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Abstract

In this paper we develop the first algo-
rithms for online submodular minimization
that preserve differential privacy under full
information feedback and bandit feedback.
Our first result is in the full information
setting, where the algorithm can observe
the entire function after making its decision
at each time step. We give an algorithm
in this setting that is e-differentially pri-
vate and achieves expected regret 0 (@)
over T rounds for a collection of n ele-
ments. Our second result is in the ban-
dit setting, where the algorithm can only
observe the cost incurred by its chosen set,
and does not have access to the entire func-
tion. This setting is significantly more
challenging due to the limited information.
Our algorithm using bandit feedback is e-
differentially private and achieves expected

= p3/272/3
regret O (f)

1 Introduction

Online learning has received significant attention
due to the growing amounts of information collected
about individuals, and has been studied in the con-
text of a wide variety of optimization problems, in-
cluding portfolio optimization [8, 18, 21], shortest
paths [27], combinatorial optimization [14], convex
optimization [4, 15], and game theoretic optimiza-
tion [6]. When these machine learning tools are
applied to sensitive data from individuals, privacy
concerns becoming increasingly important. In appli-
cations such as clinical trials, online ad placement,
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personalized pricing, and recommender systems, on-
line learning algorithms are dealing with personal
(and possibly highly sensitive) data.

In this paper, we develop the first algorithms for dif-
ferentially private online submodular optimization.
A function f : 2"} — [~M, M] mapping from dis-
crete collections of elements to real values is submod-
ular if it exhibits the following diminishing returns
property: for all sets S, S’ C [n] such that S C S
and for all elements i € [n] \ S,

fe(S"U{i}) — fi(S") = fe(SU{i}) — fe(S).

Submodular functions have several applications in
machine learning (see [22] for a survey) and are ex-
tensively used in economics because their diminish-
ing returns property captures preferences for substi-
tutable goods and satiation from multiple copies of
the same good [2, 28].

In the Online Submodular Minimization problem,
a sequence of T' submodular functions fi,..., fr :
2"l — [—=M, M], M > 0 arrive in an online fashion.
At every timestep t, a decision maker chooses a set
S¢ C [n] before observing the function f;. The de-
cision maker then incurs cost f;(S;). The decision
maker’s goal is to minimize her total regret, which
is defined as

T T
Regret(T) = Y fi(Sh) — min PFACH
t=1 - t=1

That is, her regret is the difference between her total
cost across all rounds, and the cost of the best fixed
set in hindsight after seeing all the functions. We
say that an algorithm for the Online Submodular
Minimization problem is no regret if the regret (or
expected regret for randomized algorithms) is sub-
linear in T Regret(T') = o(T).

We consider two different settings based on the type
of informational feedback the decision maker re-
ceives in each round. In the full information setting,
the decision maker observes the entire function f;
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after making her choice of S;. In the bandit setting,
the decision maker only observes her cost f;(S;) and
does not receive any additional information about
the function f;. The bandit setting is a more chal-
lenging environment because the decision maker has
severely restricted information when making deci-
sions, but also captures the reality of many real-
world online learning problems where counterfactual
outcomes cannot be measured.

We formally incorporate the task of preserving pri-
vacy by using the framework of differential privacy.
Differential privacy was first defined by [9] for algo-
rithms operating on large static databases, and re-
quired that if a single entry in the database changed,
then the algorithm would produce approximately
the same output. In this work, we view our database
as the sequence of submodular functions f1, ..., fr,
and the algorithm’s output is the sequence of sets
S1,...,97. We require that if a single function f;
were changed to a different f/, then the entire se-
quence of chosen sets would be approximately the
same. A formal definition is given in the preliminar-
ies.

The main goal of this paper is to design differentially
private no-regret algorithms for the Online Submod-
ular Minimization problem. There are many appli-
cations of online learning problems using sensitive
data that could benefit from formal privacy guaran-
tees, such as clinical drug trials, online ad placement,
and personalized pricing. For concreteness, we pro-
vide the following motivating example for the study
of private online submodular optimization.

