
Wang Chi Cheung, Vincent Y. F. Tan, Zixin Zhong

A Useful theorems

Here are some basic facts from the literature that we will use:

Theorem A.1 ((Audibert et al., 2009), speicalized to Berounlli random variables). Consider N independently
and identically distributed Bernoulli random variables Y1, . . . , YN ∈ {0, 1}, which have the common mean m =

E[Y1]. In addition, consider their sample mean ξ̂ and their sample variance V̂ :

ξ̂ =
1

N

N∑
i=1

Yi, V̂ =
1

N

N∑
i=1

(Yi − ξ̂)2 = ξ̂(1− ξ̂).

For any δ ∈ (0, 1), the following inequality holds:

Pr

∣∣∣ξ̂ −m∣∣∣ ≤
√

2V̂ log(1/δ)

N
+

3 log(1/δ)

N

 ≥ 1− 3δ.

Theorem A.2 ((Abramowitz and Stegun, 1964)). Let Z ∼ N (µ, σ2). For any z ≥ 0, the following inequalities
hold:

1

4
√
π

exp

(
−7z2

2

)
≤ Pr (|Z − µ| > zσ) ≤ 1

2
exp

(
−z

2

2

)
.

B Proofs of main results

In this Section, we provide proofs of Lemmas 4.2, 4.4, as well as Lemmas 4.1, B.1.

B.1 Proof of Lemma 4.1

Lemma 4.1. For each t ∈ [T], Ht ∈ Eµ̂,t, we have

Pr [Eµ̂,t] ≥ 1− 3L

(t+ 1)3
, Pr [Eθ,t|Ht] ≥ 1− 1

2(t+ 1)2
.

Proof. Bounding probability of event Eµ̂,t : We first consider a fixed non-negative integer N and a fixed item

i. Let Y1, . . . , YN be i.i.d. Bernoulli random variables, with the common mean w(i). Denote ξ̂N =
∑N
i=1 Yi/N as

the sample mean, and V̂N = ξ̂N (1− ξ̂N) as the empirical variance. By applying Theorem A.1 with δ = 1/(t+1)4,
we have

Pr

∣∣∣ξ̂N − w(i)
∣∣∣ >

√
8V̂N log(t+ 1)

N
+

12 log(t+ 1)

N

 ≤ 3

(t+ 1)4
. (B.1)

By an abuse of notation, let ξ̂N = 0 if N = 0. Inequality (B.1) implies the following concentration bound when
N is non-negative:

Pr

∣∣∣ξ̂N − w(i)
∣∣∣ >

√
16V̂N log(t+ 1)

N + 1
+

24 log(t+ 1)

N + 1

 ≤ 3

(t+ 1)4
. (B.2)

Subsequently, we can establish the concentration property of µ̂t(i) by a union bound of Nt(i) over {0, 1, . . . , t−1}:

Pr

(
|µ̂t(i)− w(i)| >

√
16ν̂t(i) log(t+ 1)

Nt(i) + 1
+

24 log(t+ 1)

Nt(i) + 1

)

≤ Pr

∣∣∣ξ̂N − w(i)
∣∣∣ >

√
16V̂N log(t+ 1)

N + 1
+

24 log(t+ 1)

N + 1
for some N ∈ {0, 1, . . . t− 1}


≤ 3

(t+ 1)3
.

A Thompson Sampling Algorithm for Cascading Bandits

Finally, taking union bound over all items i ∈ L, we know that event Eµ̂,t holds true with probability at least
1− 3L/(t+ 1)3.

