
A Topological Regularizer for Classifiers via Persistent Homology

Chao Chen1 Xiuyan Ni2 Qinxun Bai3 Yusu Wang4

1Stony Brook University, Stony Brook, NY 2City University of New York, New York, NY
3Hikvision Research America, Santa Clara, CA 4Ohio State University, Columbus, OH

Abstract

Regularization plays a crucial role in super-
vised learning. Most existing methods enforce
a global regularization in a structure agnos-
tic manner. In this paper, we initiate a new
direction and propose to enforce the struc-
tural simplicity of the classification boundary
by regularizing over its topological complexity.
In particular, our measurement of topologi-
cal complexity incorporates the importance
of topological features (e.g., connected com-
ponents, handles, and so on) in a meaningful
manner, and provides a direct control over
spurious topological structures. We incorpo-
rate the new measurement as a topological
penalty in training classifiers. We also pro-
pose an efficient algorithm to compute the
gradient of such penalty. Our method pro-
vides a novel way to topologically simplify the
global structure of the model, without having
to sacrifice too much of the flexibility of the
model. We demonstrate the effectiveness of
our new topological regularizer on a range of
synthetic and real-world datasets.

1 Introduction

Regularization plays a crucial role in supervised learn-
ing. A successfully regularized model strikes a balance
between a perfect description of the training data and
the ability to generalize to unseen data. A common
intuition for the design of regularzers is the Occam’s
razor principle, where a regularizer enforces certain sim-
plicity of the model in order to avoid overfitting. Clas-
sic regularization techniques include functional norms
such as L1 (Krishnapuram et al., 2005), L2 (Tikhonov)

Proceedings of the 22nd International Conference on Ar-
tificial Intelligence and Statistics (AISTATS) 2019, Naha,
Okinawa, Japan. PMLR: Volume 89. Copyright 2019 by
the author(s).

(Ng, 2004) and RKHS norms (Schölkopf and Smola,
2002). Such norms produce a model with relatively less
flexibility and thus is less likely to overfit.

A particularly interesting category of methods is in-
spired by the geometry. These methods design new
penalty terms to enforce a geometric simplicity of the
classifier. Some methods stipulate that similar data
should have similar score according to the classifier,
and enforce the smoothness of the classifier function
(Belkin et al., 2006; Zhou and Schölkopf, 2005; Bai
et al., 2016). Others directly pursue a simple geom-
etry of the classifier boundary, i.e., the submanifold
separating different classes (Cai and Sowmya, 2007;
Varshney and Willsky, 2010; Lin et al., 2012, 2015).
These geometry-based regularizers are intuitive and
have been shown to be useful in many supervised and
semi-supervised learning settings. However, regulariz-
ing total smoothness of the classifier (or that of the
classification boundary) is not always flexible enough to
balance the tug of war between overfitting and overall
accuracy. The key issue is that these measurement are
usually structure agnostic. For example, in Figure 1, a
classifier may either overfit (as in (b)), or becomes too
smooth and lose overall accuracy (as in (c)).

In this paper, we propose a new direction to regularize
the “simplicity” of a classifier – Instead of using geom-
etry such as total curvature, we directly enforce the
“simplicity” of the classification boundary, by regular-
izing over its topological complexity. (Here, we take a
similar functional view as Bai et al. (2016) and consider
the classifier boundary as the 0-valued level set of the
classifier function f(x); see e.g., Figure 2.) Our mea-
surement of topological complexity incorporates the
importance of topological structures, e.g., connected
components, handles, in a meaningful manner, and pro-
vides a direct control over spurious topological struc-
tures. This new structural simplicity can be combined
with other regularizing terms (say geometry-based ones
or functional norms) to train a better classifier. See
Figure 1 (a) for an example, where the classifier com-
puted with topological regularization achieves a better
balance between overfitting and classification accuracy.

A Topological Regularizer for Classifiers via Persistent Homology

(a) (b) (c) (d)
Figure 1: Comparison of classifiers with different regularizers on a synthetic dataset (2 moons with noise level 5%,
see Sec. 4 for details). For ease of exposition, we only draw training data (blue and orange markers) and the
classification boundary (red). (a): our method achieves structural simplicity without over-smoothing the classifier
boundary. A standard classifier (e.g., kernel method using the same σ) could (b) overfit, or (c) overly smooth the
classification boundary and reduce overall accuracy. (d): The output of the STOA method based on geometrical
simplicity (Bai et al., 2016) also smooths the classifier globally.

To design a good topological regularizer, there are two
key challenges. First, we want to measure and incor-
porate the significance of different topological struc-
tures. For example, in Figure 2 (a), we observe three
connected components in the classification boundary
(red). The “importance” of the two smaller components
(loops) are different despite their similar geometry. The
component on the left exists only due to a few training
data and thus are much less robust to noise than the one
on the right. Leveraging several recent developments
in the field of computational topology (Edelsbrunner
et al., 2000; Bendich et al., 2010, 2013), we quantify
such “robustness” ρ(c) of each topological structure c
and define our topological penalty as the sum of the
squared robustness LT (f) =

∑
ρ(c)2 over all topologi-

cal structures from the classification boundary.

A bigger challenge is to compute the gradient of the
proposed topological penalty function. In particular,
the penalty function crucially depends on locations and
values of critical points (e.g., extrema and saddles) of
the classifier function. But there are no closed form
solutions for these critical points. To address this
issue, we propose to discretize the domain and use a
piecewise linear approximation of the classifier function
as a surrogate function. We prove in Section 3 that by
restricting to such a surrogate function, the topological
penalty is differentiable almost everywhere. We propose
an efficient algorithm to compute the gradient and
optimize the topological penalty. We apply the new
regularizer to a kernel logistic regression model and
show in Section 4 how it outperforms others on various
synthetic and real-world datasets.