Motivating Example. As a concrete motivating
example we consider the following online ad place-
ment problem. Online retailers such as Amazon,
Walmart, and Target design their websites such that
the retailers can offer other products at check out
which complement the item the customer is buy-
ing. Due to item complimentarities, the utility func-
tion of user ¢, g;, defined over the possible subset
of products the retailer can offer [n], is supermodu-
lar. However, displaying too many items may hurt
the chance of the user buying something else. At
time ¢, the retailer is choosing S; that maximizes
ft(S) :== g:(S) —>_;c g pi for each user (where p; € R
is the “cost” of displaying a product). The retailers
must choose S; without knowing g; and they receive
only bandit feedback (i.e., they can only observe
9:(St), and not g¢(+)). The retailer seeks to minimize
regret: maxge(y Z;‘ll fi(S) — Zle f+(St). Notice
that since ) ;¢ p; is modular, then the retailer has
to solve an online submodular minimization prob-

lem with bandit feedback. Existing recommender
systems have been shown to leak information about
users [29], motivating the need for formal privacy
guarantees in this settings. Therefore, the retailer
will perform this optimization in a differentially pri-
vate manner to ensure that no information about an
individual is leaked to other users.

1.1 Our Results and Techniques

In this paper we develop the first algorithms for on-
line submodular minimization that preserve differ-
ential privacy under full information feedback and
bandit feedback that are almost as good as the best
non-private algorithms.

We start with the full information setting, where
the algorithm can observe the entire function f; af-
ter making its decision at each time t. We give an
algorithm in this setting that is both differentially
private and satisfies no regret.

Theorem 1 (Informal). In the full information set-
ting of Online Submodular Minimization, there is
an e-differentially private algorithm that achieves re-

gret:
E[Regret(T)] = O (n €T> .

This algorithm works by first relaxing each input
submodular function to a convex function using the
Lovasz extension (defined formally in Section 2.1).
Our algorithm then simulates a variant of an algo-
rithm for differentially private online convex opti-
mization (due to Smith and Thakurta [26]) run on
the sequence of Lovasz extensions. The differential
privacy guarantee can be proved almost as it was
done in [26]. To prove the regret bound, we show
that the relaxation and optimization on convex func-
tions does not increase the regret guarantee by too
much. Our algorithm matches the regret bound of
[26] for private online convex optimization, and loses
only a factor of % relative to the optimal non-private
regret bound of [14] for online submodular minimiza-
tion.

We next consider the bandit setting, which is sig-
nificantly more challenging and requires a refined
analysis. The private online convex optimization al-
gorithm of Smith and Thakurta [26] requires use of
the subgradient of the Lovasz extension. However
in the bandit setting, the algorithm does not receive
enough information to compute the exact Lovasz ex-
tension or its subgradients. Instead, we construct an
unbiased estimate of the subgradient using the one-
point estimation method of [14]. We then apply a
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variant of the algorithm from [26] to the unbiased es-
timate of the gradient of the Lovasz extension. This
yields a differentially private no-regret algorithm for
online submodular minimization in the bandit set-
ting.

Theorem 2 (Informal). In the bandit setting of
Online Submodular Minimization, there is an e-
differentially private algorithm that achieves regret:

€

E[Regret(T)] = O (W) :

The regret guarantee of our algorithm for the bandit

setting only loses a factor of O( %/2) relative to the
best know non-private regret bound of [14] for on-
line submodular minimization. We actually improve
upon the best known regret bound for private online
convex optimization [26] which has O(T3/%) depen-
dence on T, compared to our O(T?/3) guarantee.

1.2 Related Work

Our results rely on ideas from [26] and [14]. [26]
provides a differentially private algorithm for on-
line convex optimization that achieves a regret rate
O(@) in the full information setting, which is
worse than the non-private setting by only a factor of
polylog(T)+/n. Under bandit feedback, they give a
modification of their full information algorithm that
achieves cumulative regret O(g) One of the key
components in our algorithms are modifications of
these tools for online convex optimization, which are
applied once we have relaxed the submodular func-
tions to their convex Lovasz extensions. [14] pro-
vides algorithms for non-private online submodular
minimization in both the full information and bandit
feedback settings. They design subgradient descent-
type algorithms that achieve regret of O(v/nT) and
O(nT?/3) in the full information and bandit settings
respectively. Our algorithms make use of their one-
point gradient estimation technique for the bandit
setting. We remark that, to the best of our knowl-
edge, there is no known way to modify subgradient
descent-type algorithms, to achieve differential pri-
vacy in the online convex bandit problem without
damaging the regret bounds by less than polylog(T)
factors.

