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Abstract

We study constrained nonconvex optimiza-
tion problems in machine learning and sig-
nal processing. It is well-known that these
problems can be rewritten to a min-max
problem in a Lagrangian form. However,
due to the lack of convexity, their land-
scape is not well understood and how to
find the stable equilibria of the Lagrangian
function is still unknown. To bridge the
gap, we study the landscape of the La-
grangian function. Further, we define a
special class of Lagrangian functions. They
enjoy the following two properties: 1.Equi-
libria are either stable or unstable (Formal
definition in Section 2); 2.Stable equilib-
ria correspond to the global optima of the
original problem. We show that a gener-
alized eigenvalue (GEV) problem, includ-
ing canonical correlation analysis and other
problems as special examples, belongs to
the class. Specifically, we characterize its
stable and unstable equilibria by leverag-
ing an invariant group and symmetric prop-
erty (more details in Section 3). Moti-
vated by these neat geometric structures,
we propose a simple, efficient, and stochas-
tic primal-dual algorithm solving the online
GEV problem. Theoretically, under suffi-
cient conditions, we establish an asymp-
totic rate of convergence and obtain the
first sample complexity result for the online
GEV problem by diffusion approximations,
which are widely used in applied probabil-
ity. Numerical results are also provided to
support our theory.
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1 Introduction

We often encounter the following optimization prob-
lem in machine learning and signal processing:

min
X

f(X) subject to X ∈ Ω, (1)

where f : Rd → R is a loss function, Ω :, {X ∈ Rd :
gi(X) = 0, i = 1, 2, ...,m} denotes a feasible set, m
is the number of constraints, and gi : Rd → R’s
are the differentiable functions that impose con-
straints into model parameters. For notational sim-
plicity, we define G(X) = [g1(X), ..., gm(X)]> and
Ω = {X ∈ Rd : G(X) = 0}. Principal compo-
nent analysis (PCA), canonical correlation analy-
sis (CCA), matrix factorization/sensing/completion,
phase retrieval, and many other problems (Friedman
et al., 2001; Sun et al., 2016; Bhojanapalli et al.,
2016; Li et al., 2016b; Ge et al., 2016b; Chen et al.,
2017; Zhu et al., 2017) can be viewed as special ex-
amples of (1). Many algorithms have been proposed
to solve (1). For the unconstrained (Ω = Rd) or
a simple constraint G(X), e.g., the spherical con-
straint, G(X) := ||X||2 − 1, we can apply simple
first order algorithms such as the projected gradient
descent algorithm (Luenberger et al., 1984).

However, when G(X) is complicated, the aforemen-
tioned algorithms are often not applicable or ineffi-
cient. This is because the projection to Ω does not
admit a closed form expression and can be compu-
tationally expensive in each iteration. To address
this issue, we convert (1) to a min-max problem us-
ing the Lagrangian multiplier method. Specifically,
instead of solving (1), we solve the following:

min
X∈Rd

max
Y ∈Rm

L(X,Y ) := f(X) + Y >G(X), (2)

where Y ∈ Rm is the Lagrangian multiplier.
L(X,Y ) is often referred as the Lagrangian func-
tion in literature (Boyd and Vandenberghe, 2004).
The literature on optimization also refers to X as



the primal variable and Y as the dual variable. Ac-
cordingly, (1) is called the primal problem. From the
perspective of game theory, it can be viewed as two
players competing with each other and eventually
achieving some equilibrium. When f(X) is convex
and Ω is convex or the boundary of a convex set, the
optimization landscape of (2) is essentially convex-
concave, i.e., for any fixed Y , L(X,Y ) is convex in
X, and for any fixed X, L(X,Y ) is concave in Y .
Such a landscape further implies that the equilib-
rium of (2) is a saddle point, whose primal variable is
equivalent to the global optimum of (1) under strong
duality conditions. To solve (2), we resort to primal-
dual algorithms, which iterate over both X and Y
(usually in an alternating manner). The global con-
vergence rates to the equilibrium are also established
accordingly for these algorithms (Lan et al., 2011;
Chen et al., 2014; Iouditski and Nesterov, 2014).

When f(X) and Ω are nonconvex, both (1) and
(2) become much more computationally challenging,
NP-Hard in general. Significant progress has been
made toward solving primal problem (1). For ex-
ample, Ge et al. (2015) show that when certain ten-
sor factorization problem satisfies the so-called strict
saddle properties, one can apply some first order
algorithms, e.g., the projected gradient algorithm,
and the global convergence in polynomial time can
be guaranteed. Their results further motivate many
follow-up works, proving that many problems can be
formulated as strict saddle optimization problems,
including PCA, multiview learning, phase retrieval,
and matrix factorization/sensing/completion (Sun
et al., 2016; Bhojanapalli et al., 2016; Li et al., 2016b;
Ge et al., 2016b; Chen et al., 2017; Zhu et al., 2017;
Liu et al., 2018). Note that these strict saddle opti-
mization problems are either unconstrained or with
a simple constraint. However, for many other non-
convex optimization problems, Ω can be much more
complicated. To the best of our knowledge, when Ω
is nonconvex and complicated, the applicable algo-
rithms and convergence guarantees are still largely
unknown.

To handle the complicated Ω, this paper proposes
to investigate min-max problem (2). Specifically, we
first define a special class of Lagrangian functions,
where the landscape of L(X,Y ) enjoys the follow-
ing good properties: (1)There exist only two types
of equilibria – stable and unstable equilibria. At an
unstable one, L(X,Y ) has negative curvature with
respect to the primal variable X. More details in
Section 2; (2) All stable equilibria correspond to the
global optima of primal problem (1).

Both properties are intuitive. On the one hand, the
negative curvature in the first property enables the
primal variable to escape from the unstable equilib-
ria along some descent direction. On the other hand,
the second property ensures that we do not get spu-
rious local optima of (1), that is, all local minima
must also be global optima.

We then study a generalized eigenvalue (GEV) prob-
lem, which includes CCA, Fisher discriminant anal-
ysis (FDA, Mika et al. (1999)), and sufficient dimen-
sion reduction (SDR, Cook and Ni (2005)) as special
examples. Specifically, GEV solves

X∗ = argmin
X∈Rd×r

f(X) := − tr(X>AX)

s.t. X ∈ TB := {X ∈ Rd×r : X>BX = Ir}, (3)

where A,B ∈ Rd×d are symmetric, B is positive
semidefinite. We rewrite (3) as a min-max problem,

min
X

max
Y
L(X,Y )=−tr(X>AX)+〈Y,X>BX−Ir〉, (4)

where Y ∈ Rr×r is the Lagrangian multiplier. The-
oretically, we show that the Lagrangian function in
(4) exactly belongs to our previously defined class.
Motivated by our defined landscape structures, we
then solve an online version of (4), where we can only
access independent unbiased stochastic approxima-
tions of A, B and directly accessing A and B is pro-
hibited. Specifically, at the k-th iteration, we only
obtain independent A(k) and B(k) satisfying

EA(k) = A and EB(k) = B.

Computationally, we propose a simple stochastic
primal-dual algorithm, which is a stochastic variant
of the generalized Hebbian algorithm (GHA, Gor-
rell (2006)). Theoretically, we establish its asymp-
totic rate of convergence to stable equilibria for our
stochastic GHA (SGHA) based on the diffusion ap-
proximations (Kushner and Yin, 2003). Specifically,
we show that, asymptotically, the solution trajec-
tory of SGHA weakly converges to the solutions of
stochastic differential equations (SDEs). By study-
ing the analytical solutions of these SDEs, we fur-
ther establish the asymptotic sample/iteration com-
plexity of SGHA under certain regularity condi-
tions (Harold et al., 1997; Li et al., 2016a; Chen
et al., 2017). To the best of our knowledge, this is the
first asymptotic sample/iteration complexity analy-
sis of a stochastic optimization algorithm for solving
the online version of GEV problem. Numerical ex-
periments are also presented to justify our theory.

Our work is closely related to several recent results
on solving GEV problems. For example, Ge et al.
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(2016a) propose a multistage semi-stochastic opti-
mization algorithm for solving the GEV problem
with a finite sum structure. At each optimization
stage, their algorithm needs to access the exact B
matrix, and compute the approximate inverse of B
by solving a quadratic program, which is forbid-
den in our setting. Similar matrix inversion ap-
proaches are also adopted by a few other recently
proposed algorithms for solving the GEV problem
(Allen-Zhu and Li, 2016; Arora et al., 2017). In con-
trast, our proposed SGHA is a fully stochastic algo-
rithm, which does not require any matrix inversion.

