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Abstract

Monte Carlo tree search (MCTS) has been
widely adopted in various game and plan-
ning problems. It can efficiently explore a
search space with guided random sampling.
In statistics, vine copulas are flexible multi-
variate dependence models that adopt vine
structures, which are based on a hierarchy
of trees to express conditional dependence,
and bivariate copulas on the edges of the
trees. The vine structure learning problem
has been challenging due to the large search
space. To tackle this problem, we propose a
novel approach to learning vine structures us-
ing MCTS. The proposed method has signif-
icantly better performance over the existing
methods under various experimental setups.

1 INTRODUCTION

Monte Carlo tree search (MCTS) is a search and plan-
ning framework for finding optimal decisions by taking
random samples in the decision space (Browne et al.,
2012). The key idea of MCTS is first to construct
a search tree of states which are evaluated by fast
Monte Carlo simulations and then selectively grow the
tree (Coulom, 2006). Multi-armed bandit algorithms
such as the upper confidence bounds for trees (UCT)
can be employed to balance between exploration and
exploitation (Kocsis and Szepesvéri, 2006). As one of
the most important methods in artificial intelligence,
MCTS has been widely applied in various game and
planning problems, including chess, shogi, Go, real-
time video games, and even games with incomplete
information such as poker. In March 2016, AlphaGo,
which combines MCT'S with deep neural networks, be-
came the first computer Go program to beat a 9-dan
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professional without handicaps (Silver et al., 2016).
This is regarded as a major milestone in artificial in-
telligence research.

In probability theory and statistics, a copula is a mul-
tivariate probability distribution with uniform (0,1)
univariate margins. Via Sklar’s theorem (Sklar, 1959),
any multivariate distribution can be decomposed in
terms of univariate marginal distribution functions
and a copula which describes the dependence struc-
ture among the variables. There exist many paramet-
ric copula families, such as Gaussian and Student ¢-
copulas. Copulas are widely applied in areas that re-
quire non-Gaussian multivariate or high-dimensional
statistical inference. Joe (2014) includes a detailed in-
troduction to copula theory, models and applications.

A vine is a graphical object represented by a sequence
of connected trees. In a vine copula model, vine
graphs are adopted to specify the dependence struc-
ture, and bivariate copulas are used as the basic build-
ing blocks on the edges of vines. Vine copulas have
been proven to be a flexible tool in high-dimensional
(non-Gaussian) dependence modeling, and have been
applied to various fields including finance (Dissmann
et al., 2013), longitudinal studies (Cooke et al., 2015),
and spatial statistics (Krupskii et al., 2018).

Recently, copulas and vine copulas have gained popu-
larity in machine learning and artificial intelligence re-
search. Elidan (2013) summarizes some applications of
copula-based constructions in machine learning. Tran
et al. (2015) use vine copulas to augment the mean-
field factorization in variational inference. Ozdemir
et al. (2017) use copulas to model the joint density
of probability scores, leading to a new classifier fusion
approach. Wieczorek et al. (2018) apply a Gaussian
copula to the problem of feature disentanglement in
the latent space by restoring the invariance properties
of the information bottleneck method.

The structure learning of the vine is computation-
ally intractable in general. There are a large num-
ber of possible vine structures which result in a huge
search space for a high-dimensional dataset if one
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would like to find the optimal one. Specifically, ac-
cording to Cayley’s formula, one can construct d?—2
different trees with d nodes. With this result, Kurow-
icka and Joe (2011) further show that there are in total
2(d=3)(d=2) (g1 /2) different vine structures considering
all levels for a dataset with d variables. This makes
vine structure searching and learning a challenging
problem. Previous work has been mainly centered
around greedy algorithms which follow the heuristics
of joining variables with stronger dependence in low-
level trees and making the locally optimal choice at
each tree level conditional on previous trees. How-
ever, it does not in general produce a solution that is
near the global optimum of the vine structure learning
problem.

Because the construction of a truncated vine is inher-
ently sequential, we formulate the vine structure learn-
ing problem as a sequential decision making process in
this work. A search tree thus arises, where the root
node is “empty” and the terminal leaf nodes are valid
vine structures. Although the height and branching
factor of the search tree might be large, MCTS can be
adopted to search through it efficiently. Specifically,
we adapt the existing upper confidence bounds for
trees (UCT) algorithm for vine structure learning and
incorporate tree policy enhancements including first
play urgency, progressive bias, and efficient transpo-
sition handling. The adapted UCT is called the vine
UCT, under the guidance of which, the tree policy
strikes a balance between exploration and exploitation.
The proposed method is applied to datasets from var-
ious disciplines and compared against existing meth-
ods. All the experiments suggest that the proposed
method outperforms existing methods.

