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Abstract

We present an improved Bayesian framework
for performing inference of affine transforma-
tions of constrained functions. We focus on
quadrature with nonnegative functions, a com-
mon task in Bayesian inference. We consider
constraints on the range of the function of in-
terest, such as nonnegativity or boundedness.
Although our framework is general, we derive
explicit approximation schemes for these con-
straints, and argue for the use of a log transfor-
mation for functions with high dynamic range
such as likelihood surfaces. We propose a
novel method for optimizing hyperparameters
in this framework: we optimize the marginal
likelihood in the original space, as opposed
to in the transformed space. The result is a
model that better explains the actual data.
Experiments on synthetic and real-world data
demonstrate our framework achieves superior
estimates using less wall-clock time than ex-
isting Bayesian quadrature procedures.

1 Introduction

Integrals over model (hyper)parameters are frequently
encountered in Bayesian inference. Model selection,
for example, is a fundamental concern in the course of
scientific inquiry: which of several candidate models
best explains an observed dataset D? The Bayesian
approach requires the computation of model evidence,
an integral of the form Z =

∫
f(D | θ)π(θ) dθ where θ

is a vector of model parameters, f(D | θ) is a likelihood,
and π(θ) is a prior. Computing a marginal predictive
distribution similarly requires integrating a predictive
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density p(y | x,D, θ) against a posterior distribution
p(θ | D). Note that the integrand in both these sce-
narios is known a priori to be nonnegative, as it is
the product of probability densities. Unfortunately,
these integrals are often computationally intractable
and thus must be approximated.

Numerous common techniques to estimate such inte-
grals rely on Monte Carlo estimators [15, 17, 23]. These
methods are agnostic to prior information about the
integrand, such as nonnegativity, and also converge
slowly in terms of the number of required samples, ren-
dering them ill-suited for settings where the integrand
is expensive to evaluate. One alternative is Bayesian
quadrature (bq) [4, 14, 18, 20], which relies on a proba-
bilistic belief on the integrand that can be conditioned
on observations to derive a posterior belief about the
value of the integral or any other affine transforma-
tion. The theoretical properties of kernel quadrature
methods (including bq) have been studied at length:
these methods can achieve faster convergence rates than
Monte Carlo estimators [1, 2, 13], even when the under-
lying model is misspecified [11, 12], a commonly-cited
pitfall of kernel-based methods.

Recent work by Gunter et al. [9] and Osborne et al. [19]
have improved the speed and accuracy of classical bq
methods such as Bayesian Monte Carlo (bmc) [20] for
estimating integrals of nonnegative functions. These
two methods reason about the square root and the log of
the integrand, respectively, instead of the integrand it-
self. By “undoing” these transformations, we may softly
incorporate the nonnegativity constraint. Although
previous work [9, 19] has demonstrated that suitably
modified bq can outperform Monte Carlo methods and
bmc for estimating integrals of nonnegative functions,
a general framework for quadrature with the use of
transformations has never been offered.

Our contribution is to define a Bayesian framework
for a wide variety of inference tasks, including quadra-
ture, involving a broader class of constrained functions.
We provide complete details of this framework for two
important classes of constrained functions: nonnega-
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tive functions and functions bounded on an interval.
Common examples arising in machine learning include
likelihoods and classification (e.g., validation) error.
We then apply our framework to quadrature, where we
address some shortcomings of previous work. Specif-
ically, our approach can make effective use of a log
transform to efficiently estimate integrals involving ex-
treme dynamic range. This is in contrast to the method
in [9], which cannot handle such dynamic range, and to
[19], which relied on a series of abstruse and inefficient
approximations. Finally, we develop a novel training
procedure whereby hyperparameters are fit by maxi-
mizing the marginal likelihood of true observations of
the integrand. All previous related work instead fit hy-
perparameters by maximizing the marginal likelihood
of transformed observations. We demonstrate this can
lead to undesirable behavior and that our procedure
yields a better-behaved model, even if adopted into pre-
vious procedures such as [9]. We conduct experiments
with real-world data showing that our proposed frame-
work and novel hyperparameter optimization method
outperforms previous bq algorithms.

2 Bayesian Quadrature

Let Z =
∫
f(x)π(x) dx be an intractable integral.1

Bayesian quadrature operates by placing a Gaussian
process (gp) prior on the function f , p(f) = GP(µ,Σ)
[21]. gps are probability distributions over functions,
where the joint distribution of any finite number of
function values is multivariate normal; this belief is
parametrized by a mean function µ(x) and a covariance
function Σ(x, x′). Given a set of observations at lo-
cations x = {x1, . . . , xn} with corresponding function
values f = f(x), the gp prior can be conditioned on
these observations to arrive at a posterior gp with mean
µD(x) = µ(x) + Σ(x,x)Σ(x,x)−1

(
f −µ(x)

)
and covari-

ance ΣD(x, x′) = Σ(x, x′)− Σ(x,x)Σ(x,x)−1Σ(x, x′).