In summary, our contributions are as follows:

• We propose the novel view of regularizing the
topological complexity of a classifier, and develop

a first such topological penalty function;

• We propose a method to compute the gradient
of our topological penalty. By restricting to a
surrogate piecewise linear approximation of the
classifier function, we prove the gradient exists
almost everywhere and is tractable;

• We instantiate our topological regularizer on a
kernel classifier. We provide experimental evidence
of the effectiveness of the proposed method on
several synthetic and real-world datasets.

For computational efficiency, in this paper, we focus
on the simplest type of topological structures, i.e., con-
nected components. The framework can be extended to
more sophisticated topological structures, e.g., handles,
voids, etc.

Related work. The topological summary called per-
sistent homology Edelsbrunner et al. (2002); Carlsson
and de Silva (2010) (a brief introduction of which will
be provided in the supplemental material) can cap-
ture the global structural information of the data in a
multiscale manner. It has been used in unsupervised
learning, e.g., clustering (Chazal et al., 2013; Ni et al.,
2017). In supervised setting, topological information
has been used as powerful features. The major chal-
lenge is the metric between such topological summaries
of different data is not standard Euclidean. Adams et
al. (2017) proposed to directly vectorize such informa-
tion. Bubenik (2015) proposed to map the topological
summary into a Banach space so that statistical reason-
ing can be carried out (Chazal et al., 2014). To fully
leverage the topological information, various kernels
(Reininghaus et al., 2015; Kwitt et al., 2015; Kusano
et al., 2016; Carrière et al., 2017; Zhu et al., 2016) have
been proposed to approximate their distance. Hofer et
al. (2017) proposed to use the topological information

Chen, Ni, Bai, Wang

f

0.0

−0.55 p1

p2

0.21

0.83

−0.9

q2

q1

(a) (b) (c)
Figure 2: (a): The classifier boundary (red curves) has two additional connected components with similar
geometry. But the left one is in fact less important w.r.t. the classifier as shown in (b), where the graph of the
classifier function is shown (i.e, using f as the elevation function). The left valley is easier to be removed from
the 0-value level set by perturbation. (c): The classifier boundary can have different types (and dimensional)
topological structures, e.g., connected components, handles, voids, etc.

as input for deep convolutional neural network. Per-
haps the closest to us are (Varshney and Ramamurthy,
2015; Ramamurthy et al., 2018), which compute the
topological information of the classification boundary.
All these methods use topological information as an
observation/feature of the data. To the best of our
knowledge, our method is the first to leverage
the topological information as a prior for train-
ing the classifier.

In computer vision, topological information has been
incorporated as constraints in discrete optimization.
Connectivity constraints can be used to improve the
image segmentation quality, especially when the objects
of interest are in elongated shapes. However in general,
topological constraints, although intuitive, are highly
complex and too expensive to be fully enforced in the
optimization procedure (Vicente et al., 2008; Nowozin
and Lampert, 2009). One has to resort to various
approximation schemes (Zeng et al., 2008; Chen et al.,
2011; Stühmer et al., 2013; Oswald et al., 2014).

2 Level Set, Topology, and Robustness

To illustrate the main ideas and concepts, we first
focus on the binary classification problem1 with a D-
dimensional feature space, X ⊂ RD. W.l.o.g. (without
loss of generality), we assume X is a D-dimensional
hypercube, and thus is compact and simply con-
nected. A classifier function is a smooth scalar function,
f : X → R, and the prediction for any training/testing
data x ∈ X is sign(f(x)). We are interested in de-
scribing the topology and geometry of the classification
boundary of f , i.e., the boundary between the posi-
tive and negative classification regions. Formally, the
boundary is the level set of f at value zero, i.e., the set
of all points with function value zero

Sf = f−1(0) = {x ∈ X |f(x) = 0}.
1For the multilabel classification, we will use multiple

one-vs-all binary classifiers (see Section 3).

q1

f

q1

p1

f

p1

(a) (b) (c) (d)
Figure 3: Two options to eliminate the left loop in
Figure 2(a). Option 1: increase values of all points
inside the loop so the loop disappears completely. (a):
zoom-in of the new function. (b): the graph of the
new function. Option 2: decrease values along a path
through the saddle so the loop is merged with the U-
shaped curve. (c): zoom-in of the new function, (d):
the graph of the new function.

W.l.o.g., we assume Sf is a (D − 1)-dimensional mani-
fold, possibly with multiple connected components2. In
Figure 2(a), the red curves represent the boundary Sf ,
which is a one-dimensional manifold consisting of three
connected components (one U-shaped open curve and
two closed loops). Note that level sets have been used
extensively in the image segmentation tasks (Osher
and Fedkiw, 2006; Szeliski, 2010).

For ease of exposition, we only focus on the simplest
type of topological structures, i.e., connected com-
ponents. For the rest of the paper, unless specifi-
cally noted, we will use “connected components” and
“topological structures” interchangeably. Classification
boundaries of higher dimension may have other types
of topological structures, e.g., handles, voids, etc. See
Figure 2(c) for the boundary of a 3D classifier. Our
method can be extended to these structures.

Robustness. Our goal is to use the topological regu-
larizer to simplify the topology of a classifier boundary.
To achieve this, we need a way to rank the significance
of different topological structures. The measure should
be based on the underlying classifier function. To illus-

2The degenerate case happens if Sf passes through crit-
ical points, e.g., saddles, minima, or maxima.

