular Mini-
mization [14], Convex Optimization [4, 13], Game The-
ory [6] and many others. Along with OCO came On-
line Bandit Optimization (OBO) a similar but more
challenging line of research, perhaps more realistic in
some applications, where the feedback is limited to ob-
serving only the function values of the chosen actions
(bandit feedback) instead of the whole functions [9].
The standard goal of OCO and OBO is to develop
algorithms such that the standard average regret
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vanishes as quickly as possible. In other words, we
want our average loss to be as close as possible to the
best loss if we had known all the functions in advance
and committed to one action. Here the sequence of
convex functions {ft}Tt=1 may be chosen by an adver-
sary and the regret minimizing algorithm chooses ac-
tion xt+1, in some bounded convex set X by using only
the information available at time t. This means that
in the OCO setting the algorithm may use {x1, ..., xt}
and {f1(·), ...ft(·)}, and in the OBO setting it may
only use {x1, ..., xt} and {f1(x1), ...ft(xt)}. Due to re-
cent breakthroughs [5, 15] we now have efficient algo-
rithms (that meet lower bounds in terms of the number
of rounds Ω( 1√

T
) up to logarithmic factors) for both

problems, OBO and OCO. While the set up of OCO
and OBO is very powerful because it allows for the
loss functions to be chosen adversarially, in some ap-
plications such as medicine and finance this may not
be enough.

Let us consider an example in clinical trials. Suppose
there are T patients with some rare disease and we
have at our disposal a new drug that has the poten-
tial to cure the disease if we prescribe the right dose.
Since we do not know what the right dose is, we must
learn it as we treat each patient. In other words, we
will choose a dose, observe the reaction of a patient
and chose a new dose for the next patient. The pre-
vious problem can of course be be abstracted as an
OBO problem, where each function ft(·) encodes how
patient t will react to the dose we prescribe xt. Here,
the assumption that ft is chosen adversarially may not
be very realistic and perhaps it makes more sense to
assume that ft is drawn randomly from some family of
functions. An algorithm that guarantees that the stan-
dard average regret vanishes can be seen as an algo-
rithm that is choosing the optimal dose for the average
patient, something that is non-trivial to do. Unfortu-
nately, such guarantee completely ignores what may
happen to patients that do not look like the average
patient. It could be that the optimal dose for the av-
erage patient has really negative effects on 5% of the
patients. In this case, a dose that is slightly less ef-
fective on the average patient but does not harm the
unlucky 5% may be more desirable. Thus, the goal of
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this paper is to provide algorithms for OCO and OBO
that explicitly incorporate risk. By “risk” we mean the
possibility of really negative outcomes, as it is used in
the Economics and Operations Research communities.

Another area where an explicit consideration of risk
must be taken into account is finance. For example, in
[8] the authors show that in the online portfolio prob-
lem, risk neutral guarantees such as performing as well
as the best constant rebalanced portfolio (i.e. mini-
mizing standard average regret) may not perform well
in practice. They show through experiments on the
S&P500 that the simple strategy that maintains uni-
form weights on all the stocks outperforms that which
seeks to perform as well as the best stock (regardless
of its theoretical guarantees). To explicitly incorporate
risk into the setting of OCO and OBO we will use a
coherent risk measure called Conditional Value at Risk
(CV aR) [24], sometimes also called Expected Short-
fall, which is widely used in the financial industry. Af-
ter the financial crisis of 2008, the Basel Committee on
Banking Supervision created the Third Basel Accord
(Basel III), a set of regulatory measures to strengthen
the regulation, supervision and risk management of
the banking sector [10]. In this accord one of the main
points was to migrate from quantitative risk measures
such as Value at Risk to Conditional Value at Risk
since it better captures tail risk.

It should be clear from the previous examples that
generally speaking, human decision makers are risk-
averse. They prefer consistent sequences of rewards
instead of highly variable sequences with slightly bet-
ter rewards. Because of the previous, we want to de-
velop algorithms that explicitly incorporate risk which
have strong theoretical guarantees.