Given a gp belief on a function, we may derive a
belief over integrals of that function using the fact that
gps are closed under linear transformations such as
integration [20]. Specifically, if p(f) = GP(µ,Σ), then
our integral of interest Z =

∫
f(x)π(x) dx is normal:

p(Z) = N
(∫
µ(x)π(x) dx,

∫∫
Σ(x, x′)π(x)π(x′) dx dx′

)
.

(1)

Warped sequential active Bayesian integration (wsabi)
[9] builds off bq to incorporate nonnegativity informa-
tion about an integrand f with a warped gp [24]. Specif-
ically,wsabi places a gp prior on g(x) =

√
2(f(x)− α),

for some small positive constant α. This prior is then
conditioned on observations to arrive at a posterior,

1For notational simplicity, the following will be written as
if x ∈ R, but all results extend to x ∈ Rd.

like bq. Warped gps have been previously used for
a variety of machine learning tasks [22, 26]. However,
when applied to quadrature, warped gps lack the key
property of closure under linear transformations. In
particular, the marginal predictive distribution of an
arbitrary function value f(x) is no longer Gaussian
but instead depends on the choice of warping function;
in the case of wsabi, these marginals are non-central
χ2 distributions, which are inconvenient for quadra-
ture. wsabi approximates the posterior belief about
f as a gp using one of two proposed approximation
schemes: linearization, which uses a first-order Taylor
expansion around the posterior mean of the gp on g(x),
and moment matching, which calculates the mean and
covariance of the true posterior distribution on f and
adopts a gp matching these moments [9]. Either ap-
proximation gives a gp belief about f approximately
incorporating the nonnegativity constraint, and we may
use standard results such as (1) to reason about inte-
grals, etc. Below we will describe a general procedure
following these ideas, then describe how to improve
upon the procedure in numerous ways in practice.

3 Inference on Constrained Functions

We propose a framework for inferring affine function-
als of functions with contraints on their range. Let
f : X → Y ⊂ R be a function of interest with range
constrained to a subset Y of the real line; for example,
a nonnegative function would have Y = (0,∞), and a
function bounded on an interval would have Y = (a, b).
Let Z = L[f ] be an affine functional of f we wish to
infer.

1. Determine an invertible warping ξ mapping R onto
Y , the domain of f . Define an unconstrained func-
tion g : X → R by g(x) = ξ−1

(
f(x)

)
and place a

gp prior on g, p(g) = GP(µ,Σ).

2. Observe g at locations chosen by an appropriate
sampling policy, yielding data D = {x, g(x)}.

3. Derive a posterior belief on the transformed func-
tion, p(g | D) = GP(µD,ΣD).

4. Calculate the posterior mean mD and covariance
KD functions of the induced posterior belief on
f . If needed, these can be approximated as poly-
nomials in the posterior moments of g; see below
for details. Approximate the belief on f by a
moment-matched gp: p(f | D) ≈ GP(mD,KD).

5. Derive a posterior belief about Z (e.g., (1)):

p(Z | D) = N
(
L[mD], L2[KD]

)
(2)

where L2[K] = L
[
L[K(x, ·)]

]
= L

[
L[K(·, x)]

]
(see

(1) for an example).
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Table 1: Induced moments of f = ξ(g) for various transformations ξ, if p(g) = GP(µ,Σ). We provide the raw second
moment C(x, x′) in this table; the covariance function can be computed by K(x, x′) = C(x, x′)−m(x)m(x′). Some entries
for the second raw moment refer to values of the first moment for that transform.

transform first moment m(x) = E
[
f(x)

]
second raw moment C(x, x′) = E

[
f(x)f(x′)

]
ξ(f) = α+ f2 [9] α+ µ(x)2 + Σ(x, x) 2Σ(x, x′)2 + 4µ(x) Σ(x, x′)µ(x′) +m(x)m(x′)
ξ(f) = any polynomial in f polynomial in µ and Σ polynomial in µ and Σ
ξ(f) = exp(f) exp

(
µ(x) + 1/2Σ(x, x)

)
m(x) exp

(
Σ(x, x′)

)
m(x′)

ξ(f) = Φ(f) Φ

(
µ(x)√

Σ(x, x) + 1

)
Φ

([
µ(x)
µ(x′)

]
,

[
Σ(x, x) + 1 Σ(x, x′)

Σ(x′, x) Σ(x′, x′) + 1

])

In short, we maintain a gp belief on a warped version
of f that removes the constraint. We then approximate
a gp belief on f given data via moment matching, after
which we can easily reason about affine functionals.
Particular instances of this framework have appeared
in the literature; for example, wsabi (specifically the
–m variant [9]) implements this framework using the
square root transform to infer integrals of nonnegative
functions. However, we will discuss the framework in
greater generality and provide practical advice.