Moreover, our work is also related to several more
complicated min-max problems, such as Markov
Decision Process with function approximation and
Generative Adversarial Network (Sutton et al., 2000;
Shapiro et al., 2009; Goodfellow et al., 2014). Many
primal-dual algorithms have been proposed to solve
these problems. However, most of these algorithms
are not guaranteed to converge. As mentioned ear-
lier, when the convex-concave structure is missing,
the min-max problems go far beyond the existing
theories. Moreover, both primal and dual iter-
ations involve sophisticated stochastic approxima-
tions (equal or more difficult than our online GEV).
This paper makes the attempt on understanding
the optimization landscape of these challenging min-
max problems. Taking our results as an initial start,
we expect more sophisticated and stronger follow-up
works that apply to these min-max problems.

Notations. Given an integer d, we denote Id as a
d × d identity matrix, [d] = {1, 2, . . . , d}. Given an
index set I ⊆ [d] and a matrix X ∈ Rd×r, we denote
I⊥ = [d]\I as the complement set of I, X:,i (Xi,:) as
the i-th column (row) of X, Xi,j as the (i, j)-th en-
try of X, X:,I (XI,:) as the column (row) submatrix
of X indexed by I, vec(X) ∈ Rdr as the vectoriza-
tion of X, Col/Null(X) as the column/null space
of X. Given a symmetric matrix X ∈ Rd×d, we
denote λmin /max(X) as its smallest/largest singular
value, and denote the eigenvalue decomposition of
X as X = OΛO>, where Λ = diag(λ1, ...λd) with
λ1 ≥ · · · ≥ λd, denote ||X||2 as the spectral norm
of X. Given two matrices X and Y , X ⊗ Y as the
Kronecker product of X, Y .

2 Characterization of Equilibria

We start with characterizing the equilibria of (2).
By KKT conditions, an equilibrium (X,Y ) satisfies

∇XL(X,Y ) = ∇Xf(X) + Y >∇XG(X) = 0

and ∇Y L(X,Y ) = G(X) = 0,

which only contains the first order information
of L(X,Y ). To further distinguish the difference
among the equilibria, we define two types of equi-
libria by the second order information.

Definition 1. Given the Lagrangian function
L(X,Y ) in (2), a point (X,Y ) is called:
(1) An equilibrium of L(X,Y ), if

∇L(X,Y ) =

[
∇XL(X,Y )
∇Y L(X,Y )

]
= 0.

(2) An equilibrium (X,Y ) is unstable, if (X,Y )
is an equilibrium and λmin

(
∇2
XL(X,Y )

)
< 0.

(3) An equilibrium (X,Y ) is stable, if (X,Y ) is
an equilibrium, ∇2

XL(X,Y ) � 0, and L(X,Y ) is
strongly convex over a restricted domain.

Note that (2) in Definition 1 has a similar strict sad-
dle property over a manifold in Ge et al. (2015). The
motivation behind Definition 1 is intuitive. When
L(X,Y ) has negative curvature with respect to the
primal variableX at an equilibrium, we can find a di-
rection in X to further decrease L(X,Y ). Therefore,
a tiny perturbation can break this unstable equilib-
rium. An illustrative example is presented in Fig-
ure 1. Moreover, at a stable equilibrium (X∗, Y ∗),
there is restricted strong convexity, which relates to
several conditions, e.g., Polyak  Lojasiewicz condi-
tions (Polyak, 1963), i.e.,

||∇XL(X,Y ∗)||2 ≥ µ(L(X,Y ∗)− L(X∗, Y ∗)),

for X belonging to a small region near X∗ and µ > 0
is a constant, or Error Bound conditions (Luo and
Tseng, 1993). With this property, we cannot de-
crease L(X,Y ) along any direction with respect to
X. Definition 1 excludes the high order unstable
equilibrium, which may exist due to the degeneracy
of ∇2

XL(X,Y ). Specifically, such a high order unsta-
ble equilibrium cannot be identified by the second
order information, e.g.,

L(x1, x2, y) = x3
1 + x2

2 + y · (x1 − x2).

(0, 0, 0) is an equilibrium with a positive semidef-
inite Hessian matrix. However, it is an unstable
equilibrium, since a small perturbation to x1 can
break this equilibrium. Such an equilibrium makes
the landscape highly more complicated. Overall,
we consider a specific class of Lagrangian functions
throughout the rest of this paper. They enjoy the
following properties: (1) All equilibria are either sta-
ble or unstable (i.e., no high order unstable equilib-
ria); (2) All stable equilibria correspond to the global
optima of the primal problem.
As mentioned earlier, the first property ensures that
second order information can identify the type of
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Unstable saddle Unstable saddle Stable saddle

x1 x1
x2

x2 y

y

(a) y = 0 (b) x1 = 0 (c) x2 = 0

Unstable Equilibrium Unstable Equilibrium Unstable Equilibrium

Figure 1: An illustration of an unstable equilibrium:
minx1,x2

maxy L(x1, x2, y) = x2
1 − x2

2 − y2. Notice
that (0, 0, 0) is an unstable equilibrium. For visu-
alization, we show three views: (a) L(x1, x2, 0); (b)
L(0, x2, y); (c) L(x1, 0, y). Red lines correspond to
x1 and x2, and the green one corresponds to the y.

equilibria. The second property guarantees that we
do not get spurious optima for (1) as long as an
algorithm attains a stable equilibrium. Several ma-
chine learning problems belong to this class, such as
generalized eigenvalue problem.

3 Generalized Eigenvalue Problem

We consider the generalized eigenvalue (GEV) prob-
lem as a motivating example, which includes CCA,
FDA, SDR, etc. as special examples. Recall its min-
max formulation (4):

min
X∈Rd×r

max
Y ∈Rr×r

L(X,Y ),

where L(X,Y ) = − tr(X>AX) + 〈Y,X>BX − Ir〉.

Before we proceed, we impose the following assump-
tion on the problem.

Assumption 1. Given a symmetric matrix A ∈
Rd×d and a positive definite matrix B ∈ Rd×d,
the eigenvalues of Ã = B−

1
2AB−

1
2 , denoted by

λÃ1 , ..., λ
Ã
d , satisfy

λÃ1 ≥ · · · ≥ λÃr > λÃr+1 ≥ · · · ≥ λÃd .

Such an eigengap assumption avoids the identifiabil-
ity issue. The full rank assumption on B in Assump-
tion 1 ensures that the original constrained optimiza-
tion problem is bounded. This assumption can be
further relaxed but require more involved analysis.
We will discuss this in Appendix B.

To characterize all equilibria of GEV, we leverage
the idea of an invariant group. Li et al. (2016b)
use similar techniques for an unconstrained matrix
factorization problem. However, it does not work
for the Lagrangian function due to the more com-
plicated landscape. Therefore, we consider a more
general invariant group. Moreover, by analyzing
the Hessian matrix of L(X,Y ) at the equilibria, we
demonstrate that each equilibrium is either unstable
or stable and the stable equilibria correspond to the

global optima of the primal problem (3). Therefore,
GEV belongs to the class we defined earlier.

3.1 Invariant Group and Symmetric
Property

Denote the orthogonal group in dimension r as

O(r,R) =
{

Ψ ∈ Rr×r : ΨΨ> = Ψ>Ψ = Ir
}
.

Notice that for any Ψ ∈ O(r,R), L(X,Y ) in (4)
has the same landscape as L(XΨ,Ψ>YΨ). This
further indicates that given an equilibrium (X,Y ),
(XΨ,Ψ>YΨ) is also an equilibrium. This symmet-
ric property motivates us to characterize the equi-
libria of L(X,Y ) with an invariant group.

We introduce several important definitions in group
theory (Dummit and Foote, 2004).

Definition 2. Given a group H and a set X , a map
φ(·, ·) from H×X to X is called the group action
of H on X if φ satisfies the following two properties:
Identity: φ(1, x) = x ∀x ∈ X , where 1 denotes the
identity element of H.
Compatibility: φ(gh, x) = φ(g, φ(h, x))∀g, h ∈
H, x∈X .

Definition 3. Given a function f(x, y) : X × Y →
R, a group H is a stationary invariant group of
f with respect to two group actions of H, φ1 on X
and φ2 on Y, if H satisfies

f(x, y) = f(φ1(g, x), φ2(g, y)) ∀x ∈ X , y ∈ Y, g ∈ H.

