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Abstract

Local explanation frameworks aim to rational-

ize particular decisions made by a black-box

prediction model. Existing techniques are of-

ten restricted to a specific type of predictor

or based on input saliency, which may be un-

desirably sensitive to factors unrelated to the

model’s decision making process. We instead

propose sufficient input subsets that identify

minimal subsets of features whose observed

values alone suffice for the same decision to

be reached, even if all other input feature

values are missing. General principles that

globally govern a model’s decision-making can

also be revealed by searching for clusters of

such input patterns across many data points.

Our approach is conceptually straightforward,

entirely model-agnostic, simply implemented

using instance-wise backward selection, and

able to produce more concise rationales than

existing techniques. We demonstrate the util-

ity of our interpretation method on various

neural network models trained on text, image,

and genomic data.

1 Introduction

The rise of neural networks and nonparametric meth-

ods in machine learning (ML) has driven significant

improvements in prediction capabilities, while simul-

taneously earning the field a reputation of producing

complex black-box models. Vital applications, which

could benefit most from improved prediction, are often

deemed too sensitive for opaque learning systems. Con-

sider the widespread use of ML for screening people,
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including models that deny defendants’ bail (Kleinberg

et al., 2018) or reject loan applicants (Sirignano et al.,

2018). It is imperative that such decisions can be inter-

pretably rationalized. Interpretability is also crucial in

scientific applications, where it is hoped that general

principles may be extracted from accurate predictive

models (Doshi-Velez and Kim, 2017; Lipton, 2016).

One simple explanation for why a particular black-box

decision is reached may be obtained via a sparse subset

of the input features whose values form the basis for

the model’s decision – a rationale. For text (or image)

data, a rationale might consist of a subset of positions

in the document (or image) together with the words (or

pixel-values) occurring at these positions (see Figures 1

and 8). To ensure interpretations remain fully faithful

to an arbitrary model, our rationales do not attempt to

summarize the (potentially complex) operations carried

out within the model, and instead merely point to the

relevant information it uses to arrive at a decision (Lei

et al., 2016). For high-dimensional inputs, sparsity of

the rationale is imperative for greater interpretability.

Here, we propose a local explanation framework to

produce rationales for a learned model that has been

trained to map inputs x P X via some arbitrary learned

function f : X Ñ R. Unlike many other interpretability

techniques, our approach is not restricted to vector-

valued data and does not require gradients of f . Rather,

each input example is solely presumed to have a set of

indexable features x “ rx1, . . . , xps, where each xi P Rd

for i P rps “ t1, . . . , pu. We allow for features that are

unordered (set-valued input) and whose number p may

vary from input to input. A rationale corresponds to

a sparse subset of these indices S Ñ rps together with

the specific values of the features in this subset.

To understand why a certain decision was made for a

given input example x, we propose a particular ratio-

nale called a sufficient input subset (SIS). Each SIS

consists of a minimal input pattern present in x that

alone suffices for f to produce the same decision, even
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if provided no other information about the rest of x.

Presuming the decision is based on fpxq exceeding

some prespecified threshold ⌧ P R, we specifically seek

a minimal-cardinality subset S of the input features

such that fpxSq • ⌧ . Throughout, we use xS P X to

denote a modified input example in which all informa-

tion about the values of features outside subset S has

been masked with features in S remaining at their orig-

inal values. Thus, each SIS characterizes a particular

standalone input pattern that drives the model toward

this decision, providing sufficient justification for this

choice from the model’s perspective, even without any

information on the values of the other features in x.

In classification settings, f might represent the pre-

dicted probability of class C where we decide to assign

the input to class C if fpxq • ⌧ , chosen based on

precision/recall considerations. Each SIS in such an

application corresponds to a small input pattern that

on its own is highly indicative of class C, according

to our model. Note that by suitably defining f and ⌧

with respect to the predictor outputs, any particular

decision for input x can be precisely identified with the

occurrence of fpxq • ⌧ , where higher values of f are

associated with greater confidence in this decision.

For a given input x where fpxq • ⌧ , this work presents

a simple method to find a complete collection of suf-

ficient input subsets, each satisfying fpxSq • ⌧ , such

that there exists no additional SIS outside of this col-

lection. Each SIS may be understood as a disjoint

piece of evidence that would lead the model to the

same decision, and why this decision was reached for x

can be unequivocally attributed to the SIS-collection.

Furthermore, global insight on the general principles

underlying the model’s decision-making process may

be gleaned by clustering the types of SIS extracted

across different data points (see Figure 7 and 9). Such

insights allow us to compare models based not only on

their accuracy, but also on human-determined relevance

of the concepts they target. Our method’s simplicity

facilitates its utilization by non-experts who may know

very little about the models they wish to interrogate.