The above framework is agnostic to several design
choices. First, we do not specify the warping func-
tion ξ in step (1). wsabi, for example, relies intimately
on the square root map. This induces nonnegativity,
but we will demonstrate that it does not yield useful
models for functions with high dynamic range. We will
provide details to work with a wide range of warping
functions, including polynomials, log transformations,
and sigmoidal transformations such as the probit.

Further, we do not specify how exactly the posterior
belief in the transformed space p(g | D) is derived in
step (3), in particular how any associated hyperparam-
eters are fit. We will discuss this issue in detail later
and provide a novel approach.

Finally, we make no assumptions about the mechanism
for choosing observation locations x in step (2). These
could be sampled proportional to some distribution,
à la Monte Carlo, or chosen via information-theoretic
principles or some other scheme. If no warping function
is used, as in bmc, then the optimal set of locations in
terms of minimizing the posterior variance/entropy of
our belief about Z can be precomputed, as the posterior
covariance of a gp does not depend on the observed
values [16]. However, in the scheme outlined above,
the approximate posterior covariance of f , KD, does
depend on the observed values, as it a function of the
mean belief in the transformed space, µD; see below for
details. Thus, to make use of policies that maximize
information gain in this setting, observation locations
must be selected sequentially. In wsabi, samples are
chosen by greedily maximizing information gain about
the integrand, selecting each point to maximize the

posterior variance: x∗ = arg maxxKD(x, x). Osborne
et al. [19] chose samples so as to maximize the expected
information gain about an integral Z directly. Both
are compatible with our proposed framework.

3.1 Transform selection, moment matching

We briefly pause to discuss the moment-matching step
in step (4) of our procedure. Several useful general-
purpose transformations admit closed-form expressions
for the posterior mean and covariance on f given a gp
belief about g = ξ−1(f), p(g) = GP(µ,Σ). We provide
a summary for several notable examples in Table 1;
details can be found in the supplemental material.

For a nonnegative function taking values on Y = (0,∞),
we may use the square root transform ξ−1 =

√
f or the

log transform ξ−1 = log f . Choosing an appropriate
transform for a given scenario will require consideration
of the data. For example, when the data has extreme
dynamic range, as is often the case for likelihood sur-
faces, a log transformation may be desired. Figure 1
shows an example log likelihood surface for a real-wold
astronomical model we will consider in our experiments
[7]. Note that computing a model evidence requires
integrating the likelihood surface, not the log likelihood.
The dynamic range of the likelihood is on the rough or-
der of 1010 000, and no off-the-shelf gp could reasonably
model this function. The square root of the likelihood,
as would be used in wsabi, reduces the dynamic range
to an equally unmanageable 105000. The log transfor-
mation, however, produces a well-behaved surface that
could be reasonably modeled with a gp.

To model a bounded function taking values on the
interval (0, 1), we could use a probit transform ξ =
Φ(f); closed-form moments for the induced belief on f
are also provided. The covariance requires the bivariate
Gaussian cdf, which can be estimated efficiently with
high precision [8]. By shifting and scaling appropriately,
we can model a function taking values on any interval
of the form (−∞, a),(a, b), or (b,∞).

For an arbitrary polynomial warping ξ = anf
n +

an−1f
n−1 · · · + a0, an extension of Isserlis’ theorem

guarantees that the moments of f will be polynomials
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Figure 1: The log-likelihood surface for a real-world astro-
nomical dataset corresponding to a an astronomical model
described further in our experiments [7]. The dynamic
range is massive, on the order of exp(27 135)� 1010 000.

in µ and Σ (of degree n for the mean and 2n for the
covariance), and a simple algorithm can generate these
moments on demand [25].

We show a brief demonstration of fitting the bounded
function f(x) = 0.95 exp(−2x2) (scaled to avoid the
value of exactly 1 at 0) using a log and probit trans-
formation in Figure 2. The model fit to data directly
and unaware of the transformation produces consid-
erable predictive mass on invalid values. The exact
posteriors for the log and probit transformations both
absolutely respect their respective constraints. The
moment-matched gps are excellent approximations.