For notational simplicity, we denote G = O(r,R).
Given the group G, two sets Rd×r and Rr×r, we de-
fine a group action with φ1 of G on Rd×r and a group
action φ2 of G on Rr×r as

φ1(Ψ, X) = XΨ ∀Ψ ∈ G, X ∈ Rd×r

and φ2(g, Y ) = Ψ−1YΨ ∀Ψ ∈ G, Y ∈ Rr×r.
One can check that the orthogonal group G is a sta-
tionary invariant group of L(X,Y ) with respect to
two group actions of G, φ1 on Rd×r and φ2 on Rr×r.
By this invariant group, we define the equivalence
relation between (X1, Y1) and (X2, Y2), if there ex-
ists a Ψ ∈ G such that

(X1, Y1) = (X2Ψ,Ψ−1Y2Ψ) = (X2Ψ,Ψ>Y2Ψ). (5)

To find all equilibria of GEV, we examine the KKT
conditions of (4):

2BXY − 2AX = 0 and X>BX − Ir = 0

=⇒Y = X>AX =: D(X).

Given the eigendecomposition B = OBΛBOB>, we
denote Ã = (ΛB)−

1
2OB>AOB(ΛB)−

1
2 and X̃ =
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(ΛB)
1
2OB>X. We then consider eigendecomposition

Ã = OÃΛÃOÃ>. The following theorem shows the
connection between the equilibrium of L(X,Y ) and

the column submatrix of OÃ, denoted as OÃ:,I , where

I ∈ X rd :=
{
{i1, ..., ir} : {i1, ..., ir} ⊆ [d]

}
is the index set to determine a column submatrix.

Theorem 4 (Symmetric Property). Suppose As-
sumption 1 holds. Then (X,D(X)) is an equilibrium
of L(X,Y ), if and only if X can be written as

X = (OB(ΛB)−
1
2OÃ:,I) ·Ψ,

where index I ∈ X rd and Ψ ∈ G.

The proof of Theorem 4 is provided in Appendix A.1.
Theorem 4 implies that under the equivalence rela-
tion given in (5), there are

(
d
r

)
equilibria of L(X,Y ).

Each corresponds to an OÃ:,I , where I ∈ X rd is an
index set. Then whole equilibria set is generated

by OÃ:,I ’s with the transformation matrix OB(ΛB)−
1
2

and the invariant group action induced by G.

3.2 Unstable and Stable Equilibria

We further identify the stable and unstable equilib-
ria. Specifically, given (X,Y ) as an equilibrium of
L(X,Y ), we denote the Hessian matrix of L(X,Y )
with respect to the primal variable X as

HX , ∇2
XL(X,Y )|Y=D(X) ∈ Rdr×dr.

Then we calculate the eigenvalues of HX . By Defi-
nition 1, (X,D(X)) is unstable if HX has a negative
eigenvalue; Otherwise, we analyze the local land-
scape at (X,D(X)) to determine whether it is stable
or not. The following theorem shows that all equi-
libria are either stable or unstable and demonstrates
how the choice of index set I corresponds to the un-
stable and stable equilibria of L(X,Y ).

Theorem 5. Suppose Assumption 1 holds, and
(X,D(X)) is an equilibrium in (4). By Theorem 4,

X can be represented as X = (OB(ΛB)−
1
2OÃ:,I) · Ψ

for some Ψ ∈ G and I ∈ X rd . Then, if I 6= [r],
equilibrium (X,D(X)) is unstable with

λmin(HX) ≤
2(λÃmax I − λÃmin I⊥)

‖X:,min I⊥‖22
< 0,

where λÃmax /min I = max /mini∈I λ
Ã
i , and λÃi is the

i-th leading eigenvalue of Ã;
Otherwise, we have HX � 0 and rank(HX) =
dr−r(r−1)/2. Moreover, (X,D(X)) is a stable equi-
librium of problem (4).

The proof of Theorem 5 is provided in Appendix A.2.

Theorem 5 indicates that when X̃ = OÃ:,[r], that

is, the eigenvectors of Ã corresponding to the r
largest eigenvalues, (X,D(X)) is a stable equilib-

rium of L(X,Y ), where X = (OB(ΛB)−
1
2OÃ:,I)) ·

Ψ for some Ψ ∈ G. Although HX is degenerate at
this equilibrium, all directions in Null(HX) essen-
tially point to the primal variables of other stable
equilibria. Excluding these directions, the rest all
have positive curvature, which implies that this equi-
librium is stable. Moreover, such an X corresponds
to the optima of (3). When I 6= [r], due to the nega-
tive curvature, these equilibria are unstable. There-
fore, all stable equilibria of L(X,Y ) correspond to
the global optima in (3) and other equilibria are un-
stable, which further indicates that GEV belongs to
the class we defined earlier.

4 Stochastic Optimization for GEV

For GEV, we propose a fully stochastic primal-dual
algorithm to solve (4), which only requires access
to the stochastic approximations (SA) of A and B
matrices. This is very different from other exist-
ing semi-stochastic algorithms that require to access
the exact B matrix (Ge et al., 2016a). Specifically,
we propose a stochastic variant of the generalized
Hebbian algorithm (GHA), also referred as Sanger’s
rule in existing literature (Sanger, 1989), to solve
(4). For online setting, accessing the exact A and
B is prohibitive and we only get A(k) ∈ Rd×d and
B(k) ∈ Rd×d that are independently sampled from
the distribution associated with A and B at the k-th
iteration. Our proposed SGHA updates primal and
dual variables as follows:

Primal Update:

X(k+1)←X(k)−η
(
B(k)X(k)Y (k)−A(k)X(k)

)
,︸ ︷︷ ︸

Stoc. Approx. of ∇XL(X(k), Y (k))

Dual Update:

Y (k+1) ← X(k)>A(k)X(k),︸ ︷︷ ︸
Stoc. Approx. of X(k)>AX(k)

(6)

(7)

where η > 0 is a step size parameter. Note that the
primal update is a stochastic gradient descent step,
while the dual update is motivated by the KKT con-
ditions of (4). SGHA is simple and easy to imple-
ment. The constraint is handled by the dual update.
Further, motivated by the landscape of GEV, we an-
alyze the algorithm by diffusion approximations and
obtain the asymptotical sample complexity.
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4.1 Numerical Evaluations

We first provide numerical evaluations to illus-
trate the effectiveness of SGHA, and then provide
an asymptotic convergence analysis of SGHA. We
choose d = 500 and select three different settings:
Setting(1) : η = 10−4, r = 1, Aii = 1/100 ∀i ∈ [d],
Aij = 0.5/10 and Bij = 0.5|i−j|/3 ∀i 6= j;
Setting(2) : η = 5 × 10−5, r = 3, and ran-
domly generate an orthogonal matrix U ∈ Rd×d
such that A = U · diag(1, 1, 1, 0.1, ..., 0.1) · U> and
B = U · diag(2, 2, 2, 1, ..., 1) · U>;
Setting(3) : η = 2.5 × 10−5, r = 3, and randomly
generate two orthogonal matrices U, V ∈ Rd×d such
that A = U · diag(1, 1, 1, 0.1, ..., 0.1) · U> and B =
V · diag(2, 2, 2, 1, ..., 1) · V >.
At the k-th iteration of SGHA, we independently
sample 40 random vectors from N(0, A) and N(0, B)
respectively. Accordingly, we compute the sample
covariance matrices A(k) and B(k) as the approxi-
mations of A and B. We repeat numerical simula-
tions under each setting for 20 times using random
data generations, and present all results in Figure 2.
The horizontal and vertical axises correspond to the
number of iterations and the optimization error

||B1/2X(t)X(t)>B1/2 −B1/2X∗X∗>B1/2||F
, respectively. Our experiments indicate that SGHA
converges to a global optimum in all settings.

4.2 Analysis for Commutative A and B

As a special case, we first prove the convergence of
SGHA for GEV with r = 1, and commutative A and
B. We will discuss more on noncommutative cases
and r > 1 in the next section. Before we proceed,
we introduce our assumptions on the problem.

Assumption 2. We assume that the following con-
ditions hold:
(a): A(k)’s and B(k)’s are independently sampled
from two different distributions DA and DB respec-
tively, where EA(k) = A and EB(k) = B � 0;
(b): A and B are commutative, i.e., there exists
an orthogonal matrix O such that A = OΛAO>

and B = OΛBO>, where ΛB = diag(µ1, ..., µd) and
ΛA = diag(λ1, ..., λd) with λj 6= 0;
(c): A(k) and B(k) satisfy the moment conditions,
that is, for some generic constants C0 and C1,
E||A(k)||22 ≤ C0 and E||B(k)||22 ≤ C1.

Note that (a) and (c) in Assumption 2 are mild,
but (b) is stringent. For convenience of analysis, we
combine (6) and (7) as

X(k+1)←X(k)−η
(
B(k)X(k)X(k)>−Id

)
A(k)X(k). (8)

We remark that (8) is very different from existing
optimization algorithms over the generalized Stiefel
manifold. Specifically, computing the gradient over
the generalized Stiefel manifold requires B−1, which
is not allowed in our setting. For notational conve-
nience, we further denote

Λ = (ΛB)−
1
2 ΛA(ΛB)−

1
2 : diag(β1, · · · , βd).