Our main contributions are the following. First, we
develop and analyze two algorithms for the online
stochastic convex bandit problem that explicitly in-
corporate the risk aversion of the decision maker (as
measured by the CV aR). On our way we develop a
finite-time concentration result for the CV aR. Second,
we extend our results to the case where the decision
maker uses more general risk measures to measure risk
by using the Kusuoka representation theorem.

2 Related Work

Risk aversion has received very little attention in the
online learning setting. The few existing work all fo-
cuses on the case where the number of actions is fi-
nite. For the stochastic multi-armed bandit problem,
[25] provide algorithms that ensure the mean-variance
of the sequence of rewards generated by the algorithm
is not too far from the mean-variance of the rewards
generated by the best arm. In [30] the same problem

is studied and the authors provide tighter upper and
lower bounds. In [19] the author considers a different
risk measure, the cumulant generative function, and
provide similar guarantees for a slightly modified defi-
nition of regret. In [11] the authors consider the CV aR
as measure of risk aversion and provide algorithms that
achieve sublinear regret. The notion of regret they use
is different from the one we will use as they do not
look at the risk of the sequence of rewards obtained
by the algorithms, but instead they seek to perform as
well as the arm that minimizes CV aR (i.e., “pseudo
regret” as we called). The pseudo regret bound they
prove, although optimal with respect to T scales lin-
early in the number of arms. By using a discretization
approach in our setting together with their algorithm
would yield an algorithm with pseudo regret that de-
pends exponentially in the dimension of the problem
with exponential running time. The previous is of
course undesirable, therefore different tools must be
used. In [31] the authors study the related problem of
best arm identification where the goal is to identify the
arm with the best risk measure. They consider Value
at Risk, CV aR, and Mean-Variance as risk measures.
In [8] the authors consider risk aversion in the experts
problem. This setting is similar to the multi-armed
bandit problem with the difference that the rewards
are assigned adversarially, and at each time step all
the rewards are visible to the player. In particular they
seek to build algorithms such that the mean variance
(or Sharpe ratio) of the sequence of rewards generated
by the algorithm are as close as possible to that of
the best expert. They show negative results for this
problem however they provide algorithms that perform
well for “localized” versions of the risk measures they
consider.

To the best of our knowledge, all existing work that
explicitly incorporates risk aversion under the assump-
tions of stochastic rewards and bandit feedback is re-
stricted to the multi-armed bandit model. This paper
is the first to consider an infinite number of arms and
incorporate risk aversion under bandit feedback. In
[8], where risk aversion in the experts problem is stud-
ied, one can think of instead of choosing an expert at
every round one chooses a probability distribution over
the experts. While the set of probability distributions
over the experts is a convex set, this is a very special-
ized case (linear functional and simplex feasible set).
Moreover, the authors assume full information feed-
back and adversarial rewards, which are very different
from our setup.

3 Preliminaries

This section is devoted to preliminaries. In particu-
lar we review relevant concepts and technical results
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essential to develop the proposed algorithms.

3.1 Notation

Let || · || be the l2 norm unless otherwise stated.
By default all vectors are column vectors, a vector
with entries x1, ..., xn is written as x = [x1; ...;xn] =
[x1, ..., xn]> where > denotes the transpose. For a ran-
dom variable X, X ∼ P means that X is distributed
according to distribution P . We let ∇g(x) be any el-
ement in the subdifferential of g at x. Whenever we
write ∇f(x, ξ) we mean ∇xf(x, ξ). Throughout the
paper we will use O notation to hide constant factors.
We use Õ notation to hide constant factors and poly-
logarithmic factors of the number of rounds T , the
inverse risk level 1

α and the dimension of the problem
d.

3.2 One-Point Gradient Estimation

Consider function f : Rd → R which is G-Lipschitz
continuous. Define its smoothened version

f̂δ(x) := Ev∼B[f(x+ δv)]

where B is the uniform distribution over the unit ball
of appropriate dimension. From now on we omit su-
perscript δ and write f̂(x). Define random quantity

g =
d

δ
f(x+ δu)u (1)

with u ∼ S where S is the uniform distribution over
the unit sphere. We have the following

Lemma 1. [16][Ch.2] f̂ satisfies the following:

1. If f is α-strongly convex then so is f̂

2. |f(x)− f̂(x)| ≤ δG

3. E[g] = ∇f̂(x)

That is, the smoothened version of f is convex as well,
it is not too far from f , and by sampling from the
unit sphere we can obtain an unbiased estimate of its
gradient.