3.2 Hyperparameter optimization

When gps are used for inference, an important consid-
eration is how to set the associated hyperparameters.
One commonly used method is to optimize the marginal
likelihood of the observed data using gradient-based
methods as the gradient of the marginal likelihood w.r.t.
hyperparameters is readily available for this model class.
The motivation for fitting hyperparameters by maximiz-
ing the marginal likelihood is to explain the observed
data as well as possible. However, when performing
inference using the above framework, the goal is not to
have the best possible explanation of the transformed
data, but rather to have an accurate belief about the
original, untransformed data. Previous related ap-
proaches (e.g., [9, 19]) have ignored this fact and fit
the hyperparameters of the warped gp in the warped
space. We will show this can lead to poor behavior.

We propose setting hyperparameters by maximizing the
marginal likelihood of the untransformed data using
the (approximate) posterior belief on f ; we will refer
to optimizing the hyperparameters in this manner as

no transform
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Figure 2: A demonstration of fitting a simple function
f(x) = 0.95 exp(−2x2) on the interval [−3, 3] using a log
and probit transformation in our framework. Each column
shares an x axis and each row shares a y axis.

“fitting in f -space” as opposed to “fitting in g-space.”

Formally, if p(g) = GP
(
µ(θ),Σ(θ)

)
(where depen-

dence on hyperparameters θ has been written explic-
itly), our framework approximates p(f) with p(f) ≈
GP
(
m
(
µ(θ),Σ(θ)

)
,K
(
µ(θ),Σ(θ)

))
. The exact relation-

ship between θ and the mean/covariance of f depends
on the transformation ξ. For many natural choices, the
partial derivatives ∂m/∂µ, ∂m/∂Σ, ∂K/∂µ and ∂K/∂Σ will
be available. Thus, we can evaluate the partial deriva-
tive of f w.r.t. to θ and use the same gradient-based
methods used to fit hyperparameters in g-space to fit
hyperparameters in f -space; for the transformations
found in Table 1, the relevant partial derivatives can
be found in the supplementary material.

Figure 3 shows the impact of fitting the hyperparame-
ters in f -space as opposed to fitting in g-space using
our toy function f(x) = 0.95 exp(−2x2). The hyper-
parameters learned in f -space result in a model that
fits the f -space data well but do a poor job explain-
ing the data in g-space; the learned mean is much
higher than the mean of the transformed data and the
learned output scale is very small, leading to unreason-
ably little uncertainty in the model. However, these
learned hyperparameters make sense in the context of
the f -space data, where most of the observations are
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Figure 3: Fitting in f -space vs. fitting in g-space. We model the function f(x) = 0.95 exp(−2x2) on the interval [−5, 5],
conditioning on 15 observations at locations sampled uniformly at random. We place a gp prior on g = log f with constant
mean and Matérn covariance with ν = 3/2. This model has three hyperparameters: a mean, an output scale, and a length
scale. These were fit in f -space ((a) and (c)) and g-space ((b) and (d)). See the legend in Figure 2.

effectively zero and the maximum observed value is
slightly less than one. Conversely, the hyperparameters
learned in g-space fit the g-space data very cleanly,
with a well-scaled uncertainty. However, this trans-
lates to a poorly-behaved model in f -space; the region
from [−2,−0] has what appears to be a very reason-
able variance in g-space, but this corresponds to a
massive variance in f -space that strongly defies the
nonnegativity constraint.

We offer two practical notes about fitting in f -space
in the case of a log transform learned through our ex-
periments. First, we suggest shifting the g-space data
so that the maximum observed value is exactly zero,
as this places the observations into a regime where the
inverse transformation is well-behaved. We are free to
make such a shift as doing so simply scales the f -space
data by a constant. Second, initializing the hyperpa-
rameter optimization procedure must be done carefully
when fitting in f -space. If one is using a constant
mean, we recommend avoiding naïvely initializing the
prior mean to be the mean of the transformed data.
Instead, we initialized the mean to one of −1, −2, −5,
and −10 and initialized the output scale of the covari-
ance function to the mean initialization divided by −2.
We believe this set of initializations to be sufficient
after shifting the data because the relevant portions of
the f -space data should be well-described by a hyper-
parameter setting reachable from these initializations.
Lower means may result in undesirable behavior, as
the corresponding output scales would need to be large
to explain the shifted observation at zero.

3.3 Approximating the posterior on Z

For some combinations of linear functionals and warp-
ing functions, the posterior belief on Z (2), may be
intractable, i.e., either L[m] or L2[K] cannot be ex-
pressed in closed form. This is the case for quadra-
ture with the log transformation and most common
choices of covariance function, including the Matérn

and squared exponential kernels, as the posterior belief
contains a term of the form

∫
exp expxdx.