Without loss of generality, we assume β1 > β2 ≥
β3 ≥ · · · ≥ βd, and βi 6= 0 ∀i ∈ [d]. However, µi
and λi are not necessarily to be monotonic. Denote

µmin = min
i 6=1

µi, µmax = max
i6=1

µi, and gap = β1 − β2.

Moreover, we denote W (k) = (ΛB)
1
2OX(k). One can

verify that (8) can be rewritten as follows:

W (k+1) ←W (k) − η
(

(ΛB)
1
2 Λ̂

(k)
B (ΛB)−

1
2

·W (k)W (k)> − ΛB
)
· Λ̃(k)W (k), (9)

where Λ̂
(k)
B = O>B(k)O and Λ̃(k) =

O>B−
1
2A(k)B−

1
2O. Note that W ∗ = [1, 0, 0, ..., 0]>

corresponds to the optimal solution of (3).

By diffusion approximation, we show that our algo-
rithm converges through three Phases:
Phase I: Given an initial near a saddle point, we
show that after rescaling of time properly, the algo-
rithm can be characterized by a stochastic differen-
tial equation (SDE). Such an SDE further implies
our algorithm can escape from the saddle fast;
Phase II: We show that away from the saddle, the
trajectory of our algorithm can be approximated by
an ordinary differential equation (ODE);
Phase III: We first show that after Phase II, the
norm of solution converges to a constant. Then,
the algorithm can be characterized by an SDE, like
Phase I. By the SDE, we analyze the error fluctu-
ation when the solution is within a small neighbor-
hood of the global optimum.

Overall, we have an asymptotic sample complexity.
ODE Characterization: To demonstrate an ODE
characterization for the trajectory of our algorithm,
we introduce a continuous time random process

w(η)(t) := W (k),

where k = b tη c and η is the step size in (8). For no-

tational simplicity, we drop (t) when it is clear from
the context. Instead of directly showing a global
convergence of w(η), we construct a new quantity as

v
(η)
i,j = (w

(η)
i )µj/(w

(η)
j )µi ,

where w
(η)
i is the i-th component (coordinate) of

w(η). We then show that v
(η)
i,j converges to an ex-

ponential decay function.
6



(a) Setting (1) (b) Setting (2) (c) Setting (3)

Figure 2: Plots of the optimization error ||B1/2X(t)X(t)>B1/2 − B1/2X∗X∗>B1/2||F over SGHA iterations
on synthetic data of 20 random data generations under different settings of parameters.

Lemma 6. Suppose Assumption 2 holds and the ini-
tial is away from saddle points, i.e., given constants,
τ > 0 and δ < 1

2 , there exist i, j such that

i 6= j, |w(η)
j | > τ, and |w(η)

i | > η
1
2 +δ.

As η → 0, v
(η)
k,j weakly converges to the solution of

the following ODE:

dxk,j = xk,j · (µjµk(βk − βj)) dt ∀k 6= j. (10)

The proof of Lemma 6 is provided in Appendix C.1.
Lemma 6 essentially implies the global convergence
of SGHA. Specifically, the solution of (10) is

xk,j(t) = xk,j(0) · exp (µjµk (βk − βj) t) ∀k 6= j,

where xk,j(0) is the initial value of v
(η)
k,j . In par-

ticular, we consider j = 1. Then, as t → ∞, the
dominating component of w will be w1.

The ODE approximation of the algorithm implies
that after long enough time, i.e., t is large enough,
the solution of the algorithm can be arbitrarily close
to a global optimum. Nevertheless, to obtain the
asymptotic “convergence rate”, we need to study the
variance of the trajectory at time t. Thus, we resort
to the following SDE-based approach for a more pre-
cise characterization.
SDE Characterization: We notice that such a
variance in the order of O(η) vanishes as η → 0. To
characterize this variance, we rescale the updates by
a factor of η−

1
2 , i.e., by defining a new process as

z(η) = η−
1
2w(η). After rescaling, the variance of z(η)

is of the order of O(1). The following lemma charac-
terizes how the algorithm escapes from the saddle,
i.e., w(η)(0) ≈ ei, for i 6= 1, in Phase I.

Lemma 7. Suppose Assumption 2 holds and the ini-
tial is close to a saddle point, i.e., given constants
δ < 1

2 and D, there exists an i ∈ [d]\{1} such that

|w(η)
i − 1| ≤ Dη 1

2 +δ and |w(η)
j | ≤ Dη

1
2 +δ ∀j 6= i.

As η → 0, then for ∀j 6= i z
(η)
j weakly converges to

the solution of the following SDE:

dzj(t) = (−βjµi · zi + λizi) dt+
√
Gj,idB(t), (11)

where Gj,i = E
((

Λ̂
(k)
B

)
j,i
·
√
µj/µi · Λ̃i,i − µjΛ̃j,i

)2

and B(t) is a standard Brownian motion.

The proof of Lemma 7 is provided in Appendix C.2.
Note that (11) is a Fokker-Plank equation, whose
solution is an Ornstein-Uhlenbeck (O-U) process
(Doob, 1942) as follows:

zj(t) = exp [−µj (βi − βj) t]

·
[
zj(0) +

√
Gj,i

∫ t

0

exp [µj (βi − βj) s] dB(s)︸ ︷︷ ︸
Q1

]
. (12)

We consider j = 1. Note that Q1 is essentially a ran-
dom variable with mean zj(0) and variance smaller

than
G1,iµ1

2(β1−βi) . However, the larger t is, the closer

its variance gets to this upper bound. Moreover, the
term exp

[
µ1(β1 − βi)t

]
essentially amplifies Q1 by

a factor exponentially increasing in t. This tremen-
dous amplification forces z1(t) to quickly get away
from 0, as t increases, which indicates that the al-
gorithm will escape from the saddle. Further, the
following lemma characterizes the local behavior of
the algorithm near the optimal.

Lemma 8. Suppose that Assumption 2 holds and
the initial solution is close to an optimal solution,
that is, given pre-specified constants κ and δ < 1

2 ,

we have
|w(η)

1 |
2

||w(η)||22
> 1 − κη1+2δ. As η → 0, then we

have ||w(η)(t)||2
t→∞−−−→ 1 and for ∀i 6= 1, z

(η)
i weakly

converges to the solution of the following SDE:

dzi(t) = (−β1 · µizi + λizi) dt+
√
Gi,1dB(t), (13)

7



where Gi,1 = E
(
(Λ̂B)i,1 ·

√
µi/µ1 · Λ̃1,1 − µiΛi,1

)2
,

and B(t) is a standard Brownian motion.

The proof of Lemma 8 is provided in Appendix C.3.
The solution of (13) is as follows:

zi(t) =
√
Gi,1

∫ t

0

exp [µi (β1 − βi) (s− t)]

dB(s) + zi(0) · exp[−µi (β1 − βi) t]. (14)

Note the second term of the right hand side in (14)
decays to 0, as time t → ∞. The rest is a pure
random walk. Thus, the fluctuation of zi(t) is es-
sentially the error fluctuation of the algorithm after
sufficiently long time.

By Lemma 6, 7, and 8, we have the next theorem.

Theorem 9. Suppose Assumption 2 holds. Given a
sufficiently small error ε > 0, φ =

∑d
i=1Gi,1, and

η � ε · µmin · gap
φ

,

we need

T � µmax/µmin

µ1 · gap
log
(
η−1

)
(15)

such that with probability at least 5
8 , ||w(T )−W ∗||22 ≤

ε, where W ∗ is the optima of (3).

The proof of Theorem 9 is provided in Appendix C.4.
Theorem 9 implies that asymptotically, our algo-
rithm yields an iterations of complexity:

N � T

η
� φ · µmax/µmin

ε · µ1 · µmin · gap2
log

(
φ

ε · µmin · gap

)
,

which depends on the gap, i.e., β1 − β2, but also
depends on µmax

µmin
, which is the condition number of

B in the worst case. As can be seen, for an ill-
conditioned B, problem (3) is more difficult to solve.

4.3 When A and B are Noncommutative?

Unfortunately, when A and B are noncommutative,
the analysis is more difficult, even for r = 1. Recall
that the optimization landscape of the Lagrangian
function in (4) enjoys a nice geometric property: At
an unstable equilibrium, the negative curvature with
respect to the primal variable encourages the algo-
rithm to escape. Specifically, suppose the algorithm
is initialized at an unstable equilibrium (X(0), Y (0)),
the descent direction for X(0) is determined by the
eigenvectors of

HX(0) = A+ Y (0)B

associated with the negative eigenvalues. After one
iteration, we obtain (X(1), Y (1)). The Hessian ma-
trix becomes

HX(1) = A+ Y (1)B.