Bounding probability of event Eθ,t, conditioned on event Eµ̂,t: Consider an observation trajectory Ht

satisfying event Eµ̂,t. By the definition of the Thompson sample θt(i) (see Line 7 in Algorithm 1), we have

Pr (|θt(i)− µ̂t(i)| > ht(i) for all i ∈ L|Hµ̂,t)

= Pr
Zt

(∣∣∣∣∣Zt ·max

{√
ν̂t(i) log(t+ 1)

Nt(i) + 1
,

log(t+ 1)

Nt(i) + 1

}∣∣∣∣∣ >
√

log(t+ 1)

[√
16ν̂t(i) log(t+ 1)

Nt(i) + 1
+

24 log(t+ 1)

Nt(i) + 1

]
for all i ∈ [L]

∣∣∣∣ µ̂t(i), Nt(i)
)

≤ Pr

(∣∣∣∣∣Zt ·max

{√
ν̂t(i) log(t+ 1)

Nt(i) + 1
,

log(t+ 1)

Nt(i) + 1

}∣∣∣∣∣ >
√

16 log(t+ 1) max

{√
ν̂t(i) log(t+ 1)

Nt(i) + 1
,

log(t+ 1)

Nt(i) + 1

}
for all i ∈ [L]

∣∣∣∣ µ̂t(i), Nt(i)
)

≤ 1

2
exp [−8 log(t+ 1)] ≤ 1

2(t+ 1)3
. (B.3)

The inequality in (B.3) is by the concentration property of a Gaussian random variable, see Theorem A.2.
Altogether, the lemma is proved.

B.2 Proof of Lemma 4.2

Proof. To start, we denote the shorthand θt(i)
+ = max{θt(i), 0}. We demonstrate that, if events Eµ̂,t, Eθ,t and

inequality (4.2) hold, then for all S̄ = (̄i1, . . . , īK) ∈ S̄t we have:

K∑
k=1

k−1∏
j=1

(1− w(̄ij))

 · θt(̄ik)+
(‡)
<

K∑
k=1

k−1∏
j=1

(1− w(j))

 · θt(k)+
(†)
≤

K∑
k=1

k−1∏
j=1

(1− w(itj))

 · θt(itk)+, (B.4)

where we recall that St = (it1, . . . , i
t
K) in an optimal arm for θt, and θt(i

t
1) ≥ θt(i

t
2) ≥ . . . ≥ θt(i

t
K) ≥

maxi∈[L]\{it1,...,itK} θt(i). The inequalities in (B.4) clearly implies that St ∈ St. To justifies these inequalities, we
proceed as follows:

Showing (†): This inequality is true even without requiring events Eµ̂,t, Eθ,t and inequality (4.2) to be true.
Indeed, we argue the following:

K∑
k=1

k−1∏
j=1

(1− w(j))

 · θt(k)+ ≤
K∑
k=1

k−1∏
j=1

(1− w(j))

 · θt(itk)+ (B.5)

≤
K∑
k=1

k−1∏
j=1

(1− w(itj))

 · θt(itk)+. (B.6)

To justify inequality (B.5), consider function f : πK(L)→ R defined as

f
(
(ik)Kk=1

)
:=

K∑
k=1

k−1∏
j=1

(1− w(j))

 · θt(ik)+.

We assert that St ∈ argmaxS∈πK(L)f(S). The assertion can be justified by the following two properties. First,

by the choice of St, we know that θt(i
t
1)+ ≥ θt(i

t
2)+ ≥ . . . ≥ θt(i

t
K)+ ≥ maxi∈[L]\St

θt(i)
+. Second, the linear

coefficients in the function f are monotonic and non-negative, in the sense that 1 ≥ 1− w(1) ≥ (1− w(1))(1−
w(2)) ≥ . . . ≥

∏K−1
k=1 (1− w(k)) ≥ 0. Altogether, we have f(St) ≥ f(S∗), hence inequality (B.5) is shown.

Wang Chi Cheung, Vincent Y. F. Tan, Zixin Zhong

Next, inequality (B.6) clearly holds, since for each k ∈ [K] we know that θt(i
t
k)+ ≥ 0, and

∏k−1
j=1 (1 − w(j)) ≤∏k−1

j=1 (1 − w(itj)). The latter is due to the fact that 1 ≥ w(1) ≥ w(2) ≥ . . . ≥ w(K) ≥ maxi∈[L]\[K] w(i).
Altogether, inequality (†) is established.