3.3 Conditional Value at Risk

In [24] the authors define the α-Value at Risk of ran-
dom variable X as

V aRα[X] := inf{t : P (X ≤ t) ≥ 1− α}.

Using the above definition they define Conditional
Value at Risk (CV aR, sometimes also called Expected
Shortfall) as

Cα[X] := CV aRα[X] :=
1

α

∫ α

1−α
V aR1−τ [X]dτ. (2)

Moreover, when the random variable has c.d.f. H(x)
continuous at x = V aRα[X] it holds that

Cα[X] = E[X|X ≥ V aRα[X]]. (3)

We make use of the following notation. Let {at}Tt=1

be an arbitrary sequence of real numbers, we let
Cα[{at}Tt=1] be the Conditional Value at Risk of the
discrete random variable that takes each value at with
probability 1/T for all t = 1, ..., T .

Below we state some well known results that will be
used later. The proofs for the next two lemmas can be
found in [28].

Lemma 2.

Cα[X] = min
z∈R

z +
1

α
E[X − z]+, (4)

where [a]+ := max{a, 0}. In fact, if 0 ≤ X ≤ 1 with
probability 1, the condition z ∈ R can be replaced with
z ∈ [0, 1].

Lemma 3. Let ξ be a random variable supported in
Ξ with distribution P , let X ⊂ R be a convex and
compact and let f : X × Ξ → R be convex in x for
every ξ. Define F = f(x, ξ). Then

Cα[F ](x) := CV aRα[F ](x) = min
z
z +

1

α
Eξ[f(x, ξ)− z]+

and Cα[F ](x) is a convex function of x. In fact, if
f(·, ξ) is β-strongly convex for every ξ ∈ Ξ, then so is
Cα[F ](x).

4 Problem Setup

In this section we formally define the setup of our prob-
lem. Let ξ be a random variable supported in Ξ with
unknown distribution P . Let X ⊂ Rd be a convex
and compact set with diameter DX that contains the
origin. Let f : X × Ξ → R be a convex function
in the first argument for every ξ ∈ Ξ. Let f satisfy
||∇f(x, ξ)|| ≤ G for every x ∈ X and every ξ ∈ Ξ. We
define random function F (x) = f(x, ξ) in the sense
that for every x ∈ X, F (x) is a random variable. We
also assume that for every x ∈ X, 0 ≤ F (x) ≤ 1 with
probability 1.

A risk-averse player will make decisions in a stochas-
tic environment for T time steps. In every time step
t = 1, ..., T the player chooses action x̃t ∈ X, and
nature obtains sample ξt from P . Then, the player in-
curs and observes only the loss incurred by its action
f(x̃t, ξt) (when convenient we also make use of the fol-
lowing notation ft(x) , f(x, ξt)). If the player were
risk neutral then a reasonable goal would be to design
an algorithm that obtains (in expectation) vanishing
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standard average regret, that is

E[
1

T

T∑
t=1

f(x̃t, ξt)−
1

T
min
x∈X

T∑
t=1

f(x, ξt)] = o(1).

Where the expectation is taken with respect to the ran-
dom draw of functions and the internal randomization
of the algorithm. Such is the standard goal of OCO
and OBO, and as mentioned in the introduction, there
already exist polynomial time algorithms that achieve
the optimal lower bound of Ω(1/

√
T ) (up to logarith-

mic factors) even when the functions f are chosen by
an adversary instead of from some distribution.