Since Y (1) = X(0)>A(0)X(0) is a stochastic approx-
imation, the random noise can make Y (1) signifi-
cantly different from Y (0). Thus, the eigenvectors of
HX(1) associated with negative eigenvalues can be
also very different from those of HX(0) . This phe-
nomenon can seriously confuse the algorithm about
the descent direction of the primal variable. We re-
mark that such an issue does not appear under the
commutative assumption. We suspect this is very
likely an artifact of our proof technique, since our
numerical experiments have provided some empiri-
cal evidences of the convergence of SGHA.

5 Discussion

Here we briefly discuss a few related works:

• Li et al. (2016b) propose a framework for charac-
terizing the stationary points in the unconstrained
nonconvex matrix factorization problem, while our
GEV problem is constrained. Different from their
analysis, we analyze the optimization landscape of
the corresponding Lagrangian function. When char-
acterize the stationary points, we need to take both
primal and dual variables into consideration, which
is technically more challenging.

• Ge et al. (2016a) consider the (off-line) general-
ized eigenvalue problem in a finite sum form. Un-
like online setting, they access exact A and B in
each iteration. Specifically, they need to access ex-
act A and B to compute an approximate inverse of
B to find the descent direction. Meanwhile, they
also need a modified Gram Schmidt process, which
also requires accessing exact B, to maintain the so-
lution on the generalized Stiefel manifold (defined
by X>BX = Ir via exact B, Mishra and Sepulchre
(2016)). Our proposed stochastic search, however,
is a full stochastic primal-dual algorithm, which nei-
ther require accessing exact A and B, nor enforcing
the the primal variables to stay on the manifold.
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A Proofs for Determining Stationary Points

A.1 Proof of Theorem 4

Proof. Remind that the eigendecomposition of Ã is (ΛB)−
1
2OB>AOB(ΛB)−

1
2 = OÃΛÃ(OÃ)>. Given the

eigendecomposition of B is B = OBΛB(OB)>, we can write B−1 as

B−1 = OB(ΛB)−1(OB)>.

Then, we denote X̃ as X̃ = OÃ:,I for some I ⊆ [d] with |I| = r. For X = (B−1/2OÃ:,I) ·Ψ, where Ψ ∈ G, one
can verify that ∇Y L(X,Y ) = 0. Ignore the constant 2 in the gradient ∇XL(X,Y ) for convenience, we have,

∇XL(X,Y ) = −(Id −BXX>)AX = −(Id −BB−1/2OÃ:,I(OÃ:,I)>B−1/2)AB−1/2OÃ:,I

= −AB−1/2OÃ:,I +B1/2OÃ:,I(OÃ:,I)>OÃΛÃ(OÃ)>OÃ:,I

= −B1/2OÃΛÃ(OÃ)>OÃ:,I +B1/2OÃ:,IΛÃI,I

= −B1/2OÃΛÃ:I +B1/2OÃ:,IΛÃI,I = 0.

Next we show that if X is not as specified, then ∇XL(X,Y ) 6= 0. We only need to show that if X̃ =

[OÃ:,S , φ]Ψ, where S ⊆ [d] with |S| = r − 1 and φ = c1O
Ã
:,i + c2O

Ã
:,j with i, j 6∈ S, i 6= j, c21 + c22 = 1, and

c1, c2 6= 0, then we have ∇XL(X,Y ) 6= 0. The general scenario can be induced from this basic setting. It is

easy to see that such an X = B−1/2X̃ satisfies the constraint,

X>BX = Ψ>[OÃ:,S , φ]>B−1/2BB−1/2[OÃ:,S , φ]Ψ = Ψ>
[

Ir−1 0(r−1)×1

01×(r−1) φ>φ

]
Ψ = Ir,

where the last equality follows from φ>φ = c21 + c22 = 1.

Plugging such an X into the gradient, we have

∇XL(X,Y ) = −(Id −BXX>)AX = −(Id −BB−1/2[OÃ:,S , φ][OÃ:,S , φ]>B−1/2)AB−1/2[OÃ:,S , φ]Ψ

= −B1/2(OÃ:,S⊥(OÃ:,S⊥)> − φφ>)OÃΛÃ[(Id)S , c1ei + c2ej ]Ψ

= −B1/2[0d×(r−1), O
Ã
:,S⊥ΛÃS⊥,:(c1ei + c2ej)]Ψ + [0d×(r−1), φ(c21λ

Ã
i + c22λ

Ã
j )]Ψ

= −B1/2[0d×(r−1), c1c
2
2(λÃi + λÃj )OÃ:,i + c2c

2
1(λÃj − λÃi )OÃj,j ]Ψ 6= 0,

where the last inequality holds because of c1, c2 6= 0, c21 + c22 = 1, λÃj 6= λÃj for i 6= j.

A.2 Proof of Theorem 5

Proof. We have the Hessian of L(X,Y ) on X with Y = D(X) as

HX = 2 sym
(
Ir ⊗ ((BXX> − Id)A) + (X>AX)⊗B + (AX)� (BX)

)
, (16)

where sym(M) = M +M>, ⊗ is the Kronecker product, and for U ∈ Rd×r and V ∈ Rm×k, U �V ∈ Rdk×mr
is defined as

U � V =


U:,1V

>
:,1 U:,2V

>
:,1 · · · U:,rV

>
:,1

U:,1V
>
:,2 U:,2V

>
:,2 · · · U:,rV

>
:,2

...
...

. . .
...

U:,1V
>
:,k U:,2V

>
:,k · · · U:,rV

>
:,k

 .
To determine whether a stationary point is an unstable stationary or a minimax global optimum, we consider

its Hessian. We start with checking that S = [r] corresponds to the global optimum, X = B−1/2OÃ:,[r]Ψ.

Without loss of generality, we set Ψ = Ir. We only need to check that for any vector v = [v>1 , . . . , v
>
r ]> ∈ Rnr

with vi ∈ Rn denoting the i-th block of v, which satisfies
11



vi = cjiB
−1/2OÃ:,ji for any ji ∈ [d] and a real constant cj ,

such that ||v||2 = 1, then we have v>HXv ≥ 0. The general case is only a linear combination of such v’s.

Specifically, for X = OÃ:,[r], we have

v>HXv = −v> sym
(
Ir ⊗ ((Id −BXX>)A)− (X>AX)⊗B − (AX)� (BX)

)
v

= −v> sym
(
Ir ⊗ ((Id −B1/2OÃ:,[r]O

Ã>
:,[r]B

−1/2)A)− (OÃ>:,[r]B
−1/2AB−1/2OÃ:,[r])⊗B

− (AB−1/2OÃ:,[r])� (B1/2OÃ:,[r])
)
v

= −v> sym
(
Ir ⊗ (B1/2OÃ:,[d]\[r]O

Ã>
:,[d]\[r]B

−1/2A)− ΛÃ:,[r] ⊗B − (B1/2OÃΛÃ:,[r])� (B1/2OÃ:,[r])
)
v

= −2

r∑
i=1

c2jiO
Ã>
:,ji O

Ã
:,[d]\[r]Λ

Ã
[d]\[r],:O

Ã>OÃ:,ji + 2

r∑
i=1

c2jiλ
Ã
i + 2

r∑
i=1

r∑
k=1

cjicjke
>
jiΛ

Ã
:,kO

Ã>
:,i O

Ã
jk

≥ 0 + 2

r∑
i=1

c2jiλ
Ã
i + 2

r∑
i=1

r∑
k=1

cjicjkλ
Ã
ji = 0,

where the last inequality is obtained by taking jk ∈ [r], i = jk, and k = ji in the last term, and the last
equality is obtained by setting cjk = −cji when ji = k, which implies that the restricted strongly convex
property holds at X.

For any other I 6= [r], we only need to show that the largest eigenvalue of ∇2L is positive and the smallest
eigenvalue of ∇2L is negative, which implies that such a stationary point is unstable. Using the same
construction as above, we have

λmin(HX) ≤ −v> sym
(
Ir ⊗ ((Id −BXX>)A)− (X>AX)⊗B − (AX)� (BX)

)
v

= −v> sym
(
Ir ⊗ (B1/2OÃ:,I⊥O

Ã>
:,I⊥B

−1/2A)− ΛÃ:,I ⊗B − (B1/2OÃΛÃ:,I)� (B1/2OÃ:,I)
)
v

= −2
∑
i∈I

c2jiO
Ã>
:,ji O

Ã
:,I⊥ΛÃI⊥,:O

Ã>OÃ:,ji + 2
∑
i∈I

c2jiλ
Ã
i + 2

∑
i∈I

∑
k∈I

cjicjke
>
jiΛ

Ã
:,kO

Ã>
:,i O

Ã
jk

(∗)
= 2c2jr (λ

Ã
max I − λÃmin I⊥),

where (∗) is from cji = 0 for all ji ∈ I⊥ except jr, and cjr = 1/‖B−1/2OÃ:,min I⊥‖2.