Showing (‡): The demonstration crucially hinges on events Eµ̂,t, Eθ,t and inequality (4.2) being held true. For
any S̄ = (̄i1, . . . , īK) ∈ S̄t, we have

K∑
k=1

k−1∏
j=1

(1− w(̄ij))

 θt(̄ik)+ ≤
K∑
k=1

k−1∏
j=1

(1− w(̄ij))

 (w(̄ik) + gt(̄ik) + ht(̄ik)) (B.7)

<


K∑
k=1

k−1∏
j=1

(1− w(̄ij))

w(̄ik)

+ r(S∗|w)− r(S̄|w) (B.8)

= r(S∗|w) =

K∑
k=1

k−1∏
j=1

(1− w(j))

w(k)

≤
K∑
k=1

k−1∏
j=1

(1− w(j))

 θt(k) ≤
K∑
k=1

k−1∏
j=1

(1− w(j))

 θt(k)+. (B.9)

Inequality (B.7) is by the assumption that events Eµ̂,t, Eθ,t are true, which means that for all i ∈ [L] we have
θt(i)

+ ≤ µ(i) + gt(i) + ht(i). Inequality (B.8) is by the fact that S ∈ S̄t. Inequality (B.9) is by our assumption
that inequality (4.2) holds.

Altogether, the inequalities (†, ‡) in (B.4) are shown, and the Lemma is established.

B.3 Proof of Lemma 4.4

Lemma 4.4. Let c be an absolute constant such that Lemma 4.3 holds true. Consider a time step t that satisfies
c− 1/(t+ 1)3 > 0. Conditional on an arbitrary but fixed historical observation Ht ∈ Hµ̂,t, we have

Eθt [r(S∗|w)− r(St|w)|Ht]

≤
(

1 +
4

c

)
Eθt

[
F (St, t)

∣∣ Ht

]
+

L

2(t+ 1)2
.

The proof of Lemma 4.4 crucially uses the following lemma on the expression of the difference in expected reward
between two arms:

Lemma B.1. [Implied by Zong et al. (2016)] Let S = (i1, . . . , iK), S′ = (i′1, . . . , i
′
K) be two arbitrary ordered

K-subsets of [L]. For any w,w′ ∈ RL, the following equalities holds:

r(S|w)− r(S′|w′) =

K∑
k=1

k−1∏
j=1

(1− w(ij))

 · (w(ik)− w′(i′k)) ·

 K∏
j=k+1

(1− w′(i′j))


=

K∑
k=1

k−1∏
j=1

(1− w′(i′j))

 · (w(ik)− w′(i′k)) ·

 K∏
j=k+1

(1− w(ij))

 .
While Lemma B.1 is folklore in the cascading bandit literature, we provide a proof in Appendix B.4 for the sake
of completeness. Now, we proceed to the proof of Lemma 4.4:

Proof. In the proof, we always condition to the historical observation Ht stated in the Lemma. To proceed with
the analysis, we define S̃t = (̃it1, . . . , ĩ

t
K) ∈ St as an ordered K-subset that satisfies the following minimization

criterion:

K∑
k=1

k−1∏
j=1

(1− w(̃ij))

 (gt(̃ij) + ht(̃ij)) = min
S=(i1,...,iK)∈St

K∑
k=1

k−1∏
j=1

(1− w(ij))

 (gt(ij) + ht(ij)). (B.10)

A Thompson Sampling Algorithm for Cascading Bandits

We emphasize that both S̃t and the left hand side of (B.10) are deterministic in the current discussion, where
we condition on Ht. To establish tight bounds on the regret, we consider the truncated version, θ̃t ∈ [0, 1]L, of
the Thompson sample θt. For each i ∈ L, define

θ̃t(i) = min{1,max{0, θt(i)}}.

The truncated version θ̃t(i) serves as a correction of θt(i), in the sense that the Thompson sample θt(i), which
serves as a Bayesian estimate of click probability w(i), should lie in [0, 1]. It is important to observe the following
two properties hold under the truncated Thompson sample θ̃t:

Property 1 Our pulled arm St is still optimal under the truncated estimate θ̃t, i.e.

St ∈ argmaxS∈πK(L) r(S|θ̃t).