2 Related Work

Certain neural network variants such as attention

mechanisms (Sha and Wang, 2017) and the generator-

encoder of Lei et al. (2016) have been proposed as

powerful yet human-interpretable learners. Other inter-

pretability efforts have tailored decompositions to cer-

tain convolutional/recurrent networks (Murdoch et al.,

2018; Olah et al., 2017, 2018), but these approaches are

model-specific and only suited for ML experts. Many

applications necessitate a model outside of these fami-

lies, either to ensure supreme accuracy, or if training is

done separately with access restricted to a black-box

API (Caruana et al., 2015; Tramer et al., 2016).

An alternative model-agnostic approach to inter-

pretability produces local explanations of f for a par-

ticular input x. Local explanation often relies on attri-

bution methods that quantify how much each feature

influences the output of f at x. Examples include

LIME, which locally approximates f (Ribeiro et al.,

2016), saliency maps based on gradients of f (Baehrens

et al., 2010; Simonyan et al., 2014), Layer-wise Rele-

vance Propagation (Bach et al., 2015), as well as the

discrete DeepLIFT approach (Shrikumar et al., 2017)

and its continuous variant – Integrated Gradients (IG)

(Sundararajan et al., 2017), developed to ensure attri-

butions reflect the cumulative difference in f at x vs. a

reference input. A separate class of input-signal-based

explanation techniques such as DeConvNet (Zeiler and

Fergus, 2014), Guided Backprop (Springenberg et al.,

2015), and PatternNet (Kindermans et al., 2018) em-

ploy gradients of f in order to identify input patterns

that cause f to output large values. However, many

gradient-based saliency methods have been deemed un-

reliable, depending not only on the learned function

f , but also on its specific architectural implementation

and how inputs are scaled (Kindermans et al., 2017,

2018). More like our approach, recent techniques from

Dabkowski and Gal (2017); Kim et al. (2018); Chen

et al. (2018) also aim to identify input patterns that

best explain certain decisions, but additionally require

either a predefined set of such patterns or an auxiliary

neural network trained to identify them.

In comparison with the aforementioned methods, our

SIS approach is: conceptually simple, entirely faithful

to any type of model, and requires neither gradients

of f nor auxiliary training of the underlying model

f or a surrogate explanation model. Also related to

our subset-selection methodology are the ideas of Li

et al. (2017) and Fong and Vedaldi (2017), which for

a particular input seek a small feature subset whose

omission causes a substantial drop in f such that a

different decision would be reached. However, this

objective can produce adversarial artifacts that are

hard to interpret. In contrast, we focus on identifying

small subsets of input features whose values suffice to

ensure f outputs significantly positive predictions, even

in the absence of any other information about the rest

of the input. While the techniques of Li et al. (2017)

and Fong and Vedaldi (2017) produce rationales that

remain highly dependent on the rest of the input outside

of the selected feature subset, each rationale identified

by our SIS approach is independently considered by

f as an entirely sufficient justification for a particular

decision in the absence of other information.
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3 Methods

Our approach to rationalizing why a particular black-

box decision is reached only applies to input examples

x P X that meet the decision criterion fpxq • ⌧ . For

such an input x, we aim to identify a SIS-collection of

disjoint feature subsets S1, . . . , SK Ñ rps that satisfy

the following criteria:

(1) fpxSkq • ⌧ for each k “ 1, . . . ,K

(2) There exists no feature subset S

1 Ä Sk for some

k “ 1, . . . ,K such that fpxS1 q • ⌧

(3) fpxRq † ⌧ for R “ rps z îK
k“1 Sk (the remaining

features outside of the SIS-collection)

Criterion (1) ensures that for any SIS Sk, the values of

the features in this subset alone suffice to justify the

decision in the absence of any information regarding

the values of the other features. To ensure informa-

tion that is not vital to reach the decision is not in-

cluded within the SIS, criterion (2) encourages each

SIS to contain a minimal number of features, which

facilitates interpretability. Finally, we require that our

SIS-collection satisfies a notion of completeness via

criterion (3), which states that the same decision is

no longer reached for the input after the entire SIS-

collection has been masked. This implies the remaining

feature values of the input no longer contain sufficient

evidence for the same decision. Figures 2 and 8 show

SIS-collections found in text/image inputs.

Recall that xS P X denotes a modified input in which

the information about the values of features outside

subset S is considered to be missing. We construct

xS as new input whose values on features in S are

identical to those in the original x, and whose remaining

features xi P rpszS are each replaced by a special mask

zi P Rdi
used to represent a missing observation. While

certain models are specially adapted to handle inputs

with missing observations (Smola et al., 2005), this

is generally not the case. To ensure our approach is

applicable to all models, we draw inspiration from data

imputation techniques which are a common way to

represent missing data (Rubin, 1976).