On the other hand, we have

λmax(HX) ≥ v>HXv

= −2
∑
i∈I

c2jiO
Ã>
:,ji O

Ã
:,I⊥ΛÃI⊥,:O

Ã>OÃ:,ji + 2
∑
i∈I

c2jiλ
Ã
i + 2

∑
i∈I

∑
k∈I

cjicjke
>
jiΛ

Ã
:,kO

Ã>
:,i O

Ã
jk

(i)
= 2c2j1λ

Ã
min I + c2j1λ

Ã
min I = 4c2j1λ

Ã
min I ,

where (i) is from setting cji = 0 for all ji ∈ I except j1, and cj1 = 1/‖B−1/2OÃ:,min I‖2.

B Singular case for B

When B is Singular, we assume rank(B) = m < d and rank(A) = d. Note that we require m ≥ r;
Otherwise, the feasible region of (3) becomes TB = ∅.

Before we proceed with our analysis, we first exclude an ill-defined case, where the objective function of
(3) is unbounded from above. The following proposition shows the sufficient and necessary condition of the
existence of the global optima of (3).
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Proposition 10. Given a full rank symmetric matrix A ∈ Rd×d and a positive semidefinite matrix B ∈ Rd×d,
the optimal solution of (3) exists if and only if for all v ∈ Null(B), one of the following two condition holds:
(1) v>Av < 0; (2) v>Av = 0 and u>Av = 0, ∀u ∈ Col(B).

Proof. We decompose X = XB + XB⊥ , where XB = [u1, ..., ur] with ui ∈ Col(B) and each column of
XB⊥ = [v1, ..., vr] with vi ∈ Null(B). Note such a decomposition is unique. Then (3) becomes

min−
r∑
i=1

(u>i Aui)− 2

r∑
i=1

(u>i Avi)−
r∑
i=1

(v>i Avi) s.t. X>BBXB = Ir. (17)

If (17) has an optimal solution, we have v>Av ≤ 0, for all v ∈ Null(B); otherwise, fixing the feasible XB , we
use XB = [λv, ..., λv] and increase λ, then there is no lower bound of the objective function. Further, given a
vector v ∈ Null(B) with v>Av = 0, u>Av = 0 must hold for all u ∈ Col(B); otherwise, W.L.O.G, we assume
that u1 ∈ Col(B) u>1 Av > 0, we can construct a feasible XB = µ[u1, ..., ur], where µ is a normalization
constant such that µ2u>1 Bu1 = 1. Then constructing XB⊥ = λ[v, 0, ...0]., if we increase λ, there is no lower
bound of the objective function. Therefore, for a vector v ∈ Null(B), either v>Av = 0, or u>Av = 0 and
v>Av = 0 hold.

Throughout our following analysis, we exclude the ill-defined case.

The idea of characterizing all the equilibria is analogous to the nonsingular case, but much more involved.
Since B is singular, we need to use general inverses. For notationally convenience, we use block matrices in
our analysis. We consider the eigenvalue decomposition of B as follows:

B =

[
OB11 OB12

OB21 OB22

]
︸ ︷︷ ︸

OB

[
ΛB11 0
0 0

]
︸ ︷︷ ︸

ΛB

[
OB>11 OB>21

OB>12 OB>22

]
︸ ︷︷ ︸

OB>

,

where OB11 ∈ Rm×m, OB22 ∈ R(d−m)×(d−m), and ΛB11 = diag(λ1, ..., λm) with λ1 ≥ · · · ≥ λm > 0 . We then
left multiply OB> and right multiply OB to A:

OB>AOB =: W =

[
W11 W12

W21 W22

]
,

where W11 ∈ Rm×m,W22 ∈ R(d−m)×(d−m). Here, we assume W22 is nonsingular (guaranteed in the well-
defined case). Then we construct a general inverse of ΛB . Specifically, given an arbitrary positive definite
matrix P ∈ R(d−m)×(d−m), we define ΛB†(P ) as

ΛB†(P ) :=

[
(ΛB11)−1 0

0 P

]
.

Note ΛB†(P ) is invertible and depends on P . Recall the primal variable X at the equilibrium of L(X,Y )
satisfies

AX = BX ·X>AX and X>BX = Ir. (18)

For notational simplicity, we define

V (P ) :=
(
ΛB†(P )

)− 1
2 OB>

[
X1

X2

]
=

[
V1

V2(P )

]
, (19)

where V1, X1 ∈ Rm×r, and V2(P ), X2 ∈ R(d−m)×r. Note that V1 does not depend on P . From (19), we have[
X1

X2

]
= OB

(
ΛB†(P )

) 1
2

[
V1

V2(P )

]
. (20)

Combining (20) and (18), we get the following equation system: Ã(P )V (P ) =

[
V1

0

]
V (P )>Ã(P )V (P ),

V (P )>diag(Im, 0)V (P ) = Ir,

(21a)

(21b)
13



where Ã(P ) = (ΛB†(P ))
1
2W (ΛB†(P ))

1
2 . The invertibility of ΛB†(P ) ensures that solving (18) is equivalent

to doing the transformation (20) to the solution of (21). We then denote

Â = (ΛB11)−
1
2

(
W11 −W12W

−1
22 W21

)
(ΛB11)−

1
2

and consider its eigenvalue decomposition as Â = OÂΛÂOÂ>. The following theorem characterizes all the
equilibria of L(X,Y ) with a singular B.

Theorem 11. Given a full rank symmetric matrix A ∈ Rd×d and a positive semidefinite matrix B ∈ Rd×d
with rank(B) = m < d, satisfying the well-defined condition in Proposition 10,(X,D(X)) is an equilibrium
of L(X,Y ) if and only if X can be represented as

X = OB

[
(ΛB11)−

1
2 ·OÂ:,I

−W−1
22 W

>
12(ΛB11)−

1
2OÂ:,I

]
·Ψ,

where Ψ ∈ G and I ∈ Xm is the column index set.

Proof. By definition, we have{
AX = BX · Y
X>BX = Ir

=⇒
{
AX = BX ·X>AX

X>BX = Ir
. (22)

We define V (P ) :=
(
ΛB†(P )

)− 1
2 OB>

[
X1

X2

]
=

[
V1

V2(P )

]
, where V1, X1 ∈ Rm×r, and V2(P ), X2 ∈

R(d−m)×r. Note that V1 does not depend on P . By (22) and replacing Id with OBOB> and

ΛB†(P )
1
2 ΛB†(P )−

1
2 , we have  Ã(P )V (P ) =

[
V1

0

]
V (P )>Ã(P )V (P )

V (P )>diag(Im, 0)V (P ) = Ir,

(23a)

(23b)

where Ã(P ) = (ΛB†(P ))
1
2W (ΛB†(P ))

1
2 . Simplifying (23a), we obtain{
W−1

22 W21(ΛB11)−
1
2V1 = P

1
2V2(P )

V1V
>
1 (ΛB11)−

1
2 (W11 −W12W

−1
22 W21)(ΛB11)−

1
2
.

Let Â = (ΛB11)−
1
2

(
W11 −W12W

−1
22 W21

)
(ΛB11)−

1
2 . Then, by (23), we obtain the following equations:{
ÂV1 = V1V

>
1 ÂV1

V >1 V1 = Ir.

(24a)

(24b)

Note (24) are the KKT conditions of the following problem:

V ∗1 = argmin
V1∈Rm×r

− tr(V >1 ÂV1) s.t. V >1 V1 = Ir. (25)

Because (25) is not a degenerate case, Theorem 4 can be directly applied to (25). Then, we get the stable

equilibria and unstable equilibria of (25). Specifically, denote the eigenvalue decomposition of Â as Â =

OÂΛÂOÂ>. Then we know the equilibrium of (24) can be represented as V1 = OÂ:,I ·Ψ, where I ∈
{
{i1, ..., ir} :

{i1, ..., ir} ⊆ [m]
}

and Ψ ∈ G. Then, we know the primal variable X at an equilibrium of L(X,Y ) satisfies

X = OB

[
(ΛB11)−

1
2 ·OÂ:,I

−W−1
22 W

>
12(ΛB11)−

1
2OÂ:,I

]
·Ψ,

where OÂ:,I is an equilibrium for the Lagrangian function of (25).