Although our algorithms use these tools, composi-
tion of these previous results is not straight-forward.
The bound on the variance of the one-point gradient
estimator for the Lovasz extension is not the same
as that of the estimator used for online convex opti-
mization with bandit feedback, which requires spe-

cial care in the analysis. If one were to blindly com-
pose the results of [26] and [14], it would yield regret
O(w) in the bandit setting, instead of the re-

3/22/3
f)

gret rate O(2 that we achieve.

A previous (unpublished) version of the current pa-
per [5] showed that a more careful combination of
these tools, which takes into account the variance
of the one-point gradient estimator for the Lovasz
extension but uses the same analysis as in [26], can

3/2T3/4)

only achieve regret O(Z in the bandit setting.

€
This approach was unable to achieve the O(T%/3)
dependence on T' that we achieve here because the
analysis of [26] first gave differentially private re-
gret guarantees for strongly convex cost function,
and then extended these results to the setting with
general convex costs via a regularization trick to en-
sure strong convexity (See Appendix E.3 from [26]).
While this regularization trick allows for low regret,
O(T3/*), for the problem of private online convex
optimization, there were dependencies in the regret
bound which make it impossible to obtain the rate
of O(T?/3) for differentially private online submod-
ular minimization. Our analysis requires additional
techniques to achieve this lower regret bound.

Other relevant work includes [19], where the au-
thors design differentially private algorithms for on-
line convex optimization. However, these algorithms
only achieve optimal regret rates in some special
cases. In [1], the authors provide differentially pri-
vate algorithms for the special case of online linear
optimization with bandit feedback, and obtain re-
gret O(@) which is (almost) optimal. The problem
of private online submodular maximization has been
studied by [23] and [13]. However, our work cannot
be compared to theirs since the problems of minimiz-
ing and maximizing a submodular functions are very
different. Additionally, these works only consider
the offline problem with full information feedback.
Finally, [3] studies non-private online submodular
maximization only under full information feedback.

2 Preliminaries

In this section we present background on submod-
ular functions and differential privacy that will be
useful for our results in later sections.

2.1 Submodular Functions

Submodular functions share many properties with
both convex and concave functions. They can be
thought of as convex functions when one is trying to
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minimize them, however they also exhibit a dimin-
ishing marginal returns property as some concave
functions do (i.e., f(x) = logz).

Definition 1 (Submodular function). A function
f 2l — [—M, M] is submodular if for all sets
S,8" C [n] such that S’ C S and for all elements
i€n\S,

fSTUD) = £() = f(SUi) = f(9).

The connection between convex and submodular
functions is formalized through the Lovasz extension
(Definition 3), which extends a submodular function
f over [n] to its corresponding convex function f over
[0,1]™. The Lovasz extension works by first describ-
ing each point in [0,1]™ as a convex combination of
points in {0, 1}", which can be interpreted as subsets
of [n]. It then defines f(z) as the convex combina-
tion of f evaluated on the sets associated with z.
We first define the necessary notation.

Definition 2 (Maximal chain [14]). A chain of sub-

sets of [n] is a collection of sets Ag,...,Ap such
that Ay C Ay C --- C A,. A chain is max-
imal if p = n. For a mazimal chain, Ay = 0,
A, = [n], and there is a unique associated permu-

tation m : [n] — [n] such that Ayqy) = Ariy—1 U {i}
for all i € [n]. For this permutation, we can write
Ariy =1{j € [n] : m(j) < m(i)} for all i € [n].

Define £ = [0,1]". For any set S C [n], let
Xs € {0,1}™ denote the characteristic vector of S,
defined as Xg(i) = 1 if i € S and 0 otherwise. For
any x € K, there is a unique chain A9 C --- C 4,
such that x can be expressed as a convex combina-
tion of the characteristic vectors of the A;. That
is, Ju1,...,pup > 0 such that = >0 p; X4, and
>F ot = 1. Note that if p < n (i.e., the chain is
not maximal), the chain can be extended to a maxi-
mal chain by setting u; = 0 for all ¢’s corresponding
the the subsets of [n] that were not present in the
original chain. The chain and the weights can be
found in O(nln(n)) time (see, e.g., Chap. 3 of Bach

2])-

We are now ready to define the Lovasz extension f
of submodular function f.