The remainder of the paper is organized as follows.
Vines and vine structure learning are introduced and
defined in Section 2. We give a brief overview of
Monte Carlo tree search (MCTS) in Section 3. The
proposed MCTS-based vine structure learning method
is described in Section 4, and is evaluated on various
datasets in Section 5. Section 6 provides concluding
remarks.

2 VINE STRUCTURE LEARNING

2.1 Vine Graphical Model

A vine is a nested set of trees where the edges in the
first tree are the nodes of the second tree, the edges
of the second tree are the nodes of the third tree, etc.
Vines are useful in specifying the dependence structure
for general multivariate distributions on d variables.

The first tree in a vine represents d variables as nodes
and the bivariate dependence of d—1 pairs of variables

as edges. The second tree describes the conditional
dependence of d — 2 pairs of variables conditioning on
another variable; nodes are the edges in tree 1, and
a pair of nodes could be connected if there is a com-
mon variable in the pair. The third tree describes the
conditional dependence of d — 3 pairs of variables con-
ditioning on two other variables; nodes are the edges
in tree 2, and a pair of nodes could be connected if
there are two common conditioning variables in the
pair. This continues until tree d — 1 has only one edge
that describes the conditional dependence of two vari-
ables conditioning on the remaining d — 2 variables.

[1,2] [2,5]

1 2 5 [1.2] [2.5]
[1,3] [2,4] [2,31] [4,5)2]
[1,412]
3 4 [1,3] [2,4]

(a) Level 1 tree T7. (b) Level 2 tree Tb.

[3,4/1,2] [1,52,4]

[2,3[1] [1.412] [4.52]

(c) Level 3 tree Ts.

Figure 1: An example of a 3-truncated vine with d = 5.

For a concrete example, as shown in Figure 1, consider
d = 5 variables labeled as 1,2,3,4,5. Suppose tree 1
has edges [1, 2], [1, 3], [2,4], [2, 5] where [1,2] is an edge
connecting variables 1 and 2, etc. Possible edges for
tree 2 are [2,3|1], [1,4/2], [4,5|2] where [2,3|1] con-
nects [1,2] and [1, 3] (edges of tree 1 are nodes in tree
2, and these two nodes have the variable 1 in common).
Possible edges for tree 3 are [3,4[1,2], [1, 5|2, 4] where
[1,5|2,4] connects [1,4]2] and [4,5|2] (edges of tree 2
are nodes in tree 3, and these two nodes have the vari-
ables 2,4 in common). Note that the possible edges in
a tree depend on but are not uniquely determined by
the edges of the previous trees. For example, [2,3]1],
[1,42], [1,5|2] is another possible set of edges for tree
2 in Figure 1. Therefore, one needs to decide which
configuration to adopt when building trees for a new
level. The requirement that two connected nodes must
have two distinct variables and the remaining variables
in common is called the proximity condition.

A formal definition is given as follows.

Definition 1 (Vine) V is a vine on d variables if

1. V= (Tl, e aTd—l);

2. Ty is a tree with nodes N(Th) = {1,2,...,d}, and
edges E(Ty). For £ > 1, Ty is a tree with nodes
N(T;) = E(Ty-1);

3. (prozimity condition) For £ = 2,...,d — 1, for
{ni,n2} € E(Ty), #(n1ln2) = 2, where A de-

notes symmetric difference and # denotes cardi-
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nality.

2.2 From Vine to Multivariate Distributions

To get a multivariate distribution from a vine, bivari-
ate distributions are assigned to the edges of tree 1
and bivariate conditional distributions are assigned to
the edges of trees 2,...,d — 1. If the bivariate distri-
butions on the edges are all bivariate Gaussian, each
edge can be characterized by a correlation parameter
p, which can be interpreted as a partial correlation for
trees 2 to d—1. The partial correlation parameters can
be computed in closed-form from the empirical corre-
lation matrix R. See the supplementary materials for
a more detailed introduction to the representations of
a multivariate Gaussian distribution through vines.