Indeed, the truncated Thompson sample can be sorted in a descending order in the same way as
for the original Thompson sample1, i.e. θ̃t(i

t
1) ≥ θ̃t(i

t
2) ≥ . . . ≥ θ̃t(i

t
K) ≥ maxi∈[L]\{it1,...,itK} θ̃t(i).

The optimality of St thus follows.

Property 2 For any t, i, if it holds that |θt(i)− w(i)| ≤ gt(i) + ht(i), then it also holds that |θ̃t(i) − w(i)| ≤
gt(i) + ht(i). Indeed, we know that |θ̃t(i)− w(i)| ≤ |θt(i)− w(i)|.

Now, we use the ordered K-subset S̃t and the truncated Thompson sample θ̃t to decompose the conditionally
expected round t regret as follows:

r(S∗|w)− r(St|w) =
[
r(S∗|w)− r(S̃t|w)

]
+
[
r(S̃t|w)− r(St|w)

]
≤
[
r(S∗|w)− r(S̃t|w)

]
+
[
r(S̃t|w)− r(St|w)

]
1(Eθ,t) + 1(¬Eθ,t)

≤
[
r(S∗|w)− r(S̃t|w)

]
︸ ︷︷ ︸

(♦)

+
[
r(S̃t|θ̃t)− r(St|θ̃t)

]
︸ ︷︷ ︸

(♣)

+
[
r(St|θ̃t)− r(St|w)

]
1(Eθ,t)︸ ︷︷ ︸

(♥)

+
[
r(S̃t|w)− r(S̃t|θ̃t)

]
1(Eθ,t)︸ ︷︷ ︸

(♠)

+1(¬Eθ,t). (B.11)

We bound (♦,♣,♥,♠) from above as follows:

Bounding (♦): By the assumption that S̃t = (̃it1, . . . , ĩ
t
K) ∈ St, with certainty we have

(♦) ≤
K∑
k=1

k−1∏
j=1

(1− w(̃itj))

 (gt(̃i
t
j) + ht(̃i

t
j)). (B.12)

Bounding (♣): By Property 1 of the truncated Thompson sample θ̃t, we know that r(St|θ̃t) =
maxS∈πK(L) r(S|θ̃t) ≥ r(S̃t|θ̃t). Therefore, with certainty we have

(♣) ≤ 0. (B.13)

1Recall that that θt(i
t
1) ≥ θt(i

t
2) ≥ . . . ≥ θt(i

t
K) ≥ maxi∈[L]\{it

k
}K
k=1

θt(i) for the original Thompson sample θt.

Wang Chi Cheung, Vincent Y. F. Tan, Zixin Zhong

Bounding (♥): . We bound the term as follows:

1(Eθ,t)
[
r(St|θ̃t)− r(St|w)

]
= 1(Eθ,t)

K∑
k=1

k−1∏
j=1

(1− w(itj))

 · (θ̃t(itk)− w(itk)) ·

 K∏
j=k+1

(1− θ̃t(itj))

 (B.14)

≤ 1(Eθ,t)
K∑
k=1

k−1∏
j=1

(1− w(itj))

 · ∣∣∣θ̃t(itk)− w(itk)
∣∣∣ ·
 K∏
j=k+1

∣∣∣1− θ̃t(itj)∣∣∣


≤ 1(Eθ,t)
K∑
k=1

k−1∏
j=1

(1− w(itj))

 · [gt(itk) + ht(i
t
k)
]

(B.15)

≤
K∑
k=1

k−1∏
j=1

(1− w(itj))

 · [gt(itk) + ht(i
t
k)
]
. (B.16)

Equality (B.14) is by applying the second equality in Lemma B.1, with S = S′ = St, as well as w′ ← w, w ← θt.
Inequality (B.15) is by the following two facts: (1) By the definition of the truncated Thompson sample θ̃, we

know that
∣∣∣1− θ̃t(i)∣∣∣ ≤ 1 for all i ∈ [L]; (2) By assuming event Eθ,t and conditioning on Ht where event Eµ̂,t

holds true, Property 2 implies that that |θ̃t(i)− w(i)| ≤ gt(i) + ht(i) for all i.