Definition 3 (Lovasz extension). Let f : 2" —
[—M, M] be submodular. The Lovasz extension f :
K — [-M, M] of f is defined as follows. For each
x e, let Ay C -+ C Ap be the chain associated with
x, and let i, ..., up be the corresponding weights in

the convex combination © =Y ¢ ;Xa,. Then,

p

fl@)=> pf(A) Vzek.

=0

FEquivalently, the Lovasz extension can also be de-
fined by sampling T uniformly at random from the
unit interval [0,1] and considering level set S, = {i :
2(i) > 7}. Then f(z) = E,[f(S,)] for each z € K.

We now provide some useful properties of the Lovasz
extension.

Lemma 1 ([12, 14]). The Lovasz extension f of sub-
modular function [ is convex. Additionally, for any
z €K, let ) =By C By C---C B, be any mazimal
chain associated with x and let w : [n] — [n] be the
corresponding permutation. Then a subgradient g of
[ at @ is given by: g(i) = f(Br()) = f(Br()-1) for
alli=1,...,n.

Lemma 2 ([20]). All subgradients g of the Lovasz
extension f : K — [=M, M) of a submodular func-
tion are bounded by ||g|l2 < |lg|l1 < 4M.

2.2 Tools from Differential Privacy

Let F be a class of functions. Let F' = {f1,..., fr}
and F' = {f1,..., fr} be sequences of functions
where f;, f/ € F, and fi, f{ : R — R for all . We
say F' and F’ are neighboring sequences if f; = f/
for all but at most one t € [T7].

Definition 4 (Differential privacy [9]). An algo-
rithm A : FT' — RT is (e,0)-differentially private
if for all neighboring sequences F,F' € FT and ev-
ery subset of the output space S C RT,

Pr[A(F) € 8] < e*P[A(F') € S] + 6.
If § = 0, we say that A is e-differentially private.

The following theorem states that differential pri-
vacy is robust to post-processing: computations per-
formed on the output of a differentially private al-
gorithm are still differentially private.

Theorem 3 (Post-processing [9]). Let A: D — R
be (e, 0)-differentially private, and let f : R — R’ be
an arbitrary randomized function. Then foA: D —
R’ is (e,0)-differentially private.

Our results require another differentially pri-
vate algorithm: Tree-based Aggregation Protocol
(TBAP). The Tree-Based Aggregation Protocol [7,
10, 26] is a tool for maintaining differentially pri-
vate partial sums of vectors arriving in an online
sequence. At each time ¢, TBAP outputs a noisy
sum of the input vectors up to time ¢. A full presen-
tation of the algorithm and its properties is given in
Appendix A.2.

The following section (Section 2.2.1) discusses Regu-
larized Follow The Leader, an algorithm from [16] for
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online convex optimization which is used for online
learning. Prior work [26] privatized a variant of this
algorithm, Follow The Approximate Leader, to give
a differentially private algorithm for online convex
optimization that uses TBAP as a subroutine. It
takes in a sequence of strongly convex functions and
outputs a sequence of points that minimizes regret.

2.2.1 The Cost of Privacy in Online
Convex Optimization

Our algorithm uses the following Regularized Follow
the Leader (RFTL) of [16] as a subroutine for online
convex optimization. This algorithm is known to
achieve low regret (Theorem 4).

Algorithm 1 Regularized Follow The Leader:

RFTL({fi},. H, X)
Input: Online sequence of convex cost functions
{f1, ..., fr} strong convexity parameter H, convex
compact decision set X C R".
Output: Sequence of actions z1, ...,
Initialize z < argmingex 2||z|[3
Output z1, observe f;

zr € X

for t=1, ..., T-1 do
T41 — arg minge x Zi:l vf'r(xr)—rx +
Il

Output z:41 and observe fii1
end for

Theorem 4 ([17] Ch. 5). Let {fi}, be any se-
quence of convez functions. Let X C R™ be a con-
vex and compact set. RFTL guarantees that for any
reX,

T
Regret(T Z |V fe(z0)]|? +

We give the following theorem, which quantifies the
loss in regret due to adding a differential privacy
constraint. A similar theorem was given in [26] for
their analysis of a differentially private version of
Follow The Approximate Leader, which is a variant
of Regularized Follow the Leader. The main ideas
in both proofs are similar, but we analyze a differ-
ent algorithm (RFTL), so a new proof is needed for
Theorem 5. The proof is given in the appendix.