Two popular strategies include hot-deck imputation,

in which unobserved values are sampled from their

marginal feature distribution, and mean imputation,

in which each zi simply fixed to the average value of

feature i in the data. Note that for a linear model,

these two strategies are expected to produce an iden-

tical change in prediction fpxq ´ fpxSq. We find in

practice that the change in predictions resulting from

either masking strategy is roughly equivalent even

for nonlinear models such as neural networks (Fig-

ure S12). In this work, we favor the mean-imputation

approach over sampling-based imputation, which would

be computationally-expensive and nondeterministic

(undesirable for facilitating interpretability). One may

also view z as the baseline input value used by fea-

ture attribution methods (Sundararajan et al., 2017;

Shrikumar et al., 2017), a value which should not lead

to particularly noteworthy decisions. Since our inter-

ests primarily lie in rationalizing atypical decisions, the

average input arising from mean imputation serves as

a suitable baseline. Zeros have also been used to mask

image/categorical data (Li et al., 2017), but empirically,

this mask appears undesirably more informative than

the mean (predictions more affected by zero-masking).

For an arbitrarily complex function f over inputs with

many features p, the combinatorial search to identify

sets which satisfy objectives (1)-(3) is computation-

ally infeasible. To find a SIS-collection in practice, we

employ a straightforward backward selection strategy,

which is here applied separately on an example-by-

example basis (unlike standard statistical tools which

perform backward selection globally to find a fixed set

of features for all inputs). The SIScollection algo-

rithm details our straightforward procedure to identify

disjoint SIS subsets that satisfy (1)-(3) approximately

(as detailed in §3.1) for an input x P X where fpxq • ⌧ .

Our overall strategy is to find a SIS subset Sk (via

BackSelect and FindSIS), mask it out, and then re-

peat these two steps restricting each search for the

next SIS solely to features disjoint from the currently

found SIS-collection S1, . . . , Sk, until the decision of

interest is no longer supported by the remaining fea-

ture values. In the BackSelect procedure, S Ä rps
denotes the set of remaining unmasked features that

are to be considered during backward selection. For

the current subset S, step 3 in BackSelect identifies

which remaining feature i P S produces the minimal re-

duction in fpxSq ´ fpxSztiuq (meaning it least reduces

the output of f if additionally masked), a question

trivially answered by running each of the remaining

possibilities through the model. This strategy aims to

gradually mask out the least important features in or-

der to reveal the core input pattern that is perceived by

the model as sufficient evidence for its decision. Finally,

we build our SIS up from the last ` features omitted

during the backward selection, selecting a ` value just

large enough to meet our sufficiency criterion (1). Be-

cause this approach always queries a prediction over

the joint set of remaining features S, it is better suited

to account for interactions between these features and

ensure their sufficiency (i.e. that fpxSq • ⌧) compared

to a forward selection in the opposite direction which

builds the SIS upwards one feature at a time by greedily

maximizing marginal gains. Throughout its execution,

BackSelect attempts to maintain the sufficiency of

xS as the set S shrinks.
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SIScollection(f , x, ⌧)

1 S “ rps
2 for k “ 1, 2, . . . do

3 R “ BackSelectpf,x, Sq
4 Sk “ FindSISpf,x, ⌧, Rq
5 S – SzSk

6 if fpxSq†⌧ : returnS1,...,Sk´1

BackSelect(f , x, S)

1 R “ empty stack

2 while S ‰ ? do

3 i

˚ “ argmaxiPS fpxSztiuq
4 Update S – Szti˚u
5 Push i

˚
onto top of R

6 return R

FindSIS(f , x, ⌧ , R)

1 S “ ?
2 while fpxSq † ⌧ do

3 Pop i from top of R

4 Update S – S Y tiu
5 if fpxSq • ⌧ : return S

6 else: return None

3.1 Properties of the SIS-collection

Given p input features, our algorithm requires Opp2kq
evaluations of f to identify k SIS, but we can achieve

Oppkq by parallelizing each argmax in BackSelect (e.g.

batching on GPU). Throughout, let S1, .. ., SK denote

the output of SIScollection when applied to a given

input x for which fpxq • ⌧ . Disjointness of these sets

is crucial to ensure computational tractability and that

the number of SIS per example does not grow huge

and hard to interpret. Proposition 1 below proves that

each SIS produced by our procedure will satisfy an

approximate notion of minimality. Because we desire

minimality of the SIS as specified by (2), it is not

appropriate to terminate the backward elimination

in BackSelect as soon as the sufficiency condition

fpxSq • ⌧ is violated, due to the possible presence of

local minima in f along the path of subsets encountered

during backward selection (as shown in Figure S5).

Proposition 2 additionally guarantees that masking out

the entirety of the feature values in the SIS-collection

will ensure the model makes a different decision. Given

fpxq • ⌧ , it is thus necessarily the case that the ob-

served values responsible for this decision lie within

the SIS-collection S1, . . . , SK . We point out that for

an easily reached decision, where fpzq • ⌧ (i.e. this

decision is reached even for the average input), our

approach will not output any SIS. Because this same

decision would likely be anyway reached for a vast

number of inputs in the training data (as a sort of

default decision), it is conceptually difficult to grasp

what particular aspect of the given x is responsible.