2.3 Truncated Vine

There are d(d—1)/2 = O(d?) edges in a complete vine
graph, and at least d(d — 1)/2 parameters for a vine
copula with a parametric bivariate copula family on
each edge. Great computational effort is required for
parameter estimation in high-dimensional cases. Trun-
cated vines are useful for representing the dependence
of d variables in a parsimonious way. A truncated
vine with 1 <t < d—1 trees, or a t-truncated vine, as-
sumes that the most important dependencies are cap-
tured by the first ¢ trees V; = (T1,...,T:) in a vine
and the remaining trees can be represented with con-
ditional independence of two variables given the condi-
tioning variables. In the Gaussian case, this is equiva-
lent to assigning partial correlations of 0 to the edges
of the remaining d — ¢t — 1 trees. By truncation, the
number of parameters in a vine copula is reduced from
O(d?) to O(d), if t is constant as d increases.

The most parsimonious vine structure is a 1-truncated
vine with one tree that connects d—1 pairs of variables.
This is a valid structure (called a Markov tree) if vari-
ables not directly connected are conditionally indepen-
dent given the variables in the tree path that connect
them. However, a Markov tree can seldom summarize
the dependence well in d variables. As an improve-
ment, the truncated vine (¢t > 2) adds some layers of
conditional dependence on top of a Markov tree un-
til conditional independence relations from high-order
trees are approximately valid.

2.4 Objective Function

Kurowicka and Cooke (2003) show that the log-
determinant of the empirical correlation matrix R is
logdet(R) = . c () log(1 — p?) for any vine V, with
{pe} being the set of correlations and partial corre-
lations on the edges of the vine. Assuming all the

bivariate copulas are Gaussian, logdet(R) is also lin-
early related to the negative log-likelihood of the vine
copula. The best t-truncated partial correlation vine
to approximate the correlation matrix is such that
Yeen(vy log(l — p?) is close to logdet(R). This im-
plies that one wants a truncated vine such that p? are
large in the first ¢ trees and small in the remaining
trees.

Formally, the goal of the vine structure learning prob-
lem is to find a t-truncated vine that maximizes the
objective function, or log-likelihood function

L(V)=> > —log(1—pl), (1)

1=1 ec E(T;)

where ¢ is a pre-defined truncation level, and p, is the
partial correlation corresponding to edge e in the vine.
Since p? € (0,1), Ly(V) is monotonically increasing
with respect to t. Furthermore,

L4—1(V) = —logdet(R), VV. (2)

In other words, all the (d — 1)-truncated vines achieves
the same objective function.

2.5 Existing Methods

A few existing methods attempt to solve the vine
structure learning problem. The most direct way is to
enumerate and compare all possible vine structures in
a brute-force fashion. However, as mentioned earlier,
there are 2(=3)(4=2)(4!/2) different vine structures in
d variables, so this makes brute-force search only fea-
sible for d < 8 due to the exponentially increasing
number of possible vine structures.

As an alternative, Dissmann et al. (2013) propose a
method based on the maximum spanning tree (MST)
algorithms with different choices for edge weights that
reflect the strength of the dependence between pairs
of variables. For multivariate Gaussian case, a good
choice of edge weight in the trees is weight — log(1—p?)
for edge e; this is used in Section 6.17 of Joe (2014).
The trees, 17 to T, of the vine are sequentially con-
structed by maximizing the sum of the edge weights at
each tree level. Such an MST can be obtained using
the algorithm by Prim (1957). Dissmann’s algorithm
is a greedy algorithm: the construction of T}, is based
on the locally optimal choice given T;. It does not, in
general, produce a globally optimal solution.

Inspired by genetic algorithms, Brechmann and Joe
(2015) propose methods to explore the search space
of truncated vines effectively. At each tree level, it
considers not only the MST but also neighbors of the
MST. In general, the results generated by this algo-
rithm outperform the greedy algorithm.
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More recently, Kraus and Czado (2017) propose a
method that selects simplified vine copulas for which
the simplifying assumption is violated as little as pos-
sible. They adopt the constant conditional correlation
test and use the corresponding p-values to define edge
scores; this is different from our objective to maxi-
mize the likelihood and find the optimal vine struc-
ture under the Gaussian copula assumption. Further,
this method combines the vine structure learning with
copula selection, which is beyond the scope of this pa-
per. Therefore, this method is not directly comparable
with our proposed method.