A Topological Regularizer for Classifiers via Persistent Homology

trate the intuition, recall the example in Figure 2(a).
To rank the three connected components of the clas-
sifier boundary Sf , simply inspecting the geometry is
insufficient. The two loops have similar size. However,
the left loop is less stable as it is caused by only a few
training samples (two positive samples inside the loop
and two negative samples between the loop and the
U-shaped curve). Instead, the difference between the
two loops can be observed by studying the graph of the
(classifier) function (Figure 2(b), where we view the
graph of the function as a terrain). Compared to the
right loop, the basin inside the left loop is shallower
and the valley nearby is closer to the sea level (zero),
and thus it is easier to perturb the function to remove
the left loop.

Intuitively, we would like to measure the significance
of a component of interest, c, as the minimal amount
of necessary perturbation the underlying classifier f
needs in order to “shrug off” c from the zero-valued
level set of the classifier function f . We measure the
distance between f and its perturbed version f̂ via the
L∞ norm, i.e., dist(f, f̂) = maxx∈X |f(x)− f̂(x)|.

Before we formally define our robustness measure, con-
sider the example of Figure 2; there are two options to
perturb f to remove the left loop component:

Option 1. Remove the left loop by increasing the
function value of all points within the basin it encloses
to +ε, where ε is an infinitesimally small positive value.
For the new function g, the zero-valued level set only
consists of the U-shaped curve and the right loop. See
Figure 3(a) and (b) for a zoomed-in view of g and
its graph. In this case, the cost dist(f, g) is simply ε
plus the depth of the basin, i.e., the absolute function
value of the local minimum inside the left loop (left
yellow marker in Figure 2(b)), which is dist(f, g) =
| − 0.55|+ ε = 0.55 + ε.

Option 2. Merge the left loop with the U-shaped
curve by finding a path connecting them and lowering
the function values along the path to −ε. There are
many paths achieving the goal. But note that all
paths connecting them have to go at least as high as
the nearby saddle point (left green marker in Figure
2(b)). Therefore, we choose a path passing the saddle
point and has the saddle as the highest point. By
changing function values along the path to −ε, we get
the new function h. In the zero-valued level set Sh

of the perturbed function h, the left loop is merged
with the U-shaped curve via a “pipe”. See Figure 3(c)
and (d) for a zoomed-in view of h and its graph. In
this case, the cost dist(f, h) is ε plus the highest height
of the path, namely, the function value of the saddle
point; that is, dist(f, h) = 0.21 + ε.

To optimize the cost to remove the left loop, we choose

the second option. The corresponding cost gives us
the robustness of this left component c, ρ(c) = 0.21.
Note for the right loop, its robustness is much higher
as values of the associated critical points (saddle and
minimum) are further away from the value zero. In
fact, the minimum perturbation required is 0.83.

In this example, we observe that the robustness of a
component crucially depends on the function values of
two critical points, a minimum p and a saddle point
q. This is not a coincidence: this pairing (p, q) is in
fact a so-called persistence pairing computed based on
the theory of persistent homology (Edelsbrunner et al.,
2002; Carlsson et al., 2009). We skip the descriptions
and definitions here, and refer the readers to the sup-
plemental material for some details. Rather, we just
introduce some necessary concepts:

Assume a given function f : X → R is aMorse function,
i.e., a well-behaved smooth function with no degenerate
critical points. Its k-th levelset zigzag persistence dia-
gram dgmk consists of a set of points dgmk = {(b, d)}
in the plane. Intuitively, imagine we sweep the domain
X in increasing function value α ∈ R, and track the
change of k-dimensional topological features (as mea-
sured by the k-th homology groups) of the levelsets
f−1(α) through the course. Each point (b, d) indicates
the birth-time b and death-time d of some topological
feature in the levelset. It turns out that there exist
critical points pb and pd of f , such that b = f(pb) and
d = f(pd). Hence there is a set of pairs of critical points
Πk(f) = {(p, q)}, which we call persistence pairings,
corresponding to all points in the persistence diagram
dgmZ . Each pair (p, q) indicates that a topological
feature is created in the levelset when sweeping past p,
and it persists till sweeping past q. The persistence of
this feature is its lifetime |f(q)− f(p)|. Now set

ΠSf
:= {(p, q) ∈ Π0(f) | f(p) ≤ 0; f(q) ≥ 0} (2.1)

to be the set of critical pairs corresponding to the 0-th
levelset-zigzag persistence diagram created at or before
function value 0, and died after it. Using results from
Carlsson et al. (2009); Bendich et al. (2013), we can
derive the following (see the supplemental material):
Theorem 2.1. Let f : X → R be a Morse function
defined on a D-dimensional hypercube X ⊂ RD, and
ΠSf

as defined above. Then there is a one-to-one cor-
respondance π between the set of connected components
of the boundary Sf and pairings in ΠSf

.

Furthermore, ΠSf
can be computed from the so-called 0-

th dimensional persistent homology induced by sublevel
set filtration w.r.t. function f and w.r.t. function −f .

The second part of the theorem leads to an efficient
algorithm to compute robustness (using existing work),
which we describe shortly. From now on we identify

Chen, Ni, Bai, Wang

components in the levelset Sf with pairs of critical
points in ΠSf

. We are now ready to define robustness.
Definition 1 (Robustness). For each connected compo-
nent c from the classification boundary Sf = f−1(0), let
(pc, qc) ∈ ΠSf

be its corresponding pair of critical points.
The robustness of c is ρ(c) = min{|f(pc)|, |f(qc)|}.

The robustness is closely related to but is different
from the persistence. Intuitively, f(pc) indicates the
time this component was first created in a levelset
during the sweep of X , and f(qc) indicates the time
it is destroyed. To remove this component from the
levelset Sf = f−1(0), we either pushes the birth-time
above 0, or the death-time below 0, and the smaller
cost of these two is the robustness of c. We note that
this definition follows the intuition of using the well-
groups to quantify robustness of levelsets (and interval
levelsets) as in (Bendich et al., 2010, 2013).