Proposition 1. There exists no feature i in any
set S1, . . . , SK that can be additionally masked while
retaining sufficiency of the resulting subset (i.e.
fpxSkztiuq † ⌧ for any k “ 1, ...,K, i P Sk). Also,
among all subsets S considered during the backward
selection phase used to produce Sk, this set has the
smallest cardinality of those which satisfy fpxSq • ⌧ .

Proposition 2. For xrpszS˚ , modified by masking all
features in the entire SIS-collection S

˚ “ îK
k“1 Sk, we

must have: fpxrpszS˚ q † ⌧ when S

˚ ‰ rps.

Unfortunately, nice assumptions like convexity/sub-

modularity are inappropriate for estimated functions

in ML. We present various simple forms of practical

decision functions for which our algorithms are guar-

anteed to produce desirable explanations. Example 1

considers interpreting functions of a generalized linear

form, Examples 2 & 3 describe functions whose oper-

ations resemble generalized logical OR & AND gates,

and Example 4 considers functions that seek out a

particular input pattern. Note that features ignored

by f are always masked in our backward selection and

thus never appear in the resulting SIS-collection.

Example 1. Suppose the input data are vectors and
fpxq “ gp�T

x ` �0q, where g is monotonically increas-
ing. We also presume ⌧ ° gp�0q and the data were
centered such that each feature has mean zero (for ease
of notation). In this case, S1, ..., SK must satisfy crite-
ria (1)-(3). S1 will consist of the features whose indices
correspond to the largest ` entries of t�1x1, ...,�pxpu
for some suitable ` that depends on the value of ⌧ . It
is also guaranteed that fpxS1q • fpxSq for any subset
S Ñ rps of the same cardinality |S| “ `. For each in-
dividual feature i where gp�ixi ` �0q • ⌧ , there will be
exist a corresponding SIS Sk consisting only of tiu. No
SIS will include features whose coefficient �i “ 0, or
those whose difference between the observed and aver-
age value zi (“ 0 here) is of an opposite sign than the
corresponding model coefficient (i.e. �ipxi ´ ziq § 0).

Example 2. Let fpxq “ maxtg1pxS1
1
q, . . . , gLpxS1

L
qu

for some disjoint S

1
1, ..., S1

L Ä rps and functions
g1, ..., gL, such that for the given x and threshold ⌧ :
g1pxS1

1
q ° ¨ ¨ ¨ ° gLpxS1

L
q • ⌧ and gkpxS1

kztiuq † ⌧ for
each 1 § k § L, i P S

1
k. Such f might be functions that

model strong interactions between the features in each
Sk or look for highly specific value patterns to occur
these subsets. In this case, SIScollection will return
L sets such that S1 “ S

1
1, S2 “ S

1
2, . . . , SL “ S

1
L.

Example 3. If fpxq “ mintg1pxS1
1
q, . . . , gLpxS1

L
qu

and the same conditions from Example 2 are met, then
SIScollection will return a single set S1 “ îL

k“1 S
1
k.

Example 4. Suppose x P Rp with fpxq “ hp||xS ´
cS ||q where h is monotonically decreasing and cS spec-
ifies a fixed pattern of input values for features in a
certain subset S. For input x and threshold choice
⌧ “ fpxq, SIScollection will return a single set
S1 “ ti P S : |xi ´ ci| † |zi ´ ci|u.
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Figure 1: Beer review with one sufficient input subset identified for the prediction of each aspect.

Figure 2: Beer review with three disjoint SIS S1, S2, S3 identified for a positive aroma prediction. Underlined are

sentences that human labelers manually annotated as capturing the aroma sentiment.

Figure 3: Prediction on rationales only vs. rationale

length for various methods in reviews with positive

aroma prediction (⌧ “ 0.85).

Figure 4: QHS vs. similarity between SIS & annotation

in the reviews with positive aroma sentiment (Pearson

⇢ “ 0.491, p-value “ 1.5e´25).

4 Results

We apply our methods to analyze neural networks for

text, DNA, and image data. SIScollection is com-

pared with alternative subset-selection methods for

producing rationales (see descriptions in Supplement

§S1). Note that our BackSelect procedure determines

an ordering of elements, R, subsequently used to con-

struct the SIS. Depictions of each SIS are shaded based

on the feature order in R (darker = later), which can

indicate relative feature importance within the SIS.

In the “Suff. IG,” “Suff. LIME,” and “Suff. Perturb.”

(sufficiency constrained) methods, we instead compute

the ordering of elements R according to the feature

attribution values output by integrated gradients (Sun-

dararajan et al., 2017), LIME (Ribeiro et al., 2016),

or a perturbative approach that measures the change

in prediction when individually masking each feature

(see §S1). The rationale subset S produced under each

method is subsequently assembled using FindSIS ex-

actly as in our approach and thus is guaranteed to

satisfy fpxSq • ⌧ . In the “IG,” “LIME,” and “Perturb.”