3 MONTE CARLO TREE SEARCH

3.1 Algorithm

Monte Carlo tree search (MCTS) is a method for try-
ing to find the optimal sequence of decisions in a
given domain by taking random samples in the de-
cision space and building a search tree accordingly. It
has been widely used in domains that can be repre-
sented as trees of sequential decisions, such as games
and planning problems.

The basic MCTS algorithm is conceptually simple: it
iteratively builds a search tree until a predefined com-
putational budget is reached. The search tree is ini-
tialized to a root node vy with an initial state sg. In
each iteration, four steps are applied:

1. Selection: Starting at the root node vy, a tree
policy is recursively applied to descend from the
root node to a node with at least one unvisited
child node.

2. Expansion: An unvisited child node v, is added
to expand the tree.

3. Simulation: A simulation is run from the new
node vy according to a default policy to pro-
duce an outcome. The default policy is often a
uniformly random sequence of actions applied to
the state of v, until a terminal state is reached.

4. Backpropagation: The simulation result A, which

Selection Expansion Simulation Backpropagation
A
N
N
Al
Default
Tree Polic
Policy y
A

Figure 2: One iteration of the general MCTS algo-
rithm.

is the outcome of the terminal state, is backprop-
agated through the selected nodes to update their
statistics.

The final result is a sequence of actions that lead to
the best outcome starting from the root node vg. One
iteration of the MCTS algorithm is shown in Figure 2.

3.2 Upper Confidence Bounds for Trees
(ucT)

The choice of tree policy is crucial: it attempts to
balance between exploration (look in areas that have
not been well sampled yet) and exploitation (look in
areas which appear to be promising). In this section,
we describe a popular tree policy in the MCTS family,
the upper confidence bound for trees (UCT).

UCT is based on the principle of optimism in the face
of uncertainty. With UCT, in the selection and expan-
sion step a child node j is selected to maximize

21
UCT() = 3 + 5y [ ==, (3)
J

e 1, is the average outcome from child node j;

e 1 is the number of times the parent node has been
visited;

e n; is the number of times child j has been visited;

e 1 > (0 is a constant.

where

If more than one child node has the same maximal
value, the tie is usually broken randomly. Since n; =0
yields a UCT value of co, previously unvisited children
are assigned the largest possible value, which corre-
sponds to the expansion step in the MCTS algorithm.
In the backpropagation step, Z; and n; are updated
accordingly.

4 PROPOSED METHOD

4.1 Vine Structure Learning as a Sequential
Decision Making Problem

In this section, we introduce our proposed method
of using MCTS to find the optimal structure of a
t-truncated vine. A t-truncated vine can be repre-
sented by a sequence of edges in the sequence of trees
Ti,...,T;. Given the discrete and hierarchical nature,
the construction of a ¢-truncated vine can be regarded
as a sequential decision making problem:

1. The initial state has no edge; T; are empty for
ie{l,...,d—1}.

2. Starting from level ¢ = 1, add one edge to T; at
each step according to the tree policy. The candi-
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Figure 3: Vine structure learning as a sequential deci-
sion problem.

date edges are chosen so that T; has only one con-
nected and acyclic component. For levels ¢ > 1,
the candidate edges also need to satisfy the prox-
imity condition.

3. If T; is connected and i < t, go to step 2 and start
adding edges to T;4.

Figure 3 shows an example of vine structure learning
with dimension d = 5 and truncation level ¢t = 2. Each
subfigure represents a state in the search tree. (a)
The initial state is an empty graph with 5 nodes. (b)
After two steps, two edges [1,2] and [2,5] are added
to the graph according to the tree policy. Note that
given this state, [1, 5] cannot be added otherwise a cy-
cle would form. (c¢) Two more edges [2, 3] and [3, 4] are
added and T} becomes connected. (d) We have started
adding edges to T5; [1,5|2] and [1,3]2] have been se-
quentially added. Given this state, edges [2,5]-[3,4]
and [1,2]-[3,4] do not satisfy the proximity condition,
and edge [2,3]-[2, 5] does not satisfy the acyclic con-
dition. Therefore, the only edge that can be further
added is [2, 3]-[3, 4], namely [2,4|3]. (e) All the edges
have been added and this is a terminal state. The tree
construction resembles Prim’s algorithm (Prim, 1957),
which ensures that at each time step there exists at
most one connected component in each tree.

A default policy determines how to move from a non-
terminal node to a terminal node in the search tree.
In our application, it specifies how to “complete” the
truncated vine given an incomplete one. We consider
two options:

1. Uniformly random: given an incomplete trun-
cated vine, an edge is randomly selected from all
the eligible edges, that is the candidate edges that
satisfy the acyclic and proximity conditions.