Bounding (♠): The analysis is similar to the analysis on (♥):

1(Eθ,t)
[
r(S̃t|w)− r(S̃t|θ̃t)

]
= 1(Eθ,t)

K∑
k=1

k−1∏
j=1

(1− w(̃itj))

 · (w(̃itk)− θ̃t(̃itk)) ·

 K∏
j=k+1

(1− θ̃t(̃itj))

 (B.17)

≤ 1(Eθ,t)
K∑
k=1

k−1∏
j=1

(1− w(̃itj))

 · [gt(̃itk) + ht(̃i
t
k)
]

(B.18)

≤
K∑
k=1

k−1∏
j=1

(1− w(̃itj))

 · [gt(̃itk) + ht(̃i
t
k)
]
. (B.19)

Equality (B.17) is by applying the first equality in Lemma B.1, with S = S′ = S̃t, and w ← w, w′ ← θt.
Inequality (B.18) follows the same logic as inequality (B.15).

Altogether, collating the bounds (B.12, B.13, B.16, B.19) for (♦,♣,♥,♠) respectively, we bound (B.11) from
above (conditioned on Ht) as follows:

r(S∗|w)− r(St|w) ≤ 2

K∑
k=1

k−1∏
j=1

(1− w(̃itj))

 (gt(̃i
t
j) + ht(̃i

t
j))

+

K∑
k=1

k−1∏
j=1

(1− w(itj))

 · [gt(itk) + ht(i
t
k)
]

+ 1(¬Eθ,t). (B.20)

Now, observe that

Eθt

 K∑
k=1

k−1∏
j=1

(1− w(itj))

 (gt(i
t
j) + ht(i

t
j))
∣∣∣ Ht


≥ Eθt

 K∑
k=1

k−1∏
j=1

(1− w(itj))

 (gt(i
t
j) + ht(i

t
j))
∣∣∣ Ht, St ∈ St

Pr
θt

[
St ∈ St

∣∣∣∣ Ht

]

A Thompson Sampling Algorithm for Cascading Bandits

≥


K∑
k=1

k−1∏
j=1

(1− w(̃ij))

 (gt(̃ij) + ht(̃ij))

 ·
(
c− 1

2(t+ 1)3

)
, (B.21)

where we recall that f(λ, t) is the probability lower bound defined in Equation (4.7). Thus, taking conditional
expectation Eθt [·|Ht] on both sides in inequality (B.20) gives

Eθt [R(S∗|w)−R(St|w)|Ht]

≤

(
1 +

2

c− 1
2(t+1)3

)
Eθt

 K∑
k=1

k−1∏
j=1

(1− w(itj))

 · [gt(itk) + ht(i
t
k)
] ∣∣∣∣ Ht

+ Eθt [1(¬Eθ,t)|Ht].

Finally, the Lemma is proved by the assumption that c > 1/(t + 1)3, and noting from Lemma 4.1 that
Eθt [1(¬Eθ,t)|Ht] ≤ 1/(2(t+ 1)3).

B.4 Proof of Lemma B.1

Lemma B.1. [Implied by Zong et al. (2016)] Let S = (i1, . . . , iK), S′ = (i′1, . . . , i
′
K) be two arbitrary ordered

K-subsets of [L]. For any w,w′ ∈ RL, the following equalities holds:

r(S|w)− r(S′|w′) =

K∑
k=1

k−1∏
j=1

(1− w(ij))

 · (w(ik)− w′(i′k)) ·

 K∏
j=k+1

(1− w′(i′j))


=

K∑
k=1

k−1∏
j=1

(1− w′(i′j))

 · (w(ik)− w′(i′k)) ·

 K∏
j=k+1

(1− w(ij))

 .
Proof. Observe that

K∑
k=1

k−1∏
j=1

(1− w(ij))

 · (w(ik)− w′(i′k)) ·

 K∏
j=k+1

(1− w′(i′j))


=

K∑
k=1


k−1∏
j=1

(1− w(ij))