In the expample in Figure 2 (b), the left loop c1 corre-
sponds to critical pairing (p1, q1) and has robustness
ρ(c1) = |f(q1)| = 0.21, while the right loop corre-
sponds to critical pairing (p2, q2) and has robustness
ρ(c2) = |f(q2)| = 0.83.

We remark that we can define k-dimensional counter-
part, k ≥ 1, for ΠSf

and define the robustness for
k-dimensional topological features in Sf similarly (our
later topological regularization frameworks works for
high-dimensional features as well). In our current algo-
rithm, we only use the 0-th dimensional featuers as ΠSf

for the 0-dimensional case can be computed efficiently.

Algorithm. By Theorem 2.1, we only need to compute
0-th persistent homology induced by the sublevel-set
filtration of both f and −f , in order to collect all nec-
essary pairings of critical points. To do so, we need
a discretization of the domain X and the classifier
function f are evaluated at vertices of this discretiza-
tion. It is known that the 0th persistent homology
can be computed efficiently in time near linear to the
total number of vertices and edges in the discretization
(Edelsbrunner and Harer, 2010) using the union-find
data structure. For completeness and to provide some
intuition, we give a brief description below – we de-
scribe how to compute pairings Π̂f corresponding to
the 0th persistence diagram induced by the sublevel-
set filtration w.r.t. f . A symmetric procedure for −f
computes Π̂−f .

For low-dimensional feature space, e.g., 2D, we take a
uniform sampling of X . A grid graph G = (V,E) is
built using these samples as vertices, and we can evalu-
ate the function value of f at all vertices V . (Figure 2
in the supplementary material provides an illustration.)
Next, we build a merging tree as well as a collection of
pairings Πf as follows: We sort all vertices in increasing
function values V = {v1, . . . , vn}. Add these vertices

one-by-one in order. At any moment i, we maintain
the spanning forest for all the vertices Vi = {v1, . . . , vi}
that we already swept. Furthermore, each tree in the
spanning forest is represented by the global minimum
pm in this tree. When two trees T1 and T2 (associ-
ated with global minima p1 and p2, respectively) merge
upon the processing of node vs, then the resulting tree
is represented by the lower of the two minima p1 and
p2, say p1, and we add the pairing (p2, v2) to Π̂f . In-
tuitively, the tree T2 is created when we sweep past p2,
and is “killed” (merged to an “older” tree T1 created
at p1 with f(p1) ≤ f(p2)).

After all vertices are added, the merging tree Tf is con-
structed. The process can be implemented by a stan-
dard union-find data structure with a slight modifica-
tion to maintain the minimum of each set in O(mα(n))
time once the vertices are sorted (Edelsbrunner and
Harer, 2010), where m is the number of edges in grid
graph G, and α(n) is the inverse Ackermann function.

We perform the same procedure for function −f to
collect Π̂−f . Finally, (via the proof of Theorem 2.1 in
the supplemental material), the set of critical pairs w.r.t
the 0-th levelset zigzag persistence diagram for f is
Π0(Sf) = Π̂f (Sf)∪Π̂−f (Sf)∪{(v1, vn)}, where Π̂f (Sf)
contains all pairs (p, q) from Π̂f whose range covers 0
(i.e, f(p) ≤ 0 ≤ f(q)) and similarly for Π̂−f (Sf). The
overall time complexity is O(n logn+mα(n)).

The grid-graph discretization is only feasible for low-
dimensional feature space. For high dimension, we
use a k-nearest-neighbor graph (KNN) G′ = (V ′, E)
to represent a discretization of the domain X : Nodes
of this graph are all training data points. Thus the
extracted critical points are only training data points.
We then perform the same procedure to compute Π as
described above using this G′.

3 Topological Penalty and Gradient

Based on the robustness measure, we will introduce
our topological penalty below. To use it in the learn-
ing context, a crucial step is to derive the gradient.
However, the mapping from input data to persistence
pairings (Π in Theorem 2.1) is highly non-linear with-
out an explicit analytical representation. Hence it is
not clear how to compute the gradient of a topological
penalty function in its original format. Our key insight
is that, if we approximate the classifier function by a
piecewise-linear function, then we can derive gradients
for the penalty function, and perform gradient-descent
optimization. Our topological penalty is implemented
on a kernel logistic regression classifier, and we also
show how to extend it to multilabel settings.

Given a data set D = {(xn, tn) | n = 1, . . . , N} and

A Topological Regularizer for Classifiers via Persistent Homology

a classifier f(x,w) parameterized by w, we define the
objective function to optimize as the weighted sum of
the per-data loss and our topological penalty.

L(f,D) =
∑

(x,t)∈D

`(f(x,w), t) + λLT (f(·, w)), (3.1)

in which λ is the weight of the topological penalty, LT .
And `(f(x,w), t) is the standard per-data loss, e.g.,
cross-entropy loss, quadratic loss or hinge loss.

Our topological penalty, LT , aims to eliminating the
connected components of the classifier boundary. In the
example of Figure 2(a), it may help eliminating both
the left and the right loops, but leaving the U-shaped
curve alone as it is the most robust one. Recall each
topological structure of the classification boundary, c,
is associated with two critical points pc and qc, and its
robustness ρ(c) = min{|f(pc, w)|, |f(qc, w)|}.

We define the topological penalty in Equation
(3.1) as the sum of squared robustness, formally,
LT (f) =

∑
c∈C(Sf) ρ(c)2. Here C(Sf) is the set of all

connected components of Sf except for the most robust
one. In Figure 2(a), C(Sf) only consists of the left and
the right loops. We do not include the most robust
component, as there should be at least one component
left in the classifier boundary.