Theorem 5. Let {i;}1_, be the non private it-
erates of RFTL and let {x4}1_, be the private
iterates i.e. xy41 = argmingexv] z + Z|lz|?
where vy is the private partial sum computed using

= el — 1]

TBAP{V fi(xt), L,€}. It holds that

d T 2 n1.5
B[S fiw)] <EIY ] + D)

Where the expectation is taken with respect to the
randomness of TBAP.

3 Full Information Setting

In this section we present Submodular Private Regu-
larized Follow The Leader (SUBMODPRFTL) which
is an algorithm for Online Submodular Minimiza-
tion that is both differentially private and achieves
near optimal regret. In the full information setting,
the result follows easily from using RFTL together
with TBAP to compute a private version of the sum
Y V().

The main difference between using a Regularized
Follow The Leader type algorithm versus the subgra-
dient descent type algorithm of [14] is the following.
When using SUBMODPRFTL to make the decision
at time t + 1, we use all the subgradients we have
observed at times 1,...,t. To contrast, if we used
the algorithm of [14], we would only be using the
subgradient obtained at t. This difference is crucial
when trying to incorporate privacy into the setting.

Algorithm 2  Submodular
ularized Follow The Leader:
PRFTL({f:;},,M,H, L,[n],¢)
Input: Online sequence of submodular cost func-
tions {f1, ..., fr}, lower and upper bounds func-
tion values [—M, M], strong convexity parameter
H, Lipschitz parameter L, ground set [n], privacy
parameter e.
Output: Sequence of sets Sy, ..., S C [n]
Initialize S; + 0
Set 11 <+~ 0e€ K

Private  Reg-
SUBMOD-

Output Sy .
Compute and pass V f1(z1) to
TBAP({Vfi(x;)},L,e), and receive current

partial sum vy
for t=1, ..., T-1 do

T argming e v @ + 53

Sample 7311 ~ UJ0, 1]

Output Sty1 = {i : @141(i) > 7¢} and observe
Jt+1 . A

Compute V fi(x4+1) and pass V fiy1(zi41) to
TBAP({Vfi(x:)},L,€), and receive current par-
tial sum vy4q
end for
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Algorithm 2 is differentially private (Theorem 6) and
achieves O(v/T) regret (Theorem 7).

Theorem 6 (Privacy guarantee).
SuBMODPRFTL({f;}L,,M,H,L,[n],€) is -
differentially private for any sequence of functions
fis-., fr with bounded range [—M, M| and for any
M,H,L,n,T>0.

Theorem 7 (Regret guarantee).
SuBMODPRFTL({f;}E |, M, H, L,[n],€) run with
H = MVT and ||Vfi|| < L =4M for any sequence
of submodular functions f1, ..., fr : 2" — [=M, M]
for any M,n, T > 0 guarantees,

nM? ln1'5(T)\/T>

E[Regret(T)] < O (

€
where the expectation is taken over the randommness
of TBAP and the sampling procedure used to choose
St.

4 Bandit Setting

In this section we present Submodular Private Fol-
low The Approximate Leader with Bandit Feedback
(BANDITSUBMODPRFTL). This algorithm is differ-
entially private and achieves a no regret guaran-
tee for online submodular minimization with ban-
dit feedback. The regret bound only loses a factor
of O(n'/?log"®(T)) relative to the best known algo-
rithm in the non-private setting.

The bandit setting makes the problem much more
challenging because we do not have access to the
whole function f; nor to its subgradients. Instead
we only observe the function evaluated at a single
point, f:(S¢) for our chosen set S;. This means that
we can no longer compute subgradients of the Lovasz
extension V ft and run RFTL on functions ft as in
the full information setting.

The key to obtaining sublinear regret is to balance
exploration and exploitation. In this setting, ex-
ploitation is achieved by sampling S; exactly from
the distribution p defined (through the Lovasz ex-
tension) by iterate x; of BANDITSUBMODPRFTL.