Various approximation techniques can be used to esti-
mate these intractable quantities. Osborne et al. [19]
use bq itself, a somewhat unsatisfying approach as it
leads to infinite regress. Briol et al. [2] provide a theo-
retical justification for the use of Monte Carlo based
methods when estimating intractable posterior means.
We propose an alternative approximation scheme that
makes use of a Taylor series expansion to approximate
the f -space moments m(x) and K(x, x′). The exact
nature of the Taylor series will depend on the warping
function ξ; for ξ = exp f , the following approximations
follow from the expressions in Table 1:

m(x) ≈ 1 + µ(x) + 1/2Σ(x, x)

+
(
µ(x) + 1/2Σ(x, x)

)2
/2 + . . . (3)

K(x, x′) ≈ 1 + Σ(x, x′) + 1/2Σ(x, x′)2

+ Σ(x, x′)
(
µ(x′) + 1/2Σ(x′, x′)

+ µ(x) + 1/2Σ(x, x)
)

+ . . . (4)

Given these approximations, the posterior mean and
variance for quadrature are tractable for certain covari-
ance functions, including the squared exponential ker-
nel [10]. Indeed, for reasonably well-behaved warpings
ξ, the associated approximations will be polynomial
functions of µ and Σ, and thus tractable for integrat-
ing against standard covariance functions. This last
result follows directly from Isserlis’ theorem (see § 3.1).
Unfortunately, computing this approximation is expen-
sive for higher-order terms: computing the dth order
term in either Taylor series after making n function
evaluations takes Θ(n2d) time.

4 Experiments

We perform experiments in a variety of settings to
evaluate our proposed framework and demonstrate the
importance of our proposed improvements. We begin
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by exploring the effect of fitting in f -space using differ-
ent transformations on a simple regression task. Then
we apply our framework to quadrature of nonnegative
integrands using a moment-matched log transformation
(mmlt). We compare these results against wsabi and
bmc as well as Monte Carlo methods. If not otherwise
specified, all gp priors were chosen to have constant
mean and Matérn covariance with ν = 3/2, all sample
locations were selected iteratively using uncertainty
sampling in f -space [9], all hyperparameters were fit in
f -space when applicable, and all intractable posteriors
were estimated using quasi-Monte Carlo [3].

4.1 Hyperparameter tuning

To assess the impact of modeling constrained functions
using transformations, we consider three regression
tasks using the standard benchmarks of the hpolib
package [5]: online lda, svm, and logistic regression
(lr). For each benchmark, Eggensperger et al. [5]
provide a list of hyperparameter settings for the epony-
mous machine learning algorithm along with the asso-
ciated observations of some relevant, machine learning
quantity: for the online lda benchmark, the observed
values are per-word perplexities (which are nonneg-
ative), whereas for the svm and lr benchmarks the
observed values are prediction error rates (which are
bounded between 0 and 1). The online lda, svm, and
lr datasets contain 289, 1400, and 9680 observations,
respectively.

For each benchmark, we ran the following experiment
100 times: we randomly select some percentage of the
dataset to be a training set (20% for online lda, 5%
for the other two) and designate the remaining obser-
vations to be a test set. We fit a moment-matched gp
to the training set using both the log and square root
transformations for online lda and a probit transfor-
mation for both svm and lr. We compare our frame-
work against a standard, constraint-unaware gp and a
moment-matched gp where the hyperparameters were
fit in g-space as opposed to in f -space. We consider two
metrics: the root mean squared error (rmse) on the
test set and the mean predictive log likelihood (mll)
of observations in the test set, E

[
log p

(
f(x) | x,D

)]
.

The results are shown in Table 2. We can extract a
few trends. Using a transformation that respects the
a priori knowledge about the target function leads
to an improvement in accuracy; for the online lda
benchmark, the difference between the rmse of the
constraint-agnostic gp and the rmses of all methods
using a transformation is significant at the 1% signifi-
cance level according to a one-sided paired t-test. In
general, our proposed hyperparameter optimization
methodology does not lead to a significant difference
in the rmse. All methods tend to learn similar predic-

Table 2: Regression experiment results.

dataset transform rmse mll

lda

none 153 −1.0× 1010

square root (g-space) 142 −2.1× 106

square root (f -space) 142 −6.1× 105

log (g-space) 134 −4.1× 106

log (f -space) 133 −4.8× 105

svm
none 0.015 2.83

probit (g-space) 0.015 2.82
probit (f -space) 0.015 2.91

lr
none 0.036 1.98

probit (g-space) 0.036 2.06
probit (f -space) 0.035 2.07

im
none 0.281 −0.110

probit (g-space) 0.266 −0.324
probit (f -space) 0.256 0.319

tive means in f -space for these datasets, which do not
reflect extreme behavior. The impact of our proposed
methodology can be seen in the mean predictive log
likelihoods, however. In terms of this metric, fitting
in f -space is preferable to fitting in g-space for both
transforms as it leads to better-scaled uncertainties.