Gradient. A crucial yet challenging task is to compute
the gradient of such topological penalty. In fact, there
has not been any gradient computation for topology-
inspired measurement. A major challenge is the lack
of a closed form solution for the critical points of any
non-trivial function. Previous results show that even
a simple mixture of isotropic Gaussians can have ex-
ponentially many critical points (Edelsbrunner et al.,
2013; Carreira-Perpiñán and Williams, 2003).

In this paper, we propose a solution that circumvents
the direct computation of critical points in the con-
tinuous domain. The key idea is to use a piecewise
linear approximation of the classifier function. Recall
we discretize the feature space into a grid or kNN graph,
G = (V,E), and only evaluate classifier function val-
ues at a finite set of locations/points. Now consider
the piecewise linear function f̂ which agrees with f at
all sample points in V , but linearly interpolates along
edges. We show that restricting to such piecewise linear
functions, the gradient of LT is indeed computable.
Theorem 3.1. Using the piecewise linear approxima-
tion f̂ , the topological penalty LT (f̂(·, w)) is differen-
tiable almost everywhere over the space of piecewise
linear functions.

Proof. For the piecewise linear approximate f̂ , all crit-
ical points have to come from the set of vertices V of
the discretization. Their pairing and correspondence

to the connected components can be directly computed
using the algorithm in Section 2.

We first assume f̂ has unique non-zero function
values at all points in V , i.e, f̂(u) 6= f̂(v), ∀u, v ∈ V .
Let ∆ be the lowerbound of the difference between
the absolute function values of elements in V , as
well as the absolute function values of all vertices:
∆ = min{minu,v∈V,u 6=v ||f̂(u)| − |f̂(v)||,minu∈V |f̂(u)|}
To prove our theorem, we show that there exists a
small neighborhood of the function f̂ , so that for any
function in this neighborhood, the critical points and
their pairings remain unchanged. To see this, we
note that the any function in such neighborhood of
f̂ is also piecewise linear functions realized on the
same graph G. We define the neighborhood to be a
radius ∆/2 open ball in terms of L∞ norm, formally,
F = {g | |f̂(v)− g(v)| < ∆/2,∀v ∈ V }. For any g ∈ F ,
∀u, v ∈ V , we have the following three facts:

Fact 1. f̂(u) < f̂(v) if and only if g(u) < g(v).
Fact 2. f̂(u) < 0 if and only if g(u) < 0, and f̂(u) > 0

if and only if g(u) > 0
Fact 3. |f̂(u)| < |f̂(v)| if and only if |g(u)| < |g(v)|.

The first two facts imply that the ordering of elements
in V induced by their function values are the same for
g and f̂ . Note the second condition is necessary as it
guarantees the optimal option to remove a component
are the same for f̂ and g. Consequently, the filtration
of all elements of G induced by g and f̂ are the same.
By definition of persistent homology, the persistence
pairs (of critical points) are identical for g and f̂ . In
other words, the pair associated with each connected
component c, (pc, qc) are the same for both g and f̂ .

Furthermore, the third condition guarantees that for
each c, g(pc) < g(qc) if and only if f̂(pc) < f̂(qc). If
for f̂ , pc is the critical point that accounts for the
robustness, i.e., ρ(c) = f̂(pc), then pc also accounts
for ρ(c) for function g. Denote by p∗c as such crit-
ical point. p∗c = argminp∈{pc,qc}{|f̂(pc)|, |f̂(qc)|} =
argminp∈{pc,qc}{|g(pc)|, |g(qc)|}. Thus ρ(c) = |f̂(p∗c)|,
in which the critical point p∗c remains a constant for
any g within the small neighborhood of f̂ .

With constant p∗c ’s, and knowing that f̂ and f agree
at all elements of V , the gradient is straightforward

∇wLT =
∑

c∈C(Sf̂)

∇w(ρ(c)2) =
∑

c∈C(Sf̂)

2f(p∗c , w)∂f(p∗c)
∂w

.

Note that this gradient is intractable without the surro-
gate piecewise linear function f̂ ; for the original classi-
fier f , p∗c changes according to w in a complex manner.

Finally, note that elements in V may have the save
function values or 0 values. In such cases, p∗c may

Chen, Ni, Bai, Wang

not be uniquely defined and the gradient does not
exist. However, these events constitute a measure zero
subspace of functions and do not happen generically. In
other words, LT (f̂) is a piecewise smooth loss function
over the space of all piecewise linear functions. It is
differentiable almost everywhere.

Intuition of the gradient. During the optimization
process, we take the opposite direction of the gradient,
i.e., −∇wLT . For each component c ∈ C(Sf), taking
the direction −∇w(ρ(c)2) is essentially pushing the
function value of the critical point p∗c closer to zero. In
the example of Figure 2, for the left loop, the gradient
decent will push the function value of the saddle point
(left green marker) closer to zero, effectively dragging
the path down as in Figure 3(c) and (d). If it is the
case when p∗c is the minimum, the gradient descent will
increase the function value of the minimum, effectively
filling the basin as in Figure 3(a) and (b).

Instantiating on kernel machines. In principle,
our topological penalty can be incorporated with any
classifier. Here, we combine it with a kernel logistic
regression classifier to demonstrate its advantage. We
first present details for a binary classifier. We will
extend it to multilabel settings. For convenience, we
abuse the notation, drop f̂ and only use f .

In a kernel logistic regression, the prediction function
is f(x,w) = g

(
φ(x)Tw

)
= 1/

(
1 + exp

(
−φ(x)Tw

))
.