2. Maximum spanning tree: similar to Diss-
mann’s Algorithm (Dissmann et al., 2013) intro-
duced in Section 2.5, given an incomplete trun-

cated vine, maximum spanning trees are con-
structed sequentially.

The disadvantage of maximum spanning tree default
policy is that it greedily expands an incomplete vine,
and this might lead to insufficient exploration and lock
onto a set of suboptimal actions. Therefore, we use
the uniformly random default policy in the proposed
method to better explore the search space.

4.2 Vine UCT

The UCT algorithm is used as the tree policy in var-
ious sequential decision making domains. However,
in order to apply the original UCT algorithm to the
vine structure learning problem, a few adaptations are
needed.

Scaling Constant MCTS algorithms are commonly
adopted in artificial intelligent game playing problems,
where the outcome is often binary: win or lose, repre-
sented by 1 and 0 respectively. As a result, the aver-
age outcome T; in Equation 3 is always in the range
of [0,1].

In our application, the objective function L;(V) is in
the range of (0, —logdet(R)]. We need to adjust the
scaling constant x in Equation 3 accordingly so that
the exploration and exploitation terms are on the same
scale. A natural choice of x is —logdet(R).

First Play Urgency In the original UCT algorithm,
the selection step stops whenever a node has an un-
visited child node. For problems with large branching
factors or height in the search tree, the tree will not
grow deeper unless all the child nodes are visited. For
vine structure learning, the height of the search tree is
in the order of O(d?), and the branching factor is also
large. Therefore, exploitation will rarely occur deep
in the tree according to the original UCT algorithm.
First play urgency (FPU) is a modification proposed
by Gelly and Wang (2006) to address this issue. It
assigns a fixed value of Appy to score the unvisited
nodes and uses the original UCT formula to score the
visited nodes. By doing so, the score of an unvisited
node is no longer infinite, and this encourages early
exploitation.

Progressive Bias When a node has been visited only
a few times, its statistics are not reliable. Progressive
bias is a technique of adding domain specific heuristic
knowledge to MCTS (Chaslot et al., 2008). In artifi-
cial intelligence game playing problems, many games
already have strong heuristic knowledge.

A general form of progressive bias for node j is
Hj;/(n;+1), where H; is a heuristic value and n; is the
number of visits for this node. This term is added to
the UCT formula to encourage exploitation of nodes
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with larger heuristic values. As the number of visits
n; increases, the effect of progressive bias decreases.

In our application, given the objective function in
Equation 1, H; can be chosen as H; = —log(1 — pﬁj),
since the objective function is the summation of H;
over all the edges in a truncated vine. Here e; is the
edge added by node j and p., is the corresponding
(partial) correlation parameter. A tuning parameter
App controls the strength of progressive bias. When
App is sufficiently large, the tree policy is solely con-
trolled by the heuristic value, and the MCT'S algorithm
coincides with Dissmann’s algorithm.

Transpositions The formulation of vine structure
learning as a sequential decision making process has
a potential problem: the same states can be reached
via different paths in the search tree. This is usually
referred to as transpositions.

Figure 4 shows the search tree corresponding to a 1-
truncated vine with d = 3. It is obvious that there are
only three unique 1-truncated vines in this case sum-
marized as 1-2-3, 1-3—2, 2-1-3. However, the search
tree contains six terminal nodes; for each unique vine
structure, there exist two distinct paths leading to it.
For example, the two paths [1,2],[2,3] and [2, 3], [1, 2]
both result in the same vine structure 1-2-3.

%]

[1,2] [2,3]

[1,3]

1-2 1-3 2-3
[1,3] [2,3] [1,2] [2,3][1,2] [1,3]

| 2R Bl [l ] T
Figure 4: The search tree corresponding to a 1-

truncated vine with d = 3.

Transpositions cause inefficiency because the statistics
of the same state are scattered across different nodes.
Transposition tables are the usual choice to tackle this
problem; they store information about states and share
the statistics to subsequent occurrences of the same
state during the search. A transposition table is usu-
ally implemented as a hash table of the unique vine
states. On encountering a new vine state, the algo-
rithm checks the table to see whether the state has
already been analyzed; this can be done quickly, in ex-
pected constant time. If the table contains the statis-
tics that were previously assigned to this state, the
statistics are used directly. Otherwise, this new state
is entered into the hash table.