In our setting, since the player is risk averse, the notion
of average regret is not appropriate. In this section we
assume that the player uses the Conditional Value at
Risk Cα[·] = CV aRα[·] for some α ∈ (0, 1] to measure
risk (when α = 1, Cα[·] = E[·] i.e. the player becomes
risk neutral). With this in mind, the following two
quantities become interesting, namely pseudo-CV aR-
regret defined as

R̄T :=
1

T

T∑
t=1

Cα[F ](x̃t)−
1

T
min
x∈X

T∑
t=1

Cα[F ](x) (5)

and CV aR-regret defined as

RT := Cα[{ft(x̃t)}Tt=1]−min
x∈X

Cα[{ft(x)}Tt=1],

where we make more explicit what we mean by
Cα[{ft(xt)}Tt=1] in the next paragraph. In this setup,
a risk averse player may be concerned with two types
of risk, the risk of the individual losses it incurs and
the overall risk of playing the game. The player that
is concerned about the risk of the individual losses,
should be pleased with an algorithm that obtains van-
ishing R̄T , this would ensure that the average risk of
the losses it incurs is not too far from that of the best
point in the set.

On the other hand, the player that is concerned about
the overall risk of playing the game may desire a dif-
ferent guarantee. Notice that the sequence of losses
that the player incurs {ft(x̃t)}Tt=1 defines an empiri-
cal distribution where every realization ft(x̃t) occurs
with probability 1

T and as such we can compute its
risk Cα[{ft(x̃t)}Tt=1]. It is then natural for the player
to desire a sequence of losses that has risk as close as
possible to the minimum risk sequence of losses (where
the sequence is generated by playing only one action).
The quantity RT makes the previous statement pre-
cise.

A reader familiar with the OBO literature may notice
that (5) already looks like a quantity for which run-
ning Online Gradient Descent without a Gradient may

yield vanishing regret. Unfortunately, at every step all
we observe is ft(x̃t) and not Cα[F ](x̃t). To obtain a
reasonable (not too noisy) evaluation of Cα[F ](·) the
same x must be played for several rounds. It is possi-
ble to design algorithms that follow this idea, however,
since we were able to develop better algorithms for the
same problem we do not further discuss the details of
this somewhat naive approach.

5 A Finite-Time Concentration
Result for the CV aR

Before we present the algorithms we must derive a
finite-time concentration result for the CV aR. This
result will be heavily used to prove sublinear regret
bounds for both algorithms. In [28] the authors
present an asymptotic result. Unfortunately, since our
goal is to achieve finite-time bounds we could not use
it and had to prove our own result. To the best of our
knowledge this is the first finite time concentration re-
sult for the CV aR.

Theorem 1. Suppose 0 ≤ f(x, ξ) ≤ 1 for every x ∈
X and every ξ ∈ Ξ . For any x ∈ X, let the N-

sample estimate of CV aRα[F ](x) be ̂CV aRα[F ](x) :=

minz∈Z z+ 1
αN

∑N
n=1[f(x, ξn)−z]+. Where Z := [0, 1].

It holds that with probability at least 1− δ,

|CV aRα[F ](x)− ̂CV aRα[F ](x)| ≤ O(

√
ln(N/δ)

α2N
).

While the previous result holds with high probability
it is also possible to derive from it a result that holds
in expectation.

To prove such a result we had to use a finite time
concentration result for Lipschitz functions from [26]
applied to the sequence of functions {z + 1

α [f(x, ξt)−
z]+}Tt=1. After this, some extra work had to be done
transform this guarantee into one that holds for the
CV AR. A formal proof of the theorem can be found
in the appendix.

6 Algorithm 1

In this section we provide an algorithm that obtains
vanishing regret while playing an action only once.
The key to the algorithm is to look at functions
Lt(x, z) := z+ 1

α [f(x, ξt)− z]+ which by Lemma 3 are
closely related to Cα[F ](x). Although with one sam-
ple we can not evaluate (accurately enough) Cα[F ](·),
we can evaluate Lt. This observation is important be-
cause it will allow us to build one-point gradient es-
timators of the smoothened function L̂t as it is done
in [9]. These one-point gradient estimators will allow
us to perform a descent step. This idea allows us to
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obtain sublinear pseudo-regret. The rest of the anal-
ysis consists of using the bound on the pseudo-regret
to bound the regret.