The N -dim feature φ(x) = (k(x, x1), · · · , k(x, xN))T

consists of the Gaussian kernel distance between x and
the N training data. The per-data loss `(f(x,w), t) is
the standard cross-entropy loss and its gradient can be
found in a standard textbook (Bishop, 2006).

Next we derive the gradient for the topological penalty.
First we need to modify the classifier slightly. Notice
the range of f is between zero and one, and the pre-
diction is sign(f − 0.5). To fit our setting in which the
zero-valued level set is the classification boundary, we
use a new function f̃ = f − 0.5 as the input for the
topological penalty. The gradient is

∇wLT =
∑

c∈C(Sf)

2f̃(p∗c , w)∂f̃(p∗c)
∂w

=
∑

c∈C(Sf)

(
−2f(p∗c , w)3 + 3f(p∗c , w)2 − f(p∗c , w)

)
φ(p∗c)

Our overall algorithm repeatedly computes the gradi-
ent of the objective function (gradient of cross-entropy
loss and gradient of topological penalty), and update
the parameters w accordingly, until it converges. At
each iteration, to compute the gradient of the topologi-
cal penalty, we compute the critical point p∗c ’s for all
connected components via the algorithm of Section 2.

Multilabel settings. For multilabel classification

0 5 10 15 20
15

20

25

30

35
Regularizors' Error vs. Noise Level

TopoReg
EE
DGR

Figure 4: Comparison of different regularizers with
different noise level. TopoReg is more robust to the
noise compared with other geometric regularizers.

with K classes, we use the multinomial logistic re-
gression classifier fk(x,W), k = 1..K with parameters
W = (w1, ·, wK). The per-data loss is again the stan-
dard cross-entropy loss. For the topological penalty,
we create K different scalar functions ψk(x,W) =
maxt 6=k f

t(x,W) − fk(x,W). If ψk(x,W) < 0, we
classify x as label k. The 0-valued level set of ψk(x,W)
is the classification boundary between label k and all
others. Summing the total robustness over all different
ψk’s give us the multilabel topological penalty. We omit
the derivation of the gradients due to space constraint.
The computation is similar to binary-labeled setting,
except that at each iteration, we need to compute the
persistence pairs for all the K functions.

4 Experiments

We test our method (TopoReg) on multiple synthetic
datasets and real world datasets. The weight of the
topological penalty, λ and the Gaussian kernel width σ
are turned via cross-validation. To compute topological
information requires discretization of the domain. For
2D data, we normalize the data to fit the unit square
[0, 1]× [0, 1], and discretize the square into a grid with
300× 300 vertices. For high-dimensional data, we use
the KNN graph with k = 3.

Baselines. We compare our method with several
baselines: k-nearest-neighbor classifier (KNN), logis-
tic regression (LG), Support Vector Machine (SVM),
and Kernel Logistic Regression (KLR) with functional
norms (L1 and L2) as regularizers. We also compare
with two state-of-the-art methods based on geometric-
regularizers: the Euler’s Elastica classifier (EE) (Lin
et al., 2015) and the Classifier with Differential Geomet-
ric Regularization (DGR) (Bai et al., 2016). All relevant
hyperparameters are tuned using cross-validation.

For every dataset and each method, we randomly divide
the datasets into 6 folds. Then we use each of the 6 folds
as testing set, while doing a 5-fold cross validation on
the rest 5 folds data to find the best hyperparameters.
Once the best hyperparameters are found, we train on
the entire 5 folds data and test on the testing set.

A Topological Regularizer for Classifiers via Persistent Homology

Table 1: The mean error rate of different methods.

Synthetic
KNN LG SVM EE DGR KLR TopoReg

Blob-2 (500,5) 7.61 8.20 7.61 8.41 7.41 7.80 7.20
Moons (500,2) 20.62 20.00 19.80 19.00 19.01 18.83 18.63
Moons (1000,2,Noise 0%) 19.30 19.59 19.89 17.90 19.20 17.80 17.60
Moons (1000,2,Noise 5%) 21.60 19.29 19.59 22.00 22.30 19.00 19.00
Moons (1000,2,Noise 10%) 21.10 19.19 19.89 24.40 26.30 20.00 19.70
Moons (1000,2,Noise 20%) 23.00 19.79 19.40 30.60 30.20 19.50 19.40
AVERAGE 18.87 17.68 17.70 20.39 20.74 21.63 16.92

UCI
KNN LG SVM EE DGR KLR TopoReg

SPECT (267,22) 17.57 17.20 18.68 16.38 23.92 18.31 17.54
Congress (435,16) 5.04 4.13 4.59 4.59 4.80 4.12 4.58
Molec. (106,57) 24.54 19.10 19.79 17.25 16.32 19.10 12.62
Cancer (286,9) 29.36 28.65 28.64 28.68 31.42 29.00 28.31
Vertebral (310,6) 15.47 15.46 23.23 17.15 13.56 12.56 12.24
Energy (768,8) 0.78 0.65 0.65 0.91 0.78 0.52 0.52
AVERAGE 15.46 14.20 15.93 14.16 15.13 13.94 11.80

Biomedicine
KNN LG SVM EE DGR KLR TopoReg

KIRC (243,166) 30.12 28.87 32.56 31.38 35.50 31.38 26.81
fMRI (1092,19) 46.70 74.91 74.08 82.51 31.32 34.07 33.24

Data. In order to thoroughly evaluate the behavior of
our model, especially in large noise regime, we created
synthetic data with various noise levels. Beside feature
space noise, we also inject different levels of label noise,
e.g., randomly perturb labels of 0%, 5%, 10% and 20%
of the training data. We also evaluate our method on
real world data. We use several UCI datasets with vari-
ous sizes and dimensions to test our method (Lichman,
2013). In addition, we use two biomedical datasets.
The first is the kidney renal clear cell carcinoma can-
cer (KIRC) dataset (Yuan et al., 2014) extracted from
the Cancer Genome Atlas project (TCGA) (Sharpless
and others, 2018). The features of the dataset are the
protein expression measured on the MD Anderson Re-
verse Phase Protein Array Core platform (RPPA). The
second dataset is a task-evoked functional MRI images,
which has 19 dimensions (corresponding to activities
at 19 brain ROIs) and 6 labels (corresponding to 6
different tasks) (Ni et al., 2018).