It is relatively straightforward to apply transposition
tables in the selection steps of MCTS. Childs et al.
(2008) further discuss the use of transposition tables
in the backpropagation steps. Specifically, we adopt
the UCT?2 algorithm from that paper. Compared with
the original UCT formula in Equation 3, there are
two modifications: (1) a transposition table is used
to share statistics of the same vine state; (2) the algo-
rithm keeps track of the number of visits of both nodes
and edges in the search tree. For a parent node p and
its child node j, the UCT2 value is given by

21
UCT2(p, j) = Tj + iy | —22 (4)
N(p,j)

where Z; is retrieved from the transposition table, n,, is
the number of visits of node p and n, ;) is the number
of visits of edge (p,j). Note that if n, ;) is replaced
with n;, the value of the parent node might converge
to an incorrect value.

Vine UCT Combining all the above adaptations, the

resulting UCT is called the vine UCT. For a parent

node p and its child node j, the vine UCT value is
H;

n; + 1

,AFPU}], (5)

VUCT(p,j) = T; — logdet(R) {APB .

2logn,

N(p,j)

+ min{

where

e \ppy and App are the tuning parameters;

o Hj = —log(1 — pzj) is the contribution to the
objective function by the newly added edge e; in
child j;

e 1, and n; are the numbers of visits of parent node
p and child node j;

® 1y ;) is the number of visits of edge (p, j);

e T; is the average outcome from child node j re-
trieved from the transposition table.

In summary, the input of our method is a correlation
matrix R calculated from a multivariate dataset. The
MTCS algorithm is applied, using vine UCT as the
tree policy and uniformly random default policy. In
every MCTS iteration, the default policy leads to a
terminal ¢-truncated vine. Through the MCTS itera-
tions, we keep the vine with the largest value of the
objective function, and it is returned as the output.

5 EXPERIMENTS

5.1 Datasets

To assess the effectiveness of our proposed method,
we consider four datasets from various fields. Two
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of them (Concrete and Abalone) are small datasets
with d = 8 so that it is feasible to run the brute-
force algorithm. The other two have more variables
(Glioblastoma Tumors (GBM) and Deutscher Aktien
Index (DAX)). Subsets of variables are randomly se-
lected from these two larger datasets to evaluate the
performance of the proposed method. A detailed in-
troduction to each dataset is included in the supple-
mentary materials.

5.2 Performance Metric

It is a common question whether an empirical cor-
relation matrix R is well approximated by a model.
A likelihood-ratio test is often used to assess the
goodness-of-fit of a structural model. The compar-
ative fit index (CFI) is a fit index that takes into
account the likelihood-ratio as well as the number of
parameters in the model (Bentler, 1990; Brechmann
and Joe, 2015).

The test statistic of the likelihood-ratio test is given
by
D; =n[—Ly(V) —log det(R)], (6)

where L; is the objective function defined in Equa-
tion 1. If the model is completely unstructured (the
saturated model), then D; = 0. On the other hand,
if the model assumes that all variables are uncorre-
lated, then Dy := —nlogdet(R). Reasonable models
should lie somewhere in between these two extreme
cases. Therefore, D, can be viewed as a discrepancy
measure.

For a t-truncated vine, its degree of freedom (or d(d —
1)/2 minus the number of model parameters) is

y :d(d—l)_t(2d—t—1) _

2 2

(d—t)(d—t—1)

(7)
In particular, vy = d(d — 1)/2 is the case of complete
independence.

The CFT of a t-truncated vine is defined as

max (0, Dy — 1)

CFL; :=1-—
¢ max(0, Dy — vy, Dy — 1)’

(8)

which ranges between 0 and 1. Higher CFI values cor-
respond to better fit. CFI can be used to find an opti-
mal truncation level given a predefined goodness-of-fit
level. Formally, the optimal truncation level is given
by

t: =min{t € {0,...,d =1} : CF, > 1 —a}, (9)

where o € (0,1). Commonly used « values include
0.01 and 0.05.

Method MCTs BF BJ15 SeqMsT Method MCTs BF BJ15 SeqMsT

10- b & 1.000-

0.9-

0.995-
0.8-

CFI
CFI

0.7-
0.990-

06-
0.985-
05-
2 3 4 5 6 7 2 3 4 5 6 7
Truncation level Truncation level

(a) Concrete dataset. (b) Abalone dataset.

Figure 5: CFI vs truncation level t.

5.3 Results

For all the experiments, 5000 MCTS iterations are
performed; hyperparameters are set to Appy = 1
and Apg = 0.1. The following results show that for
datasets with various dimensions d and truncation lev-
els t, this set of hyperparameters consistently gives de-
cent results. This indicates that our method is robust
under different settings and does not require much hy-
perparameter tuning. The algorithm is implemented
in Python and code will be made publicly available.

The comparisons have been made on correlation ma-
trices of actual datasets. It is possible to construct
synthetic structural correlation matrices for which Se-
gMST performs much worse than the examples in this
section.

Concrete and Abalone datasets

On both datasets, the proposed method (MCTS) is
compared with the following baseline methods: (1)
BF: the brute-force search; (2) SeqMST: Dissmann’s
algorithm (Dissmann et al., 2013); (3) BJ15: method
proposed by Brechmann and Joe (2015). See Sec-
tion 2.5 for details about the baseline methods.

Figure 5 shows the CFI for various truncation levels
t. Higher CFI values indicate better fit. Note that 1-
truncated vines are omitted from the figures because
the optimal 1-truncated vine can be found by an MST
algorithm.

For both datasets, the performance of MCTS is bet-
ter than SeqMST and BJ15 for all truncation levels.
Notably, MCTS has the same performance as BF for
t = 4,5 and 6, which indicates that our method can
find the best truncated vine for those truncation levels
for both datasets.

GBM and DAX datasets

Figure 6 shows the CFI for different truncation lev-
els t and various dimensions d on the GBM dataset.
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Figure 6: GBM dataset: CFI vs truncation level ¢.

Since 100 subsets of variables are randomly sampled
for each d = §8,10,15 and 20, confidence intervals can
be obtained. Note that the brute-force search is no
longer feasible in this experiment. MCTS outperforms
both BJ15 and SeqMST on all the combinations of
truncation level ¢ and dimension d. Especially when
the truncation level ¢ is small, MCTS is significantly
better than the existing methods.

Another way to demonstrate the performance is to
compare the optimal truncation level t¥ defined in
Equation 9. It gives the minimal truncation level that
reaches a CFTI level of 1 — a. The lower t},, the more
dependence information captured by the vine struc-
ture. Figure 7 shows the the optimal truncation level
tr .01 for both GBM and DAX datasets. For the
GBM dataset with d = 20, MCTS selects a vine with
2.4 fewer trees over SeqMST and 1.2 fewer trees over
BJ15 on average. The performance for larger values of
d such as d = 30 is similar.

Method MCTS ~4- BJ15 =~ SeqMST Method MCTS ~4- BJ15 =~ SeqMST

©

©
Optimal truncation level

Optimal truncation level

x 3
8 10 15 20 8 10 15 20
Dimension Dimension

(a) GBM dataset. (b) DAX dataset.

Figure 7: Optimal truncation level t},_,,; vs dimen-
sion d.

5.4 Computational Efficiency

To evaluate the computational efficiency of our pro-
posed method, we measure the running time of each

algorithm on the Concrete dataset for truncation level
4. The experiment is repeated 10 times for each algo-
rithm and the wall clock time is listed in Table 1.

MCTS SeqMST BJ15 BF
37.6 6.0 26.9 526

Time (sec)

Table 1: The wall clock time running each algorithm
on the Concrete dataset for truncation level 4.

The proposed MCTS method is slower than SeqMST
but has comparable performance as BJ15. However,
the SeqMST algorithm is efficiently implemented in
R and C, while the implementation of our method
is purely in Python. There is room for improvement
in computational efficiency. We will explore ways to
speed up the MCTS algorithm in the future.

6 CONCLUSION

In this paper, we present a novel and effective approach
to learning a vine structure. Our method combines
the original MCTS algorithm with the proposed vine
UCT, which is adapted from the original UCT for the
vine structure learning problem. Under the guidance
of the vine UCT, our method can effectively explore
the large search space of possible truncated vines by
balancing between exploration and exploitation. We
demonstrate that the proposed method has signifi-
cantly better performance on vine structure learning
over the existing methods under various experimen-
tal setups with Gaussian copula setting. The compar-
isons have been made on correlation matrices of actual
datasets to reflect performance that might be expected
in practical applications. Future research can be done
to explore the combination of MCTS vine structure
learning and non-Gaussian copulas.
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