Theorem 11 implies that for the well-defined degenerated case, there are only
(
m
r

)
equilibria unique in the

sense of invariant group, since B is rank deficient.
14



C Proofs for the Convergence Rate of Algorithm.

C.1 Proof of Lemma 6

Proof. Denote k = b tη c, and ∆(t) = w(η)(t + η) − w(η)(t) as the i-th component of ∆. For notational

simplicity, we may drop (t) if it is clear from the context. By the definition of wη(t), we have

1

η
E
(

∆(t)
∣∣∣w(η)(t)

)
=

1

η
E
(
W (k+1) −W (k)

∣∣W (k)
)

=
1

η
E
[
η
(

ΛB − (ΛB)
1
2 Λ̂

(k)
B (ΛB)−

1
2W (k)W (k)>

)
· Λ̃(k)W (k)

∣∣W (k)
]

= ΛAw(η)(t)−
(
w(η)(t)

)> (
ΛB
)− 1

2 ΛA
(
ΛB
)− 1

2 w(η)(t)ΛBw(η)(t). (26)

Similarly, we calculate the infinitesimal conditional expectation of vi,1 =
(w

(η)
i )µ1

(w
(η)
1 )µi

as

1
ηE

((
w

(η)
i

)µ1(
w

(η)
1

)µi (t+ η)−
(
w

(η)
i

)µ1(
w

(η)
1

)µi (t)

∣∣∣∣∣
(
w

(η)
i

)µ1(
w

(η)
1

)µi (t)

)

=
1

η
E


(
w

(η)
i (t) + ∆i

)µ1(
w

(η)
1 (t) + ∆1

)µi −
(
w

(η)
i (t)

)µ1(
w

(η)
1 (t)

)µi
∣∣∣∣∣
(
w

(η)
i (t)

)µ1(
w

(η)
1 (t)

)µi


=
1

η
E


(
w

(η)
i (t)

)µ1(
w

(η)
1 (t)

)µi · (1 + ∆i

w
(η)
i (t)

)µ1

(1 + ∆1

w
(η)
1 (t)

)µi
−

(
w

(η)
i (t)

)µ1(
w

(η)
1 (t)

)µi ∣∣∣
(
w

(η)
i (t)

)µ1(
w

(η)
1 (t)

)µi


=
1

η

(
w

(η)
i (t)

)µ1(
w

(η)
1 (t)

)µi E
(

[1 + µ1
∆i

w
(η)
i

+O(η2)] · [1− µi
∆1

w
(η)
1

+O(η2)]− 1
∣∣∣w(η)(t)

)

=
1

η

(
w

(η)
i (t)

)µ1(
w

(η)
1 (t)

)µi
(

µ1

w
(η)
i

E(∆i

∣∣w(η)(t))− µi

w
(η)
1

E(∆1

∣∣w(η)(t))

)
+O(η)

=

(
w

(η)
i (t)

)µ1(
w

(η)
1 (t)

)µi [ µ1

w
(η)
i

(
−

d∑
k=1

λk
µk

(
w

(η)
k

)2

µiw
(η)
i + λiw

(η)
i

)
−

µi

w
(η)
1

(
−

d∑
k=1

λk
µk

(
w

(η)
k

)2

µ1w
(η)
1 + λ1w

(η)
1

)]
+O(η)

=

(
w

(η)
i (t)

)µ1(
w

(η)
1 (t)

)µi µ1µi (βi − β1) +O(η),

where the third equality holds because of the Taylor expansion, the fourth holds for ∆ is order of O(η)
and the last equality holds due to (26). Then, we calculate the infinitesimal conditional variance. From
the update of W in (9), if t ∈ [0, T ] with a finite T , then w(η)(t) is bounded with probability 1. Denote
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||w(η)(t)||22 ≤ D <∞. Then we have

1
ηE

[((
w

(η)
i

)µ1(
w

(η)
1

)µi (t+ η)−
(
w

(η)
i

)µ1(
w

(η)
1

)µi (t)

)2
∣∣∣∣∣
(
w

(η)
i

)µ1(
w

(η)
1

)µi (t)

]

=
1

η

(
w

(η)
i (t)

)2µ1

(
w

(η)
1 (t)

)2µi
E

(µ1
∆i

w
(η)
i

− µi
∆1

w
(η)
1

)2 ∣∣∣∣w(η)(t)

+O(η2)

≤2

η

(
w

(η)
i (t)

)2µ1

(
w

(η)
1 (t)

)2µi
E

( µ1

w
(η)
i

)2

∆2
i +

(
µi

w
(η)
1

)2

∆2
1

∣∣w(η)(t)

+O(η2)

≤4η

(
w

(η)
i (t)

)2µ1

(
w

(η)
1 (t)

)2µi
E
[((w(η))>Λ̃(k)w(η)

)2 (
e>i (Λ̂

(k)
B )

(
ΛB
)− 1

2 w(η)
)2

+ µi

(
eiΛ̃

(k)w(η)
)2

(w
(η)
i )2

µiµ
2
1

+
((w(η))>Λ̃(k)w(η))

2
(
e>1 (Λ̂

(k)
B )(ΛB)

− 1
2w(η)

)2

+µ1(e1Λ̃(k)w(η))
2

(w
(η)
1 )2

µ1µ
2
i

∣∣w(η)(t)
]

+O(η2)

≤4η2δ

(
C
C0C1

µ2
min

D3µiµ
2
1 + µ2

iµ
2
1

C0

µmin
D

)
+O(η)

=O(η2δ)
η→0−−−→ 0,

where the second inequality holds because of the mean inequality and the last inequality is from the in-

dependence of A(k) and B(k), (w(η))>Λ̃w(η) ≤ ||Λ̃||2(w(η))>w(η) ≤ ||A(k)||2
µmin

D (since Λ̃ is symmetric), and

C =

(
w

(η)
i (t)

)2µ1−2(
w

(η)
1 (t)

)2µi
. By Section 4 of Chapter 7 in Ethier and Kurtz (2009), we have that when t ∈ [0, T ], as

η → 0,
(w

(η)
i )µ1

(w
(η)
1 )µi

weakly converges to the solution of (10) if they have the same initial solutions. Then, let

T → ∞, we know the convergence of
(w

(η)
i )µ1

(w
(η)
1 )µi

holds at any time t. Note that we can replace 1 by j, where

j 6= i, and the proof still holds.

Moreover, using the same techniques, we can show that for all i ∈ [d], w
(η)
i converges to the solution of the

following equation:

dwi
dt

= µi(βi −
d∑
j=1

βjw
2
j )wi. (27)

Note that if any wi > 1, µi(βi −
∑d
j=1 βjw

2
j )wi < 0, and if

∑d
j=1 w

2
j < 1, µ1(β1 −

∑d
j=1 βjw

2
j )w1 > 0, which

means that w1 will increase. This further indicates that w1 converges to 1, while wi converges to 0 for all
i 6= 1. This shows that our algorithm converges to the neighbor of the global optima.

C.2 Proof of Lemma 7

Proof. Suppose the initial is near the saddle point. Without loss of generality, we assume that |w(η)
i (0)−1| ≤

Cη
1
2 +δ and |w(η)

i (0)j | ≤ Cη
1
2 +δ for all j 6= i. We calculate the infinitesimal conditional expectation for j 6= i

d

dt
E(z

(η)
j (t)) =

1

η
E
(
z

(η)
j (t+ η)− z(η)

j (t)
∣∣z(η)
j (t)

)
= η−

3
2E
(
w

(η)
j (t+ η)− w(η)

j (t)
∣∣w(η)
j (t)

)
= −η− 1

2

[(
w(η)(t)

)> (
ΛB
)− 1

2 (ΛA)
(
ΛB
)− 1

2 w(η)(t) ·
(
ΛB
)
w(η)(t)− (ΛA)w(η)(t)

]
j

= λizj − βiµjzj +O(η1−2δ). 16



The last equality holds due to the fact that our initial point is near the saddle point, i.e., w
(η)
i (t) ≈ ei and

|w(η)
j (t)| ≤ Cη 1

2 +δ . Next, we turn to the infinitesimal conditional variance,

1
ηE
[(
z

(η)
j (t+ η)− z(η)

j (t)
)2 ∣∣z(η)

j (t)

]
=E

[(
e>j

((
ΛB
) 1

2 Λ̂
(k)
B

(
ΛB
)− 1

2 w(k)w(l)> − ΛB
)
· Λ̃w(k)

)2 ∣∣w(k)

]
=E

[((
Λ̂

(k)
B

)
j,i
·
√
µj/µi · Λ̃i,i − µjΛ̃j,i

)2
]

+O(η3−6δ)

=Gj,i +O(η3−6δ) ≤ 2
(
µ1

µj
· C0 · C1 + µ2

i · C1

)
.