 ·
 K∏
j=k

(1− w′(i′j))

−
 k∏
j=1

(1− w(ij))

 ·
 K∏
j=k+1

(1− w′(i′j))


=

K∏
k=1

(1− w′(i′k))−
K∏
k=1

(1− w(ik)) = R(S|w)−R(S′|w′),

and also that (actually we can also see this by a symmetry argument)

K∑
k=1

k−1∏
j=1

(1− w′(i′j))

 · (w(ik)− w′(i′k)) ·

 K∏
j=k+1

(1− w(ij))


=

K∑
k=1


 k∏
j=1

(1− w′(i′j))

 ·
 K∏
j=k+1

(1− w(ij))

−
k−1∏
j=1

(1− w′(i′j))

 ·
 K∏
j=k

(1− w(ij))


=

K∏
k=1

(1− w′(i′k))−
K∏
k=1

(1− w(ik)) = R(S|w)−R(S′|w′).

This completes the proof.

C Additional Numerical Results

We set L ∈ {16, 32, 64, 128, 256}, K ∈ {2, 4, 8} and ∆ ∈ {0.15, 0.075}. This results in 30 parameter settings. We
record all the results in Table 3. Here we can see that our algorithm clearly outperforms the other two algorithms
when L is large, ∆ is small. This superiority manifests itself in the expected regret and the time complexity.

Wang Chi Cheung, Vincent Y. F. Tan, Zixin Zhong

Table 3: The performances of TS-Cascade, CascadeKL-UCB and CascadeUCB1 under 30 different settings.
For each algorithm, the first column shows the mean and the standard deviation of Reg(T) and the second column
shows the average running time in seconds. For each problem setting, the algorithm with smallest average Reg(T)
or shortest running time is marked in bold.

L K ∆ TS-Cascade CascadeKL-UCB CascadeUCB1
16 2 0.15 377.07± 11.67 3.16 359.35 ± 26.42 54.3 1277.42 ± 25.88 2.82
16 4 0.15 294.55± 15.08 3.03 265.9 ± 20.36 54.48 990.51 ± 31.72 2.84
16 8 0.15 138.85± 9.81 3.51 148.36 ± 12.35 55.5 555.83 ± 14.41 3.17
16 2 0.075 691.6 ± 58.39 2.98 736.08 ± 56.36 54.11 2028.56 ± 71.56 2.94
16 4 0.075 546.46 ± 40.78 3.15 526.93 ± 52.76 54.41 1485.14 ± 58.43 2.85
16 8 0.075 252.74 ± 20.52 3.44 261.76 ± 33.86 54.24 713.43 ± 46.93 2.9
32 2 0.15 738.19 ± 19.23 3.41 764.42 ± 48.57 105.4 2711.44 ± 58.41 2.98
32 4 0.15 612.36 ± 10.66 3.55 619.68 ± 34.56 105.56 2237.77 ± 43.7 3.02
32 8 0.15 381.8 ± 13.19 3.68 419.39 ± 19.59 105.64 1526.97 ± 24.48 3.14
32 2 0.075 1159 ± 63.43 3.49 1583.33 ± 104.04 106.62 4217.87 ± 129.08 3.95
32 4 0.075 1062.9 ± 80.06 3.55 1208.06 ± 59.25 106.08 3301.44 ± 85.43 3.84
32 8 0.075 631.45 ± 51.51 3.58 718.65 ± 32.27 106.51 1890.06 ± 47.8 3.97
64 2 0.15 1400.97 ± 45.61 4.62 1555.42 ± 44.88 208.48 5408.46 ± 83.34 4.13
64 4 0.15 1194.26 ± 21.69 5.47 1283.29 ± 49.22 208.3 4609.41 ± 84.2 4.17
64 8 0.15 812.1 ± 29.36 4.73 937.02 ± 30.52 208.03 3307.08 ± 43.78 4.74
64 2 0.075 1810.43 ± 126.74 4.74 3169.17 ± 156.98 207.31 7599.58 ± 199.99 4.24
64 4 0.075 1730.13 ± 128.09 4.88 2512.28 ± 106.85 208.08 6437.43 ± 239.96 5.04
64 8 0.075 1175.07 ± 46.91 4.7 1565.76 ± 72.98 208.34 3962.35 ± 87.61 4.77
128 2 0.15 2520.03 ± 74.04 5.06 3114.73 ± 74.62 416.05 10677.3 ± 193.72 4.18
128 4 0.15 2216.26 ± 50.54 4.71 2602.08 ± 51.29 413.77 9163.15 ± 126.39 4.52
128 8 0.15 1591.75 ± 32.73 5.39 1916.45 ± 61.9 414.58 6589.88 ± 67.56 4.77
128 2 0.075 2784.44 ± 185.08 5.36 6160.86 ± 300.48 414.45 11055.68 ± 156.27 5.17
128 4 0.075 2837.25 ± 239.41 4.76 5004.45 ± 188.68 412.55 11516.47 ± 227.48 4.7
128 8 0.075 2004.58 ± 122.26 4.87 3084.67 ± 105.78 413.6 7432.14 ± 129.24 4.61
256 2 0.15 4386.43 ± 315.68 8.05 6255.14 ± 131.46 817.17 19088.19 ± 318.55 9.37
256 4 0.15 3998.61 ± 107.35 6.95 5209.96 ± 80.16 820.48 17287.79 ± 221.64 8.64
256 8 0.15 2934.38 ± 53.36 7.47 3786.36 ± 66.26 818.43 12519.56 ± 125.97 7.81
256 2 0.075 4128.96 ± 400.88 8.35 10426.63 ± 249.33 816.52 12191.23 ± 39.69 7.22
256 4 0.075 4376.73 ± 373.99 7.49 9389.72 ± 251.5 818.07 15748.08 ± 131.08 7.56
256 8 0.075 3258.24 ± 238.91 7.24 6019.24 ± 145.95 820 12417.86 ± 160.53 7.83