Algorithm 1

Input: X ⊂ Rd, x1 ∈ X, z1 ∈ Z := [0, 1] step size
η, δ
for t = 1, ..., T do

Sample u ∼ Sd+1

Let u1 = [u1; ...;ud] and u2 = ud+1

Play x̃t := xt + δu1, incur and observe loss ft(x̃t)

Let z̃t = zt + δu2

Let g1
t := (d+1)

δ (z̃t + α−1[ft(x̃t)− z̃t]+)u1

Let g2
t := (d+1)

δ (z̃t + α−1[ft(x̃t)− z̃t]+)u2

Update xt+1 ← ΠXδ(xt − ηg1
t )

Update zt+1 ← ΠZδ(zt − ηg2
t )

end for

Here Sd denotes the uniform distribution over the d-
dimensional unit sphere, Xδ := {x : 1

1−δx ∈ X} and
ΠX [·] denotes the || · ||2 projection onto convex set X.

We have the following two main results.

Theorem 2. Using η = αDL
(d+1)T 3/4 and δ = 1

T 1/4 Algo-

rithm 1 guarantees:

E[R̄T ] ≤ O(
d

αT 1/4
).

Where the expectation is taken over the random draw
of functions and the internal randomization of the al-
gorithm. DL is specified in the appendix.

Theorem 3. Let f(x, ξ) be strongly convex with pa-
rameter β > 0. Algorithm 1 guarantees

E[RT ] ≤ Õ(
d1/2

α3/2β1/2T 1/8
).

Where the expectation is taken over the random draw
of functions and the internal randomization of the al-
gorithm.

The proofs of these theorems can be found in the ap-
pendix.

7 Algorithm 2

Algorithm 1, while it is intuitive and easy to im-
plement, does not achieve the optimal pseudo-regret
bound of 1√

T
. In this section, we adapt an algorithm

from [2] that achieves the optimal regret bound (up to
logarithmic factors), unfortunately its dependency on
d is less than ideal. We consider the cases d = 1 and
d > 1 separately.

7.1 The 1-Dimensional Case

For simplicity, in this section we assume that X =
[0, 1] and that f(·, ξ) is 1-Lipschitz continuous for ev-
ery ξ ∈ Ξ. This implies that Cα[F ](·) is also 1-
Lipschitz continuous (see Lemma 10 in the appendix).
We let LBγi(x) and UBγi(x) denote the Cα[F ](·)
lower and upper bounds of the confidence intervals
(CI’s) of width γi at point x. That is, sample point

x ln(T/(αγ))
γ2
i α

2 times, compute the empirical CV aRα,

Ĉα[F ](x) and let UBγi(x) := Ĉα[F ](x) + γi and

LBγi(x) := Ĉα[F ](x)− γi.

The algorithm proceeds in epochs and rounds until we
have played a total of T times. In epoch τ the al-
gorithm works with region [lτ , rτ ]. In this region we
will be playing three points xl, xc, xr (xc is the center
point) for several rounds i = 1, 2, ... . In each round i

the algorithm will play ln(T/(αγ))
α2γ2

i
times the aforemen-

tioned points and build CI’s for Cα[F ]. Roughly speak-
ing, the reason why the algorithm works is because in
every round we are 1) either playing points such that
we are not suffering too much pseudo-regret or 2) we
are quickly identifying a subregion of the working re-
gion which only contains “bad points” and discarding
it. Every time 2) occurs we are shrinking the working
region by a constant factor, this will guarantee that
after not too many rounds we are only working with a
small feasible region.

For convenience we denote h(x) := Cα[F ](x) and x∗ :=
argminx∈Xh(x). Notice that the minimizer need not
be unique in which case we choose one arbitrarily. At
the end of a round one of the following occurs:

Case 1. The CI’s around h(xl) and h(xr) are suffi-
ciently separated. If this is the case, then by convexity
we can discard one fourth of the working feasible re-
gion: either the one to the left of xl or the one to the
right of xr .