By Section 4 of Chapter 7 in Ethier and Kurtz (2009), we obtain that the algorithm converges to the solution
of (13) if it is already near the saddle point ei.

C.3 Proof of Lemma 8

Proof. Suppose the initial is near the stable equilibria, i.e., |w(η)
1 (0) − 1| ≤ Cη

1
2 +δ and |w(η)

j (0)| ≤ Cη
1
2 +δ

for all j 6= 1. First we show that ||w(η)(t)||2 → 1 as t→∞. With update (9), we show w(η)>w(η)(t) weakly
converges to the following ODE by a similar proof in Lemma 6:

d

dt
E
(
w(η)>w(η)(t)

)
= −w(η)> (ΛB)− 1

2 (ΛA)
(
ΛB
)− 1

2 w(η) · w(η)>ΛBw(η) + w(η)>(ΛA)w(η) +O(η)

= −λ1

(
||w(η)||42 − ||w(η)||22

)
+O(η1−2δ).

Similarly, we can bound the infinitesimal conditional variance. Therefore, the norm of w weakly converges
to the following ODE:

dx = −λ1

(
x2 − x

)
dt.

The solution of the above ODE is

x(t) =


1

1−exp(−λ1t+C) if x(0) > 1
1

1+exp(−λ1t+C) if x(0) < 1

1 if x(0) = 1

.

This implies that ‖w(η)(t)‖2 converges to 1 as t → ∞. Then we calculate the infinitesimal conditional
expectation for i 6= 1

d

dt
E(z

(η)
i (t)) =

1

η
E
(
z

(η)
i (t+ η)− z(η)

i (t)
∣∣z(η)
i (t)

)
= η−

3
2E
(
w

(η)
i (t+ η)− w(η)

i (t)
∣∣w(η)
i (t)

)
= −η− 1

2

[(
w(η)(t)

)> (
ΛB
)− 1

2 (ΛA)
(
ΛB
)− 1

2 w(η)(t) ·
(
ΛB
)
w(η)(t)− (ΛA)w(η)(t)

]
i

= λizi − β1µizi +O(η1−2δ).

The last equality is from the fact that our initial point is near an optimum. Next, we turn to the infinitesimal
conditional variance,

1
ηE
[(
z

(η)
i (t+ η)− z(η)

i (t)
)2 ∣∣z(η)

i (t)

]
= E

[(
e>i

((
ΛB
) 1

2 Λ̂
(k)
B

(
ΛB
)− 1

2 w(k)w(l)> − ΛB
)
· Λ̃w(k)

)2 ∣∣w(k)

]
= E

[((
Λ̂

(k)
B

)
i,1
·
√
µi/µ1 · Λ̃1,1 − µiΛ̃i,1

)2
]

+O(η3−6δ)

= Gi,1 +O(η3−6δ) ≤ 2
(
µi
µ1
· C0 · C1 + µ2

i · C1

)
.

By Section 4 of Chapter 7 in Ethier and Kurtz (2009), we have that the algorithm converges to the solution
of (13) if it is already near our optimal solution.
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C.4 Proof of Theorem 9

Proof. Assume the initial is near a saddle point, ei, where i 6= 1. According to (11) and Lemma 7, we obtain
the closed form solution of (11) as follows:

zj(t) = zj(0) exp (−µj (βi − βj) t) +
√
Gj,i

∫ t

0

exp (µj (βi − βj) (s− t)) dB(s)

=
(
zj(0) +

√
Gj,i

∫ t

0

exp
(
µj(βi − βj)s

)
dB(s)︸ ︷︷ ︸

Q1

)
exp (−µj (βi − βj) t)︸ ︷︷ ︸

Q2

.

We consider j = 1. Note at time t, Q1 essentially is a random variable with mean z1(0) and variance
G1,iµ1

2(β1−βi)
(
1− exp

(
− 2µ1(β1 − βi)t

))
, which has an upper bound

G1,iµ1

2(β1−βi) . Q2, however, amplifies the mag-

nitude of Q1. Then it forces the algorithm escaping from the saddle point ei. We consider the event

{w1(t)2 > η} and a random variable v(t) ∼ N
(

0,
G1,iµ1

2(β1−βi)
(
exp

(
2µ1(β1 − βi)t

)
− 1
) )

. Because zj(0) might

not be 0, we have
P(w1(t)2 > η) ≥ P(v2(t) > 1).

Let the right hand side of (32) be larger than 95%. Then with a sufficiently small η, we need

T1 �
1

µ1(β1 − βi)
log(

200(β1 − βi)
µ1G1,i

+ 1) (28)

such that P(|w(η)
1 (T1)|22 > η) = 90%.

Now we consider the time required to converge under the ODE approximation.

By Lemma 6 with j = 1, after restarting the counter of time, we have

wµi1 (t)

wµ1

i (t)
≥ ηµi/2 exp(µ1µi(β1 − βi)t).

Let the right hand side equal to 1. Then with a sufficiently small η we need

T2 �
µmax

µ1µmin · gap
log(η−1) (29)

such that P
(
w

(η)µ1
i (T2)

w
(η)µi
1 (T2)

≤ 1

)
= 5

6 .

Then let i = 1 in Lemma 6. After restarting the counter of time, we have

wµ1

i (t)

wµi1 (t)
≤ C exp(µmax) exp(µ1µi(βi − β1)t)

=⇒w2
i ≤ (C exp(µmax) exp(µ1µi(βi − β1)t))

2/µ1 ,

where exp(µmax) comes from the above stage and C is a constant containing G1,i and Gi,j . The second

inequality holds due to the fact that w1 ≤ 1, mentioned in the proof of Lemma 6. Therefore, given
∑d
i=2 w

2
i ≤

κη1+2δ and a sufficiently small η, we need

T ′2 �
µmax

µ1µmin · gap
log(η−1) (30)

such that P
(
|w(η)

1 (T ′2)|2

||w(η)(T ′2)||22
> 1− κη1+2δ

)
= 8

9 .

Then the algorithm goes into Phase III. According to Lemma 8 and (13), we obtain the closed form solution
of (13) as follows:

zi(t) = zi(0) exp (−µi (β1 − βi) t) +
√
Gi,1

∫ t

0

exp (µi (β1 − βi) (s− t)) dB(s).

By the Ito isometry property of Ito-Integral, we have
18



E (zi(t))
2

= (zi(0))
2
e−2µi(β1−βi)t +

Gi,1
2µi (β1 − βi)

[
1− e−2µi(β1−βi)t

]
. (31)

Then we consider the complement of the event {w2
1 > 1− ε}. By Markov inequality, we have

P(w2
1 ≤ 1− ε)

=P

(
d∑
i=2

w2
i ≥ ε

)
≤

E
(∑d

i=2 w
2
i

)
ε

=
E
(∑d

i=2 z
2
i

)
η−1ε

=
1

η−1ε

(
d∑
i=2

(zi(0))
2
e−2µi(β1−βi)t +

Gi
2µi (β1 − βi)

[
1− e−2µi(β1−βi)t

])

≤ 1

η−1ε

(
η−1δ2e−2µmin·gap·t +

φ

2µmin · gap

)
. (32)

Let the right hand side of (32) be no larger than 1
16 .

1

η−1ε

(
η−1δ2e−2µmin·gap·t +

φ

2µmin · gap

)
≤ 1

16

=⇒ e2µmin·gap·t ≥ 16 · µmin · gap · δ2

ε · µmin · gap− 16 · η · φ
.

Then after restarting the counter of time, we need

T3 �
1

µmin · gap
· log

(
µmin · gap · δ2

ε · µmin · gap− 16 · η · φ

)
(33)

such that P(w2
1(T3) ≥ 1− ε) ≥ 15

16 .

Combining (28), (29), (30), (33), if our algorithm starts from a saddle point, then with probability at least
5
8 , we need

T = T1 + T2 + T ′2 + T3 �
µmax/µmin

µ1 · gap
log
(
η−1

)
(34)

such that w2
1(T ) > 1− ε.

Moreover, we choose

η � ε · µmin · gap
φ

. (35)

Combining (34) and (35) together, we get the asymptotic sample complexity

N � T

η
� φ · µmax/µmin

ε · µ1 · µmin · gap2
log

(
φ

ε · µmin · gap

)
(36)

such that with probability at least 5
8 , we have ||Ŵ −W ∗||22 ≤ ε.
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