The gains of fitting in f -space are reduced when using
the probit transformation on these particular bench-
marks because the dynamic range is not very large:
observations of the per-word perplexity in the lda
benchmark range from roughly 1000 to 5000, whereas
observations of the error rates for the svm and lr
benchmarks only range from 0.24 to 0.50 and from
0.07 to 0.91, respectively. Although the range of ob-
servations for the lr benchmark may seem large, this
translates to observations between −1.5 and 1.5 in the
transformed space.

To showcase the power of the probit transformation
with more-extreme data, we ran the following in-model
(im) experiment 100 times. We randomly sampled a
draw from a two-dimensional gp prior, which we then
pushed through the inverse-probit transformation to
generate a function bounded between 0 and 1. The
output scale and length scales of the gp were set such
that samples range roughly from −5 to 5 over the
domain. We then sampled 200 points from the draw,
fit a moment-matched gp using the probit transform
(in both f -space and g-space) to 20% of the points, and
predicted the values of the remaining 80%. The results
are shown in Table 2. All differences in performance
are significant at the 1% significance level according to
one-sided paired t-tests. As the results indicate, in this
setting, it becomes important to fit hyperparameters
in f -space rather than in g-space to achieve reasonably
scaled uncertainties.
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4.2 Detecting DLAs via model selection

We consider a real-world quadrature application of
our framework, a model selection problem from astro-
physics. We wish to infer whether a damped Lyman-α
absorber (dla) exists along the line of sight between
a quasar and earth given spectrographic observations.
dlas are large gaseous clouds containing neutral hydro-
gen at high densities. Their location and size can be in-
ferred from observations of quasar spectra as they cause
distinctive dips in the observed flux at well-defined
wavelengths. The distribution of dlas throughout the
universe is important as it provides insight into models
of galaxy formation. Garnett et al. [7] developed a
model that specifies the likelihood that a given emis-
sion spectrum contains a putative dla. The model is
parameterized by two physical features of a candidate
dla: its column density, which roughly corresponds to
its size, and its redshift, which roughly corresponds to
its distance from earth. Garnett et al. [7] also specified
a data-driven prior distribution over these two parame-
ters, which must be integrated against to calculate the
model evidence and derive a posterior distribution of
dla presence. The model evidence of this dla model
is an (intractable) integral of the likelihood over the
domain of these two model parameters. Here we will
consider computing the model evidence of 2000 spectra
gathered from phase III of the Sloan Digital Sky Sur-
vey (sdss–iii) [6]. For a complete description of the
problem, data, and model, see [7].

A sample log-likelihood surface for this model corre-
sponding to a particular quasar spectrum is shown
in Figure 1. These functions are highly multimodal
and have a massive dynamic range. These features
make computing the model evidence a difficult task
for alternative methods such as bmc and wsabi. One
convenient feature of this experimental setting is that
the dimensionality of the intractable integral can be
scaled up to any even number simply by calculating the
model evidence for the existence of n dlas, resulting
in a 2n-dimensional integral [7].

We conducted an experiment comparing the accuracy
of bq methods for estimating model evidence in this
setting, including bmc, wsabi, and mmlt. We con-
sidered the latter two fitting both in f -space and in
g-space. We also compared with sequential Monte
Carlo (smc) and quasi-Monte Carlo (qmc) estimation.
We estimate model evidences for a single dla and three
dlas in 2000 quasar spectra, entailing two- and six-
dimensional integrals, respectively. Each method was
allotted 5 seconds of wall-clock time for estimating the
two-dimensional integrals and 60 seconds for the six-
dimensional integrals. Monte Carlo methods drew or
constructed samples from the prior specified by Garnett
et al. [7].