Case 2. If Case 1 does not occur, the algorithm checks
if the CI around h(xc) is sufficiently below at least one
of the CI’s around h(xl) or h(xr). If this is the case
then we can discard one fourth of the working feasible
region.

Case 3. If neither Case 1 or Case 2 occurs then we
can be sure that the function is flat in the working
feasible region (as measured by γ) and thus we are not
incurring a very high pseudo-regret.

The main results of this section are the following.

Theorem 4. With probability at least 1− 1
T , Algorithm

2 (1-D) guarantees

R̄T ≤ O(
ln(T )√
Tα

ln(
αT

ln(T )
)).
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Algorithm 2 (d = 1)

Input: Input: X ∈ [0, 1], total number of time-steps T
Let l1 := 0, r1 := 1
for epoch τ = 1, 2, ... do

Let wτ := rτ − lτ
Let xl := lτ + wτ/4, xc = lτ + wτ/2, xr := lτ + 3wτ/4
for round i = 1, 2, ... : do

Let γi = 2−i

For each x ∈ {xl, xc, xr} play x ln(T/(αγ))
γ2
i α

2 times and build CI’s: [Ĉα[F ](xk)]− γi, Ĉα[F ](xk) + γi] for

k ∈ {l, c, r}
if max{LBγi(xl), LBγi(xr)} ≥ min{UBγi(xl), UBγi(xr)}+ γi (Case 1) then

if LBγi(xl) ≥ LBγi(xr) then
set lτ+1 := xl and rτ+1 := rτ

else
set lτ+1 := lτ and rτ+1 := xr

end if
Continue to epoch τ + 1

else if max{LBγi(xl), LBγi(xr)} ≥ UBγi(xc) + γi (Case 2) then
if LBγi(xl) ≥ LBγi(xr) then

set lτ+1 := xl and rτ+1 := rτ
else

set lτ+1 := lτ and rτ+1 := xr
end if
Continue to epoch τ + 1

end if (Case 3)
end for

end for

Theorem 5. Let f(·, ξ) be strongly convex with pa-
rameter β > 0 for all ξ ∈ Ξ. With probability at least
1− 3

T , Algorithm 2 (1-D) guarantees

RT ≤ Õ(
1

α3/2β1/2T 1/4
).

We follow [2] for the analysis of the algorithm. The
main difference in the analysis is that we must build
estimates of the CV aR of the random loss at every
point instead of building them for the expected loss.
Because of this, we have to use our concentration re-
sult from Section 5. This directly affects how many
times we must choose an action.The detailed analysis
of the algorithm and the proofs of the theorems in this
section can be found in the appendix.

7.2 The d-Dimensional Case

Let us first consider the problem of minimizing a con-
vex function over a bounded set with a first-order or-
acle (i.e. a gradient and function value oracle). For
simplicity let us assume that the convex set is a ball.
An ellipsoid-type method would work really well in
this setup because of the following. By querying the
first order oracle at any point (due to convexity) we

could identify a subregion of the current feasible re-
gion where the function value is worse than the func-
tion value at the point we made the query. If we could
somehow discard that bad portion of the feasible set,
and the size of this bad region is big enough, by iter-
ating the procedure (assuming this can be done) we
should end up with a set that only has points close to
optimal.