The results are reported in Table 1. We also report
the average performance over each category (AVER-
AGE). The two numbers next to each dataset name
are the data size N and the dimension D, respectively.
The average running time over all the datasets for our
method is 2.08 seconds.

Discussions. Our method generally outperforms exist-
ing methods on datasets in Table 1. More importantly,
we note that our method also provides best or close to
best performance among all approaches tested. (For

example, while EE performs well on some datasets, its
performance can be significantly worse than the best
for some other datasets.)

On synthetic data, we found that TopoReg has a bigger
advantage on relatively noisy data. This is expected.
Our method provides a novel way to topologically sim-
plify the global structure of the model, without having
to sacrifice too much of the flexibility of the model.
Meanwhile, to cope with large noise, other baseline
methods have to enforce an overly strong global reg-
ularization in a structure agnostic manner. We also
observe that TopoReg performs relatively stable when
label noise is large, while the other geometric regulariz-
ers are much more sensitive to label noise. See Figure
4 for a comparison. We suspect this is because the
other geometric regularizers are more sensitive to the
initialization and tend to stuck in bad local optima.

Finally, the idea of topological regularizor is general and
can be potentially applied to unsupervised context. We
also believe that the topological penalty is in general
not convex. We note in a parallel work, Poulenard
et al. (2018) proposed to optimize persistent-homology-
inspired objective function for shape matching.

Acknowledgements
We thank reviewers for their insightful comments and
suggestions. This work was partially supported by NSF
IIS-1855759, IIS-1815697, CCF-1855760, CCF-1733798,
and CCF-1740761.

Chen, Ni, Bai, Wang

References

Adams, H., Emerson, T., Kirby, M., Neville, R., Peter-
son, C., Shipman, P., Chepushtanova, S., Hanson, E.,
Motta, F., and Ziegelmeier, L. (2017). Persistence
images: A stable vector representation of persistent
homology. The Journal of Machine Learning Re-
search, 18(1):218–252.

Bai, Q., Rosenberg, S., Wu, Z., and Sclaroff, S. (2016).
Differential geometric regularization for supervised
learning of classifiers. In International Conference
on Machine Learning, pages 1879–1888.

Belkin, M., Niyogi, P., and Sindhwani, V. (2006). Mani-
fold regularization: A geometric framework for learn-
ing from labeled and unlabeled examples. Journal
of Machine Learning Research, 7:2399–2434.

Bendich, P., Edelsbrunner, H., and Kerber, M. (2010).
Computing robustness and persistence for images.
IEEE transactions on visualization and computer
graphics, 16(6):1251–1260.

Bendich, P., Edelsbrunner, H., Morozov, D., Patel, A.,
et al. (2013). Homology and robustness of level and
interlevel sets. Homology, Homotopy and Applica-
tions, 15(1):51–72.

Bishop, C. M. (2006). Pattern Recognition and Machine
Learning, volume 4. springer New York.

Bubenik, P. (2015). Statistical topological data anal-
ysis using persistence landscapes. The Journal of
Machine Learning Research, 16(1):77–102.

Cai, X. and Sowmya, A. (2007). Level learning set: A
novel classifier based on active contour models. In
Proc. European Conf. on Machine Learning (ECML),
pages 79–90.

Carlsson, G. and de Silva, V. (2010). Zigzag persis-
tence. Foundations of Computational Mathematics,
10(4):367–405.

Carlsson, G., de Silva, V., and Morozov, D. (2009).
Zigzag persistent homology and real-valued functions.
In Proc. 25th Annu. ACM Sympos. Comput. Geom.,
pages 247–256.

Carreira-Perpiñán, M. Á. and Williams, C. K. (2003).
On the number of modes of a gaussian mixture. In
International Conference on Scale-Space Theories in
Computer Vision, pages 625–640. Springer.

Carrière, M., Cuturi, M., and Oudot, S. (2017). Sliced
wasserstein kernel for persistence diagrams. In In-
ternational Conference on Machine Learning, pages
664–673.

Chazal, F., Glisse, M., Labruère, C., and Michel, B.
(2014). Convergence rates for persistence diagram
estimation in topological data analysis. In Inter-
national Conference on Machine Learning (ICML),
pages 163–171.

Chazal, F., Guibas, L. J., Oudot, S. Y., and Skraba, P.
(2013). Persistence-based clustering in riemannian
manifolds. Journal of the ACM (JACM), 60(6):41.

Chen, C., Freedman, D., and Lampert, C. H. (2011).
Enforcing topological constraints in random field
image segmentation. In Computer Vision and Pat-
tern Recognition (CVPR), 2011 IEEE Conference
on, pages 2089–2096. IEEE.

Edelsbrunner, H., Fasy, B. T., and Rote, G. (2013).
Add isotropic gaussian kernels at own risk: More and
more resilient modes in higher dimensions. Discrete
& Computational Geometry, 49(4):797–822.

Edelsbrunner, H. and Harer, J. (2010). Computational
Topology: an Introduction. AMS.

Edelsbrunner, H., Letscher, D., and Zomorodian, A.
(2000). Topological persistence and simplification. In
Foundations of Computer Science, 2000. Proceedings.
41st Annual Symposium on, pages 454–463. IEEE.