Table 3: Mean log p(Z∗ | D) at termination.

transform 2d 6d

none (bmc) −0.79 1.93
square root (wsabi) (g-space) 3.67 3.40
square root (wsabi) (f -space) 3.89 3.43

log (mmlt) (g-space) −266 −505
log (mmlt) (f -space) 10.3 7.57

Table 4: Mean mll at termination.

transform 2d 6d

none (bmc) −1.66 0.33
square root (wsabi) (g-space) 1.51 1.26
square root (wsabi) (f -space) 1.59 1.51

log (mmlt) (g-space) −3.87 −7.28
log (mmlt) (f -space) 1.68 1.65

Figure 4 shows the median absolute error over time of
each method, using exhaustive qmc sampling as ground
truth. mmlt outperforms all other methods except
qmc; note that qmc is not necessarily well-suited for
model-selection when it is not possible to construct an
appropriate low-discrepancy sequence, but we use it
to provide a gold-standard baseline. The difference in
absolute errors at termination between mmlt and the
other bq methods is significant for the six-dimensional
integrals at a 1% significance level according to a one-
sided paired t-test.

Tables 3 and 4 show the results of additional experi-
ments performed in this setting that demonstrate the
importance of our proposed hyperparameter optimiza-
tion methodology. Table 3 compares the log-likelihood
of the true value of the integral Z∗ under each Bayesian
method’s posterior belief upon termination in these ex-
periments while Table 4 compares the mll (see § 4.1).
Here the mll is computed by averaging over the log
predictive probabilities of the QMC samples used to
estimate the model evidence.

mmlt where the hyperparameters are fit in f -space
outperforms all alternatives on both metrics in both
the two-dimensional and six-dimensional experiments;
the differences in Table 3 are significant at a 1% sig-
nificance level according to a one-sided paired t-test.
mmlt where the hyperparameters are fit in g-space
significantly underperforms the other Bayesian algo-
rithms. The relatively poor performance of fitting in
g-space on these metrics is largely due to the high dy-
namic range of the likelihood surfaces, which forces the
output scales learned by fitting in g-space to be high.
This in turn causes both the pointwise distributions
and the distribution on the value of the integral to
have large variances (relative to their means), making
the likelihood everywhere low, much like the situation
depicted in Figure 3.
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Figure 4: The median absolute predictive error of each method’s estimate of the log model evidence over time in the dla
experiments.

The difference between wsabi where the hyperparame-
ters are fit in f -space and wsabi where the hyperpa-
rameters are fit in g-space on both metrics is relatively
small. This is a consequence of the square root trans-
formation, which barely affects the extreme dynamic
range of this data. The likelihood is so extremely small
everywhere (on the order of 10−10 000) that there is
practically no difference between the true values and
their square root. Thus, the settings of the hyperparam-
eters arrived at under the two methodologies are very
similar; importantly, they have similar output scales,
thus explaining their similar uncertainties about both f
and Z∗. However, for mmlt, where the transformation
does result in a drastic change in the dynamic range
of the observations, fitting in f -space is crucial as it
ensures that all the benefits of making this more useful
transformation can be reaped. Nonetheless, fitting hy-
perparameters in f -space in general will not decrease
performance and can result in significant gains.

5 Conclusion

We have presented a general Bayesian framework for
performing inference about affine transformations of
constrained functions. We developed a novel procedure
for optimizing the hyperparameters associated with
our method whereby the hyperparameters are set to
maximize the marginal likelihood of the true data as op-
posed to the transformed data. Although maximizing
the marginal likelihood of the transformed data may
seem intuitive, we show that doing so can lead to unde-
sirable behavior, particularly if the target function has
a wide dynamic range. We then applied our proposed
framework to perform regression on bounded functions
and both regression and quadrature on nonnegative
functions. This novel bq algorithm outperforms previ-
ously proposed algorithms on synthetic and real-world

data, both in terms of accuracy and speed of conver-
gence. In future work, we hope to expand upon step
(2) of our framework and explore bespoke sampling
mechanisms tailored towards specific inference tasks.

6 Acknowledgements

This work was supported by the National Science Foun-
dation under Award Number IIA-1355406.



Henry Chai and Roman Garnett

References

[1] F. Bach. On the equivalence between kernel
quadrature rules and random feature expansions.
Journal of Machine Learning Research, 18(21):
1–38, 2017.

[2] F.-X. Briol, C. J. Oates, M. Girolami, M. A. Os-
borne, and D. Sejdinovic. Probabilistic Integration:
A Role in Statistical Computation? arXiv preprint
arXiv:1512.00933v6 [stat.ML], 2015.

[3] R. E. Caflisch. Monte Carlo and quasi-Monte
Carlo methods. Acta Numerica, 7:1–49, 1998. doi:
10.1017/S0962492900002804.

[4] P. Diaconis. Bayesian numerical analysis. Sta-
tistical Decision Theory and Related Topics, 4(1):
163–175, 1988.

[5] K. Eggensperger, M. Feurer, F. Hutter, J. Bergstra,
J. Snoek, H. Hoos, and K. Leyton-Brown. Towards
an empirical foundation for assessing Bayesian op-
timization of hyperparameters. In NIPS workshop
on Bayesian Optimization in Theory and Practice,
volume 10, page 3, 2013.