Let us now consider a similar but harder problem of
minimizing a convex function over a a bounded set
(say a ball) with a zeroth-order oracle (i.e. a function
value oracle). In this setup, with one query, we can
no longer identify a subregion of the current feasible
region where the function values are worse than the
function value at the point we made the query. A first
approach to tackle this problem is the following. Build
a small regular simplex centered at the origin of the
ball and query the function at its vertices. Assume
the maximal function value occurs at vertex y′, then
by convexity of the function one can conclude that the
cone generated by reflecting the simplex around y′ is
a region where the function values are bad. Since we
have identified a bad region of the feasible set we would
like to discard it and keep iterating our method, un-
fortunately what remains of the ball when we discard
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the cone is a non-convex set we can not keep iterating
the method. To try to fix the previous one could try
to find the minimum volume enclosing ellipsoid of the
non-convex set and keep iterating. Unfortunately this
does not work since the minimum volume enclosing
ellipsoid will not have sufficiently small volume [20].
The reason this occurs is that the angle of the cone
generated by reflecting the simplex around y′ is not
wide enough. In [20] the authors fix the previous by
constructing a pyramid (with wide enough angle) with
y′ as its apex and sample the vertices of the pyramid.
If we are lucky enough and y′ has the maximal func-
tion value among all the vertices of the pyramid, we
can then discard the cone generated by reflecting the
pyramid around y′ and enclose that region in the min-
imum volume ellipsoid. However, if we were not lucky
enough and y′ did not have the maximal function value
then, Nemirovski and Yudin [20], show that by repeat-
edly building a new pyramid with apex at the point
with maximal function value we will identify a bad re-
gion after building not too many pyramids. It is not
to hard to see that the previous approach may work
even if we have a noisy-zeroth-order oracle, as long as
the noise is not too large. The previous approach de-
scribes an optimization procedure but by itself it does
not guarantee low regret. However, by incorporating
center points as done in [2], sublinear regret can be
achieved. Due to a lack of space the algorithm and
its analysis can be found in the appendix. The main
results from this section are the following.

Theorem 6. Algorithm 2 (d-D) run with parameters
c1 ≥ 64, c2 ≤ 1/32 and

∆τ (γ) =
(6c1d

4

c22
+ 3
)
γ, ∆̄τ (γ) =

(6c1d
4

c22
+ 5
)
γ,

guarantees that with probability at least 1− 1
T

R̄T ≤ Õ(
d16

α2
√
T

).

Theorem 7. Let f(·, ξ) be strongly convex with pa-
rameter β > 0 for any ξ ∈ Ξ, Algorithm 2 (d-D) run
with the same parameters as in Theorem 6 guarantees
that with probability at least 1− 3

T

RT ≤ Õ(
d8

α3β1/2T 1/4
).

8 Extension to More General Risk
Measures

In Sections 6 and 7 we developed regret minimization
algorithms suitable for decision makers who are risk
averse, where the notion of risk was measured using
the CV aRα. In this section we extend our results to

more general risk measures. We slightly modify the
setup from Section 4. Now, we assume ξ is a discrete
random variable supported in Ξ with |Ξ| = N . That
is, there are N scenarios. Moreover we assume that
each scenario has the same probability of occurring.
Let X ⊂ Rd be a convex and compact set. Let f :
X ×Ξ→ R be a convex function in the first argument
for every ξ ∈ Ξ. Let f satisfy ||∇f(x, ξ)|| ≤ G for
every ξ ∈ Ξ and every x ∈ X. Additionally, we assume
0 ≤ f(x, ξ) ≤ 1 for every x ∈ X and every ξ ∈ Ξ. We
consider some law invariant, coherent and comonotone
risk measure ρ(·) (see next subsection). Our goal now
is to obtain vanishing pseudo-ρ-regret

R̄ρT :=
1

T

T∑
t=1

ρ[F ](xt)−
1

T
min
x∈X

T∑
t=1

ρ[F ](x),

and ρ-regret

RρT := ρ[{ft(xt)}Tt=1]−min
x∈X

ρ[{ft(xt)}Tt=1].

In this section we will show that by using the Kusuoka
Representation Theorem along with the ideas we de-
veloped earlier we can obtain vanishing R̄ρT and RρT .

8.1 Kusuoka Representation of Risk
Measures

Before presenting the algorithms we present some nec-
essary definitions and well known results.

Definition 1. A risk measure ρ : X (Ω, 2Ω, P )→ R is
coherent if for every X1, X2 ∈ X it is:

• Normalized, ρ(0) = 0.

• Monotone, X1 ≤ X2 =⇒ ρ(X1) ≤ ρ(X2).

• Superadditive, ρ(X1) + ρ(X2) ≤ ρ(X1 +X2).

• Positive homogenous, ρ(λX1) = λρ(X1),∀λ > 0.

• Translation invariant, ρ(X1 + c) = ρ(X1) + c.