A Thompson Sampling Algorithm for Cascading Bandits

L = 16, K = 2, ∆ = 0.15 L = 128, K = 2, ∆ = 0.15

step T
×104

0 2 4 6 8 10

R
e
g
(T

)

0

200

400

600

800

1000

1200 TS-CASCADE

CascadeKL-UCB

CascadeUCB1

step T
×104

0 2 4 6 8 10

R
e
g
(T

)

0

2000

4000

6000

8000

10000 TS-CASCADE

CascadeKL-UCB

CascadeUCB1

L = 128, K = 2, ∆ = 0.075 L = 256, K = 2, ∆ = 0.075

step T
×104

0 2 4 6 8 10

R
e
g
(T

)

0

2000

4000

6000

8000

10000 TS-CASCADE

CascadeKL-UCB

CascadeUCB1

step T
×104

0 2 4 6 8 10

R
e
g
(T

)

0

2000

4000

6000

8000

10000

12000
TS-CASCADE

CascadeKL-UCB

CascadeUCB1

Figure 2: The T -step regret Reg(T) of TS-Cascade, CascadeKL-UCB and CascadeUCB1 under 4 different
parameter settings. Each line indicates the average Reg(T) of an algorithm and the length of each vertical error
bar above and below each data point is the standard deviation.

To better understand the evolution of T -step regret Reg(T), we present four more plots in Figure 2. First
of all, our algorithm clearly beats CascadeUCB1 in all simulations. Even though our algorithm sometimes
requires slightly more time to run than CascadeUCB1, there is a significant improvement of TS-Cascade over
CascadeUCB1. Comparing TS-Cascade to CascadeKL-UCB, we notice that when L = 16, K = 2, ∆ =
0.15, CascadeKL-UCB slightly outperforms our algorithm but requires more than ten times the computational
time. Besides, when L = 128, K = 2, ∆ = 0.15, our algorithm outperforms CascadeKL-UCB in terms of
regret and computational time. For the other two settings, our algorithm generates a T -step regret smaller than
half of that of CascadeKL-UCB, which confirms the superiority of our algorithm when the ground set is large.