However, if we sample according to the distribution
over sets u, we do not learn anything about the func-
tion’s subgradients so, it is unclear what to do in
future steps. To fix this, we should sample from
some distribution that is close to p, that allows us
to explore (i.e., obtain an unbiased estimate of the
Lovasz extension at x¢). We use the sampling pro-
cedure from Hazan and Kale [14] to achieve this.

With  these modifications,  BANDITSUBMOD-
PRFTL now works similarly to SUBMOD-
PRFTL for the full information setting. The
algorithm works by computing an unbiased esti-
mator §; of the gradient of the Lovasz extension
v fh updating a private iterate x; € K using
TBAP to obtain a private partial sum of Z;Zl Jt,
and outputting a random set S; that depends on
x¢. We now present the full algorithm BANDITSUB-
MODPRFTL in Algorithm 3.

Algorithm 3 Submodular Private Regularized Fol-
low The Leader with Bandit Feedback: BANDITSUB-
MODPRFTL({f; szla M, H,L,[n],e,7)
Input: Online sequence of submodular cost func-
tions {f1,..., fr}, lower and upper bounds func-
tion values [—M, M], strong convexity parameter
H, Lipschitz parameter L, ground set [n], privacy
parameter ¢, parameter v € (0, 1).
Output: Sequence of sets Si,...,Sr C [n]
Initialize x; + arg mingex ||z||?
for t=1, ..., T do
Find maximal chain associated with z;, §§ =
By C By C By C ---B, = [n], let ™ be the
associated permutation
Write z; as x¢ = >+, ;i Xp,, where p; = 0 for
the extra sets B; that where added to complete the
maximal chain for z;.
Sample S; according to distribution: Sy = B;
with probability p; = (1 — y)u; + niﬂ
Output S; and observe f:(St)
if S; = By then
Set gr = *p%ft(Bo)erl(m
else if S; = B,, then
Set g, = p%ft(Bn)eﬂ'*l(n)
else
Choose ¢ € {41, —1} uniformly at random
if £ = +1 then
Set gr = %ft(Bi)eﬂ—l(i)
else
Set §i = — > fu(Bi)ex-1(i11)
end if
end if
Pass §; to TBAP({g:}, L, ¢), and receive cur-
rent partial sum 0y
Update z,11 = argmin, ¢ 0 = + Z ||z
end for

In the algorithm e; refers to the vector with all
entries equal to 0 except for the i-th entry which
is equal to 1. The analysis of BANDITSUBMOD-
PRFTL relies on the following key properties of the
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estimate §.! Proofs are deferred to the appendix.

Lemma 3. Let v € (0,1). The random vector g
computed in BANDITSUBMODPRFTL is an unbi-
ased estimate of a subgradient of the Lovasz exten-
sion ft of submodular f;, evaluated at point xy. That

18,

E[ge | 2] = Vft(xt)'

Lemma 4. The random vector g; computed in BAN-
DITSUBMODPRFTL satisfies the following bound on
its expected Lo-norm,
16M2%n?
A~ 112
E [[lg:17]) < ;
Y

where the expectation is taken over the algorithm’s
internal randomness up to time t.

The exploration-exploitation dilemma can be better
understood through the parameter . This param-
eter trades off between variance of the estimate g:
and the approximation of the Lovasz extension f; to
the true submodular function f;. When = is large,
the variance of §; is diminished, as can be seen in
the statement of Lemma 4. When -y is small, the
performance of f;(S;) is close to that of ft(xt) (see
Lemma 5 in Section 4.1). In the statement of our
main result (Theorem 9), we optimally tune ~ to
balance exploration and exploitation and minimize
overall regret of BANDITSUBMODPRFTL.

Our two main results of this section show that BAN-
DITSUBMODPRFTL is differentially private and
achieves low regret.

Theorem 8 (Privacy guarantee).
BANDITSUBMODPRFTL({fi}L |, M, H, L, [n],¢,)
is e-differentially private for any sequence of func-
tions f1,..., fr with bounded range [—M, M) and
for any M, H,L,n,T,v > 0.