Moreover, we say ρ is law invariant if ρ(X1) depends
only on the distribution of X1. Additionally, we say ρ
is comonotone additive if ρ(X1 +X2) = ρ(X1)+ρ(X2).

It is well known [1] that CV aR is a coherent risk mea-
sure. Indeed many risk measures can be expressed as
functions of CV aR [23]. We present a special case of
the Kusuoka representation theorem that will be useful
later.

Lemma 4. [22] Consider a finite probability space
(Ω, 2Ω, P ), with Ω = {ω1, ..., ωN}, and P (ωn) = 1

N for
all n = 1, ..., N . Then, a mapping ρ : X (Ω, 2Ω, P )→ R
is a law invariant coherent and comonotone additive
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risk measure if and only if it has a Kusuoka represen-
tation of the form

ρ(X) =

N∑
n=1

µnCV aR n
N

(X), ∀X ∈ X (6)

where µ ∈ [0, 1]N and ||µ||1 = 1.

[23] give examples on how the Kusuoka representation
theorem can be used, in particular how to write the
following risk measures as mixtures of CV aR’s. We
refer the reader to their paper for the details.

• ρ(Z) := inft∈R{t + c||[Z − t]+||p}, ∀Z ∈
Lp(ω,F , P ) with c > 1 and 1 < p <∞.

• ρ(Z) := E[Z] + λ||[Z − E[Z]]+|| for p ≥ 1 and
0 ≤ λ ≤ 1.

8.2 Algorithms

We define for every t = 1, ..., T , function Gt(x, z) :
X × Z → R, with Z := [0, 1]N , as

Gt(x, z) :=

N∑
n=1

µn(zn +
1

n/N
[ft(x)− zn]+)

for some µ ∈ [0, 1]N , µ ≥ 0, ||µ||1 = 1. For conve-
nience we write Ltn(x, z) := zn + 1

n/N [ft(x)− zn]+ for

n = 1, ..., N . Notice that for any x ∈ X, after taking
expectation with respect to ξ and plugging the mini-
mizer of every individual term Ltn we end up with the
Kusuoka representation of a law invariant, coherent
and commonotone risk measure. Let µ be the vector
corresponding to the Kusuoka representation of our
risk measure of interest ρ (see Equation (6)). Algo-
rithm 3, a generalization of Algorithm 1 that uses func-
tions Gt instead of Lt can be found in the appendix.
We have the following guarantees for Algorithm 3.

Theorem 8. Algorithm 3 with η = O( 1
dN3/2T 3/4 ) and

δ = O(N
1/2

T 1/4 )guarantees

E[R̄ρT ] ≤ O(
dN3/2

T 1/4
),

where the expectation is taken over the random draw
of functions and the internal randomization of the al-
gorithm.

Theorem 9. Let f(·, ξ) be strongly convex with pa-
rameter β > 0 for all ξ ∈ Ξ. Algorithm 3, run with
the same parameters as in Theorem 8, guarantees

E[RρT ] ≤ O(
d1/2N7/4

β1/2T 1/8
),

where the expectation is taken over the random draw
of functions and the internal randomization of the al-
gorithm.

To obtain a better dependence on the number of
rounds T , Algorithm 2 (in both cases, d = 1 and
d > 1) can be modified to solve this more general
problem. The only modification is that we will sample

Õ(N
2 ln(
√
NT )

γ ) times a point to build a γ-CI for ρ[F ](x)
for any x ∈ X. Let this modification of Algorithm 2
be Algorithm 4. We have the following guarantees.

Theorem 10. Algorithm 4 run with the right param-
eters guarantees that with probability at least 1− 1

T

R̄ρT ≤ Õ(
N2d16

√
T

).

Theorem 11. Let f(·, ξ) be strongly convex with pa-
rameter β > 0 for all ξ ∈ Ξ, Algorithm 4 run with
the right parameters guarantees that with probability
at least 1− 3

T

RρT ≤ Õ(
N3d8

β1/2T 1/4
).

The proofs of these theorems can be found in the ap-
pendix.
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