(length constrained) methods, we use the same previ-

ously described ordering R, but always select the same

number of features in the rationale as in the SIS pro-

duced by our method (per example). We also compare

against the additional “Top IG” method, in which top

features from R are added into the rationale until sum

of integrated gradients attributions suggests that the

rationale has met our sufficiency criterion (see §S1).

4.1 Sentiment Analysis of Reviews

We first consider a dataset of beer reviews from

McAuley et al. (2012). Taking the text of a review as in-

put, different LSTM networks (Hochreiter and Schmid-

huber, 1997) are trained to predict user-provided nu-

merical ratings of aspects like aroma, appearance, and

palate (details in §S4). Figure 1 shows a sample beer

review where we highlight the SIS identified for the

LSTM that predicts each aspect. Each SIS only cap-

tures sentiment toward the relevant aspect. Figure 2

depicts the SIS-collection identified from a review the

LSTM decided to flag for positive aroma.
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Figure 5: Two DNA sequences that receive positive TF binding predictions for the MAFF factor (SIS is shaded).

(a) (b)
SIS Freq.

GCTGAGTCAT 197
ATGACTCAGC 185
GCTGAGTCA-C 83
GCTGAGTCAC 53
GCTGACTCAGCA 42

SIS Freq.

TGCTGA––GCA-TTT 12
GCTGAC–-GCA-TTT 8
TGCTGAC–-GCA-TT 6
TGCTGAC–-GCA-AA 5
TGCTGAC–-GCA-AT 4

(c)

Figure 6: (a) KL divergence between JASPAR motifs (known ground truth) and rationales found via various

methods. Shown are results for 422 TF datasets (each one summarized by median divergence). (b) In the SIS

found in data from one TF, DBSCAN identified two clusters (most frequently-occurring SIS in each shown).

(c) Known JASPAR motif (top) and alignment with cluster modes (bottom).

Figure 3 shows that when the alternative methods de-

scribed in §4 are length constrained, the rationales they

produce often badly fail to meet our sufficiency crite-

rion. Thus, even though the same number of feature

values are preserved in the rationale and these alter-

native methods select the features to which they have

assigned the largest attribution values, their rationales

lead to significantly reduced f outputs compared to

our SIS subsets. If the sufficiency constraint is instead

enforced for these alternative methods, the rationales

they identify become significantly larger than those

produced by SIScollection, and also contain many

more unimportant features (Table S2, Figure S13).

Benchmarking interpretability methods is difficult be-

cause a learned f may behave counterintuitively such

that seemingly unreasonable model explanations are in

fact faithful descriptions of a model’s decision-making

process. For some reviews, a human annotator has

manually selected which sentences carry the relevant

sentiment for the aspect of interest, so we treat these

annotations as an alternative rationale for the LSTM

prediction. For a review x whose true and predicted

aroma exceed our decision threshold, we define the

quality of human-selected sentences for model expla-
nation QHS “ fpxSq ´ fpxq where S is the human-

selected-subset of words in the review (see examples in

Figure S18). High variability of QHS in the annotated

reviews (Figure 4) indicates the human rationales often

do not contain sufficient information to preserve the

LSTM’s decision. Figure 4 shows the LSTM makes

many decisions based on different subsets of the text

than the parts that humans find appropriate for this

task. Reassuringly, our SIS more often lie within the

selected annotation for reviews with high QHS scores.

4.2 Transcription Factor Binding

We next analyze convolutional neural networks (CNN)

used to classify whether a given transcription factor

(TF) will bind to a specific DNA sequence (Zeng et al.,

2016). From 422 different datasets of DNA sequences

bound-or-not by different TFs (and 422 different CNN

models), we extract SIS-collections from sequences with

high (top 10%) predicted binding affinity for the TF pro-

filed in each dataset (details in §S2). Figure 5 depicts

two input examples and the corresponding identified

SIS. Again, rationales produced via our SIS approach

are shorter and better at preserving large f -values than

rationales from other methods (Figures S3 and S4).

To predict binding so accurately, the CNN must faith-

fully reflect the biological mechanisms that relate the

DNA sequence to the probability of TF occupancy. We

evaluate the rationales found by our methods against

known TF binding motifs from JASPAR (Mathelier

et al., 2015), adopting KL divergence between the

known motif and each proposed rationale as a quality

measure (see §S2.3). Figure 6a shows the divergence of

rationales produced by SIScollection is significantly

lower than that of rationales identified using other

methods (Wilcoxon p § 1e´5 in all cases). SIS is thus

more effective at uncovering the underlying biological

principles than the alternative methods we applied.

4.3 MNIST Digit Classification

Finally, we study a 10-way CNN classifier trained on the

MNIST handwritten digits data (LeCun et al., 1998).