Edelsbrunner, H., Letscher, D., and Zomorodian, A.
(2002). Topological persistence and simplification.
Discrete Comput. Geom., 28:511–533.

Hofer, C., Kwitt, R., Niethammer, M., and Uhl, A.
(2017). Deep learning with topological signatures. In
Advances in Neural Information Processing Systems,
pages 1633–1643.

Krishnapuram, B., Carin, L., Figueiredo, M., and
Hartemink, A. (2005). Learning sparse bayesian
classifiers: multi-class formulation, fast algorithms,
and generalization bounds. IEEE. Trans. Pattern.
Anal. Mach. Intell, 32.

Kusano, G., Hiraoka, Y., and Fukumizu, K. (2016).
Persistence weighted gaussian kernel for topologi-
cal data analysis. In International Conference on
Machine Learning, pages 2004–2013.

Kwitt, R., Huber, S., Niethammer, M., Lin, W.,
and Bauer, U. (2015). Statistical topological data
analysis-a kernel perspective. In Advances in neural
information processing systems, pages 3070–3078.

Lichman, M. (2013). UCI machine learning repository.
Lin, T., Xue, H., Wang, L., Huang, B., and Zha, H.
(2015). Supervised learning via euler’s elastica mod-
els. Journal of Machine Learning Research, 16:3637–
3686.

Lin, T., Xue, H., Wang, L., and Zha, H. (2012). Total
variation and Euler’s elastica for supervised learn-
ing. Proc. International Conf. on Machine Learning
(ICML).

Ng, A. Y. (2004). Feature selection, l 1 vs. l 2 regular-
ization, and rotational invariance. In Proceedings of
the twenty-first international conference on Machine
learning, page 78. ACM.

A Topological Regularizer for Classifiers via Persistent Homology

Ni, X., Quadrianto, N., Wang, Y., and Chen, C. (2017).
Composing tree graphical models with persistent
homology features for clustering mixed-type data.
In International Conference on Machine Learning,
pages 2622–2631.

Ni, X., Yan, Z., Wu, T., Fan, J., and Chen, C. (2018).
A region-of-interest-reweight 3d convolutional neu-
ral network for the analytics of brain information
processing. In International Conference on Medical
Image Computing and Computer-Assisted Interven-
tion, pages 302–310. Springer.

Nowozin, S. and Lampert, C. H. (2009). Global connec-
tivity potentials for random field models. In Com-
puter Vision and Pattern Recognition, 2009. CVPR
2009. IEEE Conference on, pages 818–825. IEEE.

Osher, S. and Fedkiw, R. (2006). Level set methods
and dynamic implicit surfaces, volume 153. Springer
Science & Business Media.

Oswald, M. R., Stühmer, J., and Cremers, D. (2014).
Generalized connectivity constraints for spatio-
temporal 3d reconstruction. In European Conference
on Computer Vision, pages 32–46. Springer.

Poulenard, A., Skraba, P., and Ovsjanikov, M. (2018).
Topological function optimization for continuous
shape matching. In Computer Graphics Forum, vol-
ume 37, pages 13–25. Wiley Online Library.

Ramamurthy, K., Varshney, K. R., and Mody, K.
(2018). Topological data analysis of decision bound-
aries with applicaiton to model selection.

Reininghaus, J., Huber, S., Bauer, U., and Kwitt, R.
(2015). A stable multi-scale kernel for topological
machine learning. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 4741–4748.

Schölkopf, B. and Smola, A. J. (2002). Learning with
kernels: support vector machines, regularization, op-
timization, and beyond. MIT press.

Sharpless, N. E. and others (2018). TCGA: The Cancer
Genome Atlas. Accessed: 10/01/2018.

Stühmer, J., Schröder, P., and Cremers, D. (2013).
Tree shape priors with connectivity constraints us-
ing convex relaxation on general graphs. In ICCV,
volume 13, pages 1–8.

Szeliski, R. (2010). Computer vision: algorithms and
applications. Springer Science & Business Media.

Varshney, K. and Willsky, A. (2010). Classification us-
ing geometric level sets. Journal of Machine Learning
Research, 11:491–516.

Varshney, K. R. and Ramamurthy, K. N. (2015). Per-
sistent topology of decision boundaries. In Acoustics,
Speech and Signal Processing (ICASSP), 2015 IEEE
International Conference on, pages 3931–3935. IEEE.

Vicente, S., Kolmogorov, V., and Rother, C. (2008).
Graph cut based image segmentation with connectiv-
ity priors. In Computer vision and pattern recogni-
tion, 2008. CVPR 2008. IEEE conference on, pages
1–8. IEEE.

Yuan, Y., Van Allen, E. M., Omberg, L., Wagle, N.,
Amin-Mansour, A., Sokolov, A., Byers, L. A., Xu,
Y., Hess, K. R., Diao, L., et al. (2014). Assessing the
clinical utility of cancer genomic and proteomic data
across tumor types. Nature biotechnology, 32(7):644.

Zeng, Y., Samaras, D., Chen, W., and Peng, Q. (2008).
Topology cuts: A novel min-cut/max-flow algorithm
for topology preserving segmentation in n–d images.
Computer vision and image understanding, 112(1):81–
90.

Zhou, D. and Schölkopf, B. (2005). Regularization
on discrete spaces. In Pattern Recognition, pages
361–368. Springer.

Zhu, X., Vartanian, A., Bansal, M., Nguyen, D., and
Brandl, L. (2016). Stochastic multiresolution persis-
tent homology kernel. In IJCAI, pages 2449–2457.

	Introduction
	Level Set, Topology, and Robustness
	Topological Penalty and Gradient
	Experiments