[6] D. J. Eisenstein, D. H. Weinberg, E. Agol, H. Ai-
hara, C. Allende Prieto, S. F. Anderson, J. A.
Arns, É. Aubourg, S. Bailey, E. Balbinot, and et al.
SDSS-III: Massive Spectroscopic Surveys of the
Distant Universe, the Milky Way, and Extra-Solar
Planetary Systems. The Astronomical Journal,
142:72, Sept. 2011. doi: 10.1088/0004-6256/142/
3/72.

[7] R. Garnett, S. Ho, S. Bird, and J. Schneider. De-
tecting Damped Lyman-α Absorbers with Gaus-
sian Processes. Monthly Notices of the Royal As-
tronomical Society, 472(2):1850–1865, 2017.

[8] A. Genz. Numerical computation of rectangular
bivariate and trivariate normal and t probabilities.
Statistics and Computing, 14(3):251–260, 2004.

[9] T. Gunter, M. A. Osborne, R. Garnett, P. Hen-
nig, and S. J. Roberts. Sampling for Inference in
Probabilistic Models with Fast Bayesian Quadra-
ture. Advances in Neural Information Processing
Systems, 2014.

[10] P. Hennig and R. Garnett. Exact Sampling from
Determinantal Point Processes. arXiv preprint
arXiv:1609.06840 [cs.LG], 2016.

[11] M. Kanagawa, B. K. Sriperumbudur, and K. Fuku-
mizu. Convergence guarantees for kernel-based
quadrature rules in misspecified settings. In Ad-
vances in Neural Information Processing Systems,
pages 3288–3296, 2016.

[12] M. Kanagawa, B. K. Sriperumbudur, and K. Fuku-
mizu. Convergence analysis of deterministic kernel-

based quadrature rules in misspecified settings.
arXiv preprint arXiv:1709.00147, 2017.

[13] T. Karvonen, C. J. Oates, and S. Särkkä. A
Bayes-Sard Cubature Method. arXiv preprint
arXiv:1804.03016, 2018.

[14] F. M. Larkin. Gaussian measure in Hilbert space
and applications in numerical analysis. Rocky
Mountain Journal of Mathematics, 2(3):379–422,
1972.

[15] X. Meng and W. H. Wong. Simulating ratios of
normalizing constants via a simple identity: a
theoretical exploration. Statistica Sinica, 6(4):
831–860, 1996.

[16] T. P. Minka. Deriving quadrature rules from Gaus-
sian processes. Technical report, Technical report,
Statistics Department, Carnegie Mellon University,
2000.

[17] R. M. Neal. Annealed importance sampling. Statis-
tics and Computing, 11(2):125–139, 2001.

[18] A. O’Hagan. Bayes-Hermite quadrature. Journal
of Statistical Planning and Inference, 29:245–260,
1991.

[19] M. A. Osborne, R. Garnett, Z. Ghahramani,
D. Duvenaud, S. J. Roberts, and C. E. Rasmussen.
Active learning of model evidence using Bayesian
quadrature. Advances in Neural Information Pro-
cessing Systems, 2012.

[20] C. E. Rasmussen and Z. Ghahramani. Bayesian
Monte Carlo. Advances in Neural Information
Processing Systems, 2003.

[21] C. E. Rasmussen and C. K. I. Williams. Gaussian
Processes for Machine Learning. MIT Press, 2006.

[22] M. N. Schmidt. Function factorization using
warped Gaussian processes. In Proceedings of the
26th Annual International Conference on Machine
Learning, pages 921–928. ACM, 2009.

[23] J. Skilling. Nested sampling. Bayesian inference
and maximum entropy methods in science and
engineering, 735:395–405, 2004.

[24] E. Snelson, Z. Ghahramani, and C. E. Rasmussen.
Warped Gaussian processes. Advances in Neural
Information Processing Systems, 2004.

[25] C. S. Withers. The moments of the multivariate
normal. Bulletin of the Australian Mathemati-
cal Society, 32(1):103–107, 1985. doi: 10.1017/
S000497270000976X.

[26] Y. Zhang and D.-Y. Yeung. Multi-task warped
Gaussian process for personalized age estimation.
In IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 2622–2629. IEEE, 2010.


	Introduction
	Bayesian Quadrature
	Inference on Constrained Functions
	Transform selection, moment matching
	Hyperparameter optimization
	Approximating the posterior on Z

	Experiments
	Hyperparameter tuning
	Detecting DLAs via model selection

	Conclusion
	Acknowledgements

