
Vine Copula Structure Learning via Monte Carlo Tree Search
Supplementary Materials

1 From Vine to Multivariate
Distribution

Detailed illustration of the process of obtaining a mul-
tivariate distribution from vine based on the exam-
ple in Figure 1 in the main text is given below. For
tree 1, edges can be assigned bivariate distributions
F12, F13, F24, F25 given the univariate marginal distri-
butions F1, F2, F3, F4, F5.For tree 2, edges can be as-
signed the conditional distributions F23|1, F14|2, F45|2;
for example, F23|1 summarizes the conditional depen-
dence of F2|1, F3|1 where F2|1, F3|1 can be obtained
from F12, F13 in tree 1 respectively. The combina-
tion of F23|1, F12, F13 yields the trivariate distribution
F123. For tree 3, edges can be assigned the conditional
distributions F34|12, F15|24; for example F34|12 summa-
rizes the conditional dependence of F3|12, F4|12, which
can be obtained from F123, F124. As mentioned above,
F123, F124 can be achieved from the combining condi-
tional distributions in trees 1 and 2.

There are bivariate distributions on the edges in trees
1 to d − 1 of the vine. If the bivariate distributions
on the edges are all bivariate Gaussian, each edge can
be characterized by a correlation parameter ρ, which
can be interpreted as a partial correlation for trees 2
to d − 1. For the above example, one could consider
that the edges have been assigned the quantities
ρ12, ρ13, ρ24, ρ25, ρ23;1, ρ24;1, ρ45;2, ρ34;12, ρ15;24; here
the semicolon in the subscript is common for the
partial correlation. For example, ρ15;24 summarizes
the conditional correlation of variables 1 and 5
given variables 2 and 4. Partial correlations can be
calculated by inverting the principal submatrix of a
correlation matrix. Specifically, consider a partial
correlation ρa,b;S where S is a set of variables and
{a, b} ∩ S = ∅. Let Σ be the correlation matrix of
{a, b} ∪ S. If we define Ω = (ωij) = Σ−1, we have
ρa,b;S = −ωab/

√
ωaaωbb.

The representation of a multivariate Gaussian distri-
bution through a vine is an alternative parametriza-
tion of the correlation matrix that avoids the pos-
itive definiteness constraint of a correlation matrix.
From Kurowicka and Cooke (2003) and Kurowicka
and Cooke (2006), the correlations and partial corre-
lations assigned to any vine are algebraically indepen-
dent. and the determinant of the correlation matrix is

log det(R) =
∏

e(1− ρ2e) for any vine with {ρe} being
the set of correlations and partial correlations on the
edges of the vine. Moreover, it is this parametrization
of multivariate Gaussian that can extend to multivari-
ate non-Gaussian by using bivariate copulas on the
edges of the vine to get what is called the vine copula
or pair-copula construction.

Multivariate data are seldom well summarized by the
multivariate Gaussian distribution, but the multivari-
ate Gaussian may be adequate as a first order model if
the variables are monotonically related to each other.
One approach to developing a parsimonious copula for
high-dimensional non-Gaussian data is to (a) find a
parsimonious truncated partial correlation vine for the
matrix of normal scores (where variables have each
been converted to standard normal via probability in-
tegral transforms), and (b) replace edges of the vine
with bivariate copulas that can have tail behavior dif-
ferent from Gaussian if this is seen in bivariate plots.
See Brechmann and Joe (2015) for data examples that
follow these steps.

2 Description of Datasets

Concrete Concrete compressive strength is a nonlin-
ear function of age and ingredients. In this dataset,
n = 1029 concrete samples are collected from 17 dif-
ferent sources (Yeh, 1998). There are 9 variables
recorded: the concrete compressive strength (MPa),
age (days) and 7 ingredients (kg/m3). In order to run
the brute-force algorithm, we only keep the age and
ingredient variables, which gives a dataset with 8 vari-
ables.

Abalone The abalone dataset is obtained from the
UCI machine learning repository (Lichman, 2013). It
contains n = 4177 samples and 8 numerical variables,
including age and physical measurements of abalones.
It is also feasible to run the brute-force algorithm on
this dataset.

Glioblastoma Tumors (GBM) The glioblastoma
tumors dataset is a level-3 gene expression dataset
studied by Brennan et al. (2013). It is obtained
from The Cancer Genome Atlas (TCGA) Data Por-
tal (Tomczak et al., 2015) and contains expression data
of 12044 genes from n = 558 tumors. Within all the



Vine Copula Structure Learning via Monte Carlo Tree Search Supplementary Materials

genes in the dataset, we first filter out 1342 genes that
are related to human cell cycle. Afterwards, a hier-
archical clustering algorithm with Euclidean distance
metric and complete-linkage is applied to obtain a clus-
ter of 92 genes. To further study different scenarios, we
randomly sample d = 8, 10, 15, 20 variables and repeat
the procedure 100 times. This allows us to calculate
confidence intervals when comparing different meth-
ods.

Deutscher Aktien Index (DAX) This dataset con-
tains n = 511 daily log returns of 29 stocks listed in
Deutscher Aktien Index (DAX) in 2011–2012 (Section
7.8.2 in Joe (2014)). A GARCH filter is applied to re-
move serial dependence. Similar to the sub-sampling
procedure for the GBM dataset, we also randomly
sample d = 8, 10, 15, 20 variables for 100 times.
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