Theorem 9 (Regret guarantee).
BANDITSUBMODPRFTL({fi}L,, M, H, L, [n],€,7)
run with H = MT?3, L = 4%", and v = ;ﬁi—ﬁ
for any sequence of submodular  functions
fireoofr o2 2l = =M, M) for any M,n,T > 0
quarantees,

~ 2/3
E[Regret(T)] < O (J\JnZ“) )

where the expectation is taken with respect to all the
internal randomness of the algorithm.

!Our Lemmas 3 and 4 were asserted without proof
in [14]. Due to minor errors in the construction of g; in
[14], these claims are easily seen to be false under their
construction. Here, we build the correct estimator and
prove its correctness.

The proof of Theorem 9 relies on several key lemmas,
presented in Section 4.1.

4.1 Regret Analysis of
BanditSubmodPRFTL

There are several sources of potential sub-optimality
in the output of BANDITSUBMODPRFTL that must
be bounded. Firstly, the algorithm optimizes using
continuous iterates x; instead of discrete (Lemma
5). The algorithm incurs additional loss from the
noise added in TBAP to preserve privacy (Lemma
8). Lastly, due to the bandit feedback, we cannot
compute an exact subgradient of the regularized Lo-
vasz extension, and must instead use a (random)
unbiased estimator (Lemmas 6 and 7).

The following lemmas bound the regret from these
sources of error, and are used in the proof of Theo-
rem 9. All omitted proofs are presented in the ap-
pendix.

We start with a lemma from Hazan and Kale [14],
showing that the additional loss from choosing a sub-
set of the ground set S; instead of the point in x; € K
is not too large.

Lemma 5 ([14]). For any submodular function f; :
[n] — [-M,M], let ©; and S; be the correspond-
ing iterates and sets as defined in BANDITSUBMOD-
PRFTL, then E[fi(St)] < E[fi(z:)] + 2yM. Where
the expectation is taken with respect to all the ran-
dommness of the algorithm.

The following lemma bounds the regret loss due to
the fact that we only have bandit feedback. The
main idea of the proof comes from [11], the first pa-
per that provided an algorithm for online convex op-
timization with bandit feedback, however we must
modify it accordingly to account for the fact that
our one-point gradient estimator is for the Lovasz
extension of a submodular function and not just any
convex function. This modification will exploit the
bound on the variance of §; from Lemma 4 and will
allow us to prove a regret rate of O(T?/3) instead of
O(T3/*) which is obtained for general convex func-
tions while trying to preserve privacy (see [26]).

The next lemma bounds the loss our algorithm in-
curs due to bandit feedback against an adaptive ad-
versary. The key to prove such a result is to bound
with probability one the absolute difference between
Zthl V fi(x;) and Zthl V., then use the fact that

§¢ is an unbiased estimator of V f;.

Lemma 6. Let {g}1, be the
one point gradient estimates

sequence of
generated by



Differentially Private Online Submodular Minimization

BANDITSUBMODPRFTL ({ i}, M, H, L, [n],€,7).

Then,
8Mn\/
© |upd-als] <& [T+ 0T

where the expectation is taken with respect to all the
randomness of the algorithm.

Lemma 7. Let {9}, and {x}l,
be the sequences generated by
BANDITSUBMODPRFTL ({fi}7.,, M, H, L, [n],€,7).
Then,

T T
E[Z QtTﬂft} = E[Z Vftht],
t=1 t=1

where the expectation is taken with respect to all the
randomness of the algorithm.

The following lemma quantifies the loss in the regret
due to privacy.

Lemma 8. Let {x;}]_; be the sequence generated by
BANDITSUBMODPRFTL ({3, M, H, L, [n],€,7).
Let ; be the non private iterate of the algorithm,
that is T441 = Zj—:l gl x4+ Z||z]|?. Then,

zgt r] <EY 3T +
t=1

where the expectation is taken with respect to the ran-
domness of the algorithm.

64n° M>T In*>(T)
eyH ’

We are now ready to prove the regret guarantee of
BANDITSUBMODPRFTL. A complete proof is given
in the appendix, and we sketch the proof outline
here.

To prove Theorem 9 we combine Lemmas 4, 5, 6,
7, 8 and the no regret guarantee of RTFL to upper
bound the expected regret by:
32M3n2T
Hry
SMnT N 64n>M>T In*(T)
\ﬁ eyH

H = MT?/? yields the result.

+nH +2yMT+

Choosing v = T1/3 ,
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