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Abstract

We design and analyze TS-Cascade, a
Thompson sampling algorithm for the cas-
cading bandit problem. In TS-Cascade,
Bayesian estimates of the click probability are
constructed using a univariate Gaussian; this
leads to a more efficient exploration procedure
vis-à-vis existing UCB-based approaches. We
also incorporate the empirical variance of
each item’s click probability into the Bayesian
updates. These two novel features allow us to
prove an expected regret bound of the form
Õ(
√
KLT ) where L and K are the number

of ground items and the number of items
in the chosen list respectively and T ≥ L
is the number of Thompson sampling up-
date steps. This matches the state-of-the-
art regret bounds for UCB-based algorithms.
More importantly, it is the first theoretical
guarantee on a Thompson sampling algorithm
for any stochastic combinatorial bandit prob-
lem model with partial feedback. Empirical
experiments demonstrate superiority of TS-
Cascade compared to existing UCB-based
procedures in terms of the expected cumula-
tive regret and the time complexity.

1 Introduction

Online recommender systems seek to recommend a
small list of items (such as movies or hotels) to users
based on a larger ground set [L] := {1, . . . , L} of items.
The model we consider in this paper is the cascading
bandits model (Kveton et al., 2015a). In the standard
cascade model of Craswell et al. (2008), which is used
widely in information retrieval and online advertising,
the user, upon seeing this list of items, scans through it
in a sequential manner. She looks at the first item and
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if she is attracted by it, clicks on it. If not, she skips
to the next item and clicks on it if she finds it attrac-
tive. This process stops when she clicks on one item
in the list or when she comes to the end of the list, in
which case she is not attracted by any of the items. The
items that are in the ground set but not in the chosen
list and those in the list that come after the attractive
one are unobserved. Each item i ∈ [L], which has a
certain click probability w(i) ∈ [0, 1], attracts the user
independently of other items. Under this assumption,
the optimal solution is the list of items that maximizes
the probability that the user finds an attractive item.
This is precisely the list of the most attractive items.

In the multi-armed bandits version of the cascade
model (Kveton et al., 2015a), the click probabilities
w := {w(i)}Li=1 are unknown to the learning agent,
and should be learned over time. If the user clicks on
any item in the list, a reward of one is obtained by
the learning agent. Otherwise, no reward is obtained.
Based on the lists previously chosen and the rewards
obtained thus far, the agent tries to learn the click
probabilities (exploration) in order to adaptively and
judiciously recommend other lists of items (exploita-
tion) to maximize his overall reward over T time steps.

Main Contributions. We design and analyze TS-
Cascade, a Thompson sampling algorithm (Thomp-
son, 1933) for the cascading bandits problem. Our
design involves the two novel features. First, the
Bayesian estimates on the vector of latent click prob-
abilities w are constructed by a univariate Gaussian
distribution. Consequently, in each time step, Ts-
Cascade conducts exploration in a suitably defined
one-dimensional space. This leads to a more efficient
exploration procedure than the existing Upper Confi-
dence Bound (UCB) approaches, which conduct explo-
ration in L-dimensional confidence hypercubes. Sec-
ond, inspired by Audibert et al. (2009), we judiciously
incorporate the empirical variance of each item’s click
probability in the Bayesian update. The allows efficient
exploration on item i when w(i) is close to 0 or 1.

We establish a problem independent regret bound for
our proposed algorithm TS-Cascade. Our regret
bound matches the state-of-the-art regret bound for
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UCB algorithms on the cascading bandit model (Wang
and Chen, 2017), up to a multiplicative logarithmic
factor in the number of time steps T , when T ≥ L.
Our regret bound is the first theoretical guarantee on
a Thompson sampling algorithm for the cascading ban-
dit problem model, or for any stochastic combinatorial
bandit problem model with partial feedback (see litera-
ture review). Our consideration of Gaussian Thompson
sampling is primarily motivated by Zong et al. (2016),
who reported the empirical effectiveness of Gaussian
Thompson sampling on cascading bandits, and raised
its theoretical analysis as an open question. In this pa-
per, we answer this open question in the special case in
which there is no linear generalization, and overcome
numerous analytical challenges. We carefully design
estimates on the latent mean reward (see (4.2)) to han-
dle the subtle statistical dependencies between partial
monitoring and Thompson sampling. We reconcile the
statistical inconsistency in using Gaussians to model
click probabilities by considering a certain truncated
version of the Thompson samples (Lemma 4.4). Our
framework provides useful tools for analyzing Thomp-
son sampling on stochastic combinatorial bandits with
partial feedback in other settings.

Literature Review. Our work is closely related to
existing works on the class of stochastic combinatorial
bandit (SCB) problems and Thompson sampling. In an
SCB model, an arm corresponds to a subset of a ground
set of items, each associated with a latent random vari-
able. The corresponding reward depends on the con-
stituent items’ realized random variables. SCB models
with semi-bandit feedback, where a learning agent ob-
serves all random variables of the items in a pulled arm,
are extensively studied in existing works. Assuming
semi-bandit feedback, Anantharam et al. (1987) study
the case when the arms constitute a uniform matroid,
Kveton et al. (2014) study the case of general matroids,
Gai et al. (2010) study the case of permutations, and
Gai et al. (2012), Chen et al. (2013), Combes et al.
(2015), and Kveton et al. (2015b) investigate various
general SCB problem settings. More general settings
with contextual information (Li et al. (2010); Qin et al.
(2014)) and linear generalization (Wen et al. (2015))
are also studied. All of the works above hinge on UCBs.

Motivated by