Here, we only consider predicted probabilities for one

class of interest at a time and always set ⌧ “ 0.7 as

the probability threshold for deciding that an image
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Figure 7: Eight clusters of SIS identified from examples of digit 4.

Each row contains fifteen random SIS from a single cluster.

(a) (b)

(a)

Figure 8: (a) SIS for correctly clas-

sified 9 (1st column) and when ad-

versarially perturbed toward class

4 (2nd column). (b) SIS for digits

5 that are misclassified as 6 (1st

column) and as 0 (2nd column).

belongs to the class. We extract the SIS-collection from

all corresponding test set examples (details in §S3).

Example images and corresponding SIS-collections are

shown in Figures 8 and S8. Figure 8a illustrates how

the SIS-collection drastically changes for an example

of a correctly-classified 9 that has been adversarially

manipulated (Carlini and Wagner, 2017) to become

confidently classified as the digit 4. Furthermore, these

SIS-collections immediately enable us to understand

why certain misclassifications occur (Figure 8b).

4.4 Clustering SIS for General Insights

Identifying the different input patterns that justify a

decision can help us better grasp the general operating

principles of a model. To this end, we cluster all of

the SIS produced by SIScollection applied across a

large number of data examples that received the same

decision. Clustering is done via DBSCAN, a widely

applicable algorithm that merely requires specifying

pairwise distances between points (Ester et al., 1996).

We first apply this procedure to the SIS found across

all test-set DNA sequences which our CNN model pre-

dicted would be bound by some TF. Here, the pairwise

distance between two sufficient input subsets is taken

to be the Levenshtein (edit) distance. Figure 6 shows

the clusters for a particular TF where two SIS clusters

were found. Despite no contiguity being enforced in our

algorithm, each cluster is comprised of short sequences

that clearly capture different aspects of the underlying

DNA motif known to bind this TF.

We also apply DBSCAN clustering to the SIS found

across all MNIST test-examples confidently identified

by the CNN as a particular class. Pairwise distances are

here defined as the energy distance (Rizzo and Székely,

2016) over pixel locations between two SIS subsets (see

Figure 9: Jointly clustering the MNIST digit 4 SIS

from CNN and MLP. We list the percentage of SIS in

each cluster stemming from the CNN (rest from MLP).

§S3.3). Figure 7 depicts the SIS clusters identified for

digit 4 (others in Figure S9). These reveal distinct

feature patterns learned by the CNN to distinguish 4

from other digits, which are clearly present in the vast

majority of test set images confidently classified as a 4.

For example, cluster C8 depicts parallel slanted lines,

a pattern that never occurs in other digits.

Subsequently, we cluster the SIS found across held-

out beer reviews (Test-Fold in Table S1) that received

positive aroma predictions from our LSTM network.

The distance between two SIS is taken as the Jaccard

distance between their bag of words representations.

Three clusters depicted in Table 1 (rest in Tables S3, S4)

reveal isolated phrases that the LSTM associates with

positive aromas in the absence of other context.

The general insights revealed by our SIS-clustering can

also be used to compare the operating-behavior of dif-

ferent models. For the beer reviews, we also train a

CNN to compare with our existing LSTM (see §S4.6).

For MNIST, we train a multilayer perceptron (MLP)



Understanding black-box decisions with sufficient input subsets

(a) (b)

Figure 10: Predictions by one model on the SIS extracted from the other model in: (a) beer reviews with positive

LSTM/CNN aroma predictions, and (b) MNIST digits confidently classified as 4 by CNN/MLP.

Table 1: 3 clusters of SIS extracted from beer reviews

with positive CNN aroma predictions. Each row shows

4 most frequent unique SIS in a cluster (each SIS shown

as ordered word list with text-positions omitted). Each

unique SIS can be present many times in one cluster.

Clu. SIS #1 SIS #2 SIS #3 SIS #4

C1

smell
amazing

wonderful

nice
wonderful

nose

wonderful
amazing

amazing
amazing

C2

grapefruit
mango

pineapple

pineapple
grapefruit
pineapple
grapefruit

hops
grapefruit
pineapple

floyds

mango
pineapple
incredible

C3

creme
brulee
brulee

creme
brulee

decadent

incredible
creme
brulee

creme
brulee ex-
ceptional

Table 2: Joint clustering of the SIS from beer reviews

predicted to have positive aroma by LSTM or CNN.

Dashes are used in clusters with under 4 unique SIS.

Percentages quantify SIS per cluster from the LSTM.

Clu. LSTM SIS #1 SIS #2 SIS #3 SIS #4

C1 0% delicious - - -
C2 0% very nice - - -

C3 20% rich
chocolate very rich chocolate

complex smells rich

C4 33% oak
chocolate

chocolate
raisins

raisins oak
bourbon

chocolate
oak

raisins
chocolate

C5 70% complex
aroma

aroma
complex
peaches
complex

aroma
complex

interesting
cherries

aroma
complex

and compare to our existing CNN (see §S3.5). Both net-

works exhibit similar performance in each task, so it is

not immediately clear which model would be preferable

in practice. Figure 10 shows the SIS extracted under

one model are typically insufficient to receive the same

decision from the other model, indicating these models

base their positive predictions on different evidence.

Figure 9 depicts results from a joint clustering of all

SIS extracted from held-out MNIST images confidently

classified as a 4 by either the MLP or CNN. Evidently,

our MNIST-CNN bases its confidence primarily on

spatially-contiguous strokes comprising only a small

portion of each digit. MLP-decisions are in contrast

based on pixels located throughout the digit, demon-

strating this model relies more on the global shape of

the handwriting. Thus, the CNN is more susceptible

to mistaking other (non-digit) handwritten characters

for 4s if they happen to share some of the same strokes.

Table 2 contains results of jointly clustering the SIS

extracted from beer reviews with positive aroma predic-

tions under our LSTM or text-CNN. This CNN tends

to learn localized (unigram/bigram) word patterns,

while the LSTM identifies more complex multi-word

interactions that truly seem more relevant to the target

aroma value. Many CNN-SIS are simply phrases with

universally-positive sentiment, indicating this model is

less capable at distinguishing between positive senti-

ment toward aroma vs. other aspects such as taste/look.

5 Discussion

This work introduced the idea of interpreting black-

box decisions on the basis of sufficient input subsets –

minimal input patterns that alone provide sufficient evi-

dence to justify a particular decision. Our methodology

is easy to understand for non-experts, applicable to all

ML models without any additional training steps, and

remains fully faithful to the underlying model without

making approximations. While we focus on local expla-

nations of a single decision, clustering the SIS-patterns

extracted from many data points reveals insights about

a model’s general decision-making process. Given mul-

tiple models of comparable accuracy, SIS-clustering can

uncover critical operating differences, such as which

model is more susceptible to spurious training data

correlations or will generalize worse to counterfactual

inputs that lie outside the data distribution.



Carter, Mueller, Jain, Gifford

Acknowledgements

We thank Haoyang Zeng and Ge Liu for help with

the TF data/models. This work was supported

by NIH Grants R01CA218094, R01HG008363, and

R01HG008754.

References

Bach, S., Binder, A., Montavon, G., Klauschen, F.,

Müller, K.-R., and Samek, W. (2015). On pixel-

wise explanations for non-linear classifier decisions

by layer-wise relevance propagation. PloS One,
10(7):e0130140.

Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe,

M., Hansen, K., and Müller, K.-R. (2010). How to

explain individual classification decisions. Journal
of Machine Learning Research, 11:1803–1831.

Carlini, N. and Wagner, D. (2017). Towards evalu-

ating the robustness of neural networks. In IEEE
Symposium on Security and Privacy.

Caruana, R., Lou, Y., Gehrke, J., Koch, P., Sturm,

M., and Elhadad, N. (2015). Intelligible models for

healthcare: Predicting pneumonia risk and hospital

30-day readmission. In ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing.

Chen, J., Song, L., Wainwright, M. J., and Jordan,

M. I. (2018). Learning to explain: An information-

theoretic perspective on model interpretation. In

International Conference on Machine Learning.
Dabkowski, P. and Gal, Y. (2017). Real time image

saliency for black box classifiers. In Advances in
Neural Information Processing Systems.

Doshi-Velez, F. and Kim, B. (2017). Towards a

rigorous science of interpretable machine learning.

arXiv:1702.08608.

Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996).

A density-based algorithm for discovering clusters a

density-based algorithm for discovering clusters in

large spatial databases with noise. In ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining.

Fong, R. C. and Vedaldi, A. (2017). Interpretable

explanations of black boxes by meaningful perturba-

tion. In IEEE Conference on Computer Vision and
Pattern Recognition.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-

term memory. Neural computation, 9(8):1735–1780.

Kim, B., Wattenberg, M., Gilmer, J., Cai, C., Wexler,

J., Viegas, F., and Sayres, R. (2018). Interpretabil-

ity beyond feature attribution: Quantitative testing

with concept activation vectors (TCAV). In Interna-
tional Conference on Machine Learning.

Kindermans, P.-J., Hooker, S., Adebayo, J., Alber,

M., Schütt, K. T., Dähne, S., Erhan, D., and Kim,

B. (2017). The (un) reliability of saliency methods.

In NIPS Workshop: Interpreting, Explaining and
Visualizing Deep Learning - Now what?

Kindermans, P.-J., Schütt, K. T., Alber, M., Müller,

K.-R., Erhan, D., Kim, B., and Dähne, S. (2018).

Learning how to explain neural networks: PatternNet

and PatternAttribution. In International Conference
on Learning Representations.

Kleinberg, J., Lakkaraju, H., Leskovec, J., Ludwig,

J., and Mullainathan, S. (2018). Human decisions

and machine predictions. The Quarterly Journal of
Economics, 133(1):237–293.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P.

(1998). Gradient-based learning applied to document

recognition. Proceedings of the IEEE, 86(11):2278–

2324.

Lei, T., Barzilay, R., and Jaakkola, T. (2016). Ratio-

nalizing neural predictions. In Empirical Methods in
Natural Language Processing.

Li, J., Monroe, W., and Jurafsky, D. (2017). Un-

derstanding neural networks through representation

erasure. arXiv:1612.08220.

Lipton, Z. C. (2016). The mythos of model interpretabil-

ity. In ICML Workshop on Human Interpretability
of Machine Learning.

Mathelier, A., Fornes, O., Arenillas, D. J., Chen, C.-

y., Denay, G., Lee, J., Shi, W., Shyr, C., Tan, G.,

Worsley-Hunt, R., et al. (2015). Jaspar 2016: a major

expansion and update of the open-access database of

transcription factor binding profiles. Nucleic acids
research, 44(D1):D110–D115.

McAuley, J., Leskovec, J., and Jurafsky, D. (2012).

Learning attitudes and attributes from multi-aspect

reviews. In IEEE International Conference on Data
Mining, pages 1020–1025.

Murdoch, W. J., Liu, P. J., and Yu, B. (2018). Be-

yond word importance: Contextual decomposition to

extract interactions from LSTMs. In International
Conference on Learning Representations.

Olah, C., Mordvintsev, A., and Schubert, L. (2017).

Feature visualization. Distill.
Olah, C., Satyanarayan, A., Johnson, I., Carter, S.,

Schubert, L., Ye, K., and Mordvintsev, A. (2018).

The building blocks of interpretability. Distill.
Ribeiro, M. T., Singh, S., and Guestrin, C. (2016).

"Why should I trust you?": Explaining the predic-

tions of any classifier. In ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data
Mining, pages 1135–1144.



Understanding black-box decisions with sufficient input subsets

Rizzo, M. L. and Székely, G. J. (2016). Energy dis-

tance. Wiley Interdisciplinary Reviews: Computa-
tional Statistics, 8(1):27–38.

Rubin, D. B. (1976). Inference and missing data.

Biometrika, 63(3):581–592.

Sha, Y. and Wang, M. D. (2017). Interpretable pre-

dictions of clinical outcomes with an attention-based

recurrent neural network. In ACM International
Conference on Bioinformatics, Computational Biol-
ogy,and Health Informatics.

Shrikumar, A., Greenside, P., and Kundaje, A. (2017).

Learning important features through propagating

activation differences. In International Conference
on Machine Learning.

Simonyan, K., Vedaldi, A., and Zisserman, A. (2014).

Deep inside convolutional networks: Visualising im-

age classification models and saliency maps. In In-
ternational Conference on Learning Representations.

Sirignano, J. A., Sadhwani, A., and Giesecke, K. (2018).

Deep learning for mortgage risk. arXiv:1607.02470.

Smola, A. J., Vishwanathan, S., and Hofmann, T.

(2005). Kernel methods for missing variables. In

Artificial Intelligence and Statistics.
Springenberg, J. T., Dosovitskiy, A., Brox, T., and

Riedmiller, M. (2015). Striving for simplicity: The

all convolutional net. In International Conference
on Learning Representations.

Sundararajan, M., Taly, A., and Yan, Q. (2017). Ax-

iomatic attribution for deep networks. In Interna-
tional Conference on Machine Learning.

Tramer, F., Zhang, F., Juels, A., Reiter, M. K., and

Ristenpart, T. (2016). Stealing machine learning

models via prediction APIs. In USENIX Security
Symposium.

Zeiler, M. D. and Fergus, R. (2014). Visualizing and

understanding convolutional networks. In European
Conference on Computer Vision.

Zeng, H., Edwards, M. D., Liu, G., and Gifford, D. K.

(2016). Convolutional neural network architectures

for predicting dna–protein binding. Bioinformatics,
32(12):i121.


	Introduction
	Related Work
	Methods
	Properties of the SIS-collection
	Results
	Sentiment Analysis of Reviews
	Transcription Factor Binding
	MNIST Digit Classification
	Clustering SIS for General Insights
	Discussion
	Detailed Description of Alternative Methods
	Details of the Transcription Factor Binding Analysis
	Dataset and Model
	Rationale length comparison between SIS and other methods
	Evaluation of the quality of TF Rationales

	Details of the MNIST Analysis
	Dataset and Model
	Local Minima in Backward Selection
	Energy Distance Between Image SIS
	SIS Clustering and Adversarial Analysis
	Understanding Differences Between MNIST Classifiers
	Details of the Beer Reviews Sentiment Analysis
	Beer Reviews Data Description
	Model Architecture and Training
	Imputation Strategies: Mean vs. Hot-deck
	Feature Importance Scores
	Additional Results for Aroma aspect
	Understanding Differences Between Sentiment Predictors
	Results for Appearance and Palate aspects






