Supplementary Material (AISTATS 2019):
Rényi Differentially Private ERM for Smooth Objectives

A  Proofs

Lemma 2. Let B and B’ be mini-batches that differ on the value of one record. Define the operator Tg(-) =
Id(-) = nVfB(:) (and similarly for B'). Let w and w' be any two vectors in ©. Let p = max{|1 — nul,|1 —nL|}
(where p is the strong convezity parameter and L is the smoothness parameter). Then:

||Ta(w) — Te(W')|| < pl|lw — w'|| (same batch B)

. 2nR
T (w) = To (W] < pliw = w'l| + T

where the first equation shows the effect of using the same operator Tp and the second equation shows the effect
of using Tp to update w and a different operator Tg: to update w'.

Proof. We first consider the case where the same operator 7p is applied to both w and w’, i.e., B = B’.
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where z = w' + s*(w — w’), s* € [0,1] is a point on the line segment joining w and w’.

Now we consider the case where B and B’ differ by one record. Let ¢ denote the index of record at which D and
D’ differ, i.e., d; = dj for all ¢ # £ and d¢ # d'g. We introduce the following equality.

Vis(w)—Vfp(w = 3] {wa di) = Y VW, d) }
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Using Equation (6), we get
1T8(W) = Ta (W)ll2 = Iw = nV fB(W) — (W' =V fp (W'))]|2
= lw—w' = n(Vis(w) = Vi (W)l

== w = ) = T+ (Vf(w de) - V (W', L)
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277R
where the second to last inequality is due to our requirement on the boundedness of gradient. O

Lemma 3. Define Hy(Py; Py) = el DDPalPr I P2) - Lot My, ..., M,, be mechanisms and q = [q1,. .., qm] be a
probability vector over 1,...,m. Let M, on input D, sample i ~ q and return M;(D). Then

Hq(M(D1): M(D2) € 3 4;Ho(M;(D1): My(D).

Proof. For each j, let P} and PJ be the distributions of M;(D;) and M;(Da), respectively. Let Py be the
distribution of M(D;) and let P, be the distribution of M(Ds).
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where the inequality comes from Jensen’s inequality (since the function z — 2% is convex for o > 1) and the
second-to-last equality comes from using the definition of expected value. O

Proposition 2. If we run Algorithm 1 for arbitrary number of epochs with a fixed step size n, its sensitivity A
satisfies
2nR
< S
|B|(1—p™)

where p = max{|1 — nu|, |1 — nL|}. In particular, when m =1 and n = Liﬂ, A< %.



Proof. Let D and D’ be any two databases that differ on one record. Given a fixed randomness in data per-
mutation, let By, ..., By,—1 and By, ..., B}, _; denote m disjoint mini-batches for D and D’, respectively. Then
there exists an index j such that B; # B} and B; = Bj for all i # j.

Algorithm 1 on input D generates a sequence of solutions wg, w1, wa, ..., using therule w; = Tp,_, ., (W;_1)
(and similarly on input D’ using 75/). Define A®) as the difference between w; and w’, at the end of k" epoch.
Provided that the algorithm for input D and D’ starts with the same initial solution, i.e., wo = w{,, Lemma 2
says that the first 5 — 1 updates in an epoch will be contractions, the j" update will be an expansion, and the
remaining m — j updates will be contractions. Therefore, at the end of the first epoch, we have AN < pm—i %.

In the second epoch, there will be again j — 1 contractions, one expansion, and m — j contractions. Hence, we
have

A®) < ym= (p. (1AW + 277?)
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Likewise, at the end of the £*" epoch,
A®) < pmjﬁ (ot 4 pteDm 1)
Therefore,

. D _ P I2nR 2nR )
k=00 [B|(1—p™) — [B|(1—p™)

since 0 < p < 1. Recall that p = max{|1 — nu|,|1 — nL|}. We see that p is a function of step size 7, and the
value of 1 can be optimized to minimize p (i.e., to obtain the maximum contraction). It can be seen that p has
the minimum value of % when n = L%_#, L

which is when [1 —nu| = |1 —nL|. Plugging p = 774 and m =1
into (7), we obtain the second claim. O

Proposition 3. Algorithm 3 with averaging satisfies (o, €)-RDP, where

a(a—1) (A2
_ 1 1 m =
€= o1 1Og (m Zj:le 2 ) :

Proof. Let D and D’ be neighboring databases. Let M be a mechanism with associated sensitivity A[j]. Given
the randomly permuted input dataset, Algorithm 3, denoted by M, chooses M, with probability ¢[j] = 1/m
and releases the output using the Gaussian mechanism with noise scale parameter . We show that the Rényi
divergence between the output distributions of M is bounded by e.

1
Da(M(D) || M(D') = —— log Hy (M(D): M(D')
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Sa—1%\m ;6 ’

where the first and second inequalities are due to Lemmas 3 and 1, respectively. O



B KDDCup99 Dataset

To demonstrate the performance on a large dataset, we evaluate the proposed algorithm on KDDCup99 dataset.
Figure 4 shows the performance for LR and SVM. For LR, output perturbation methods perform better when e
is small while gradient perturbation methods outperform when € is large. While OutPert-GD perform very poorly
on other 4 datasets, it shows a comparable performance on the large dataset. This is because its sensitivity is
inversely proportional to the dataset size.
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Figure 4: Performance on KDDCup99 dataset (Left: LR, Right: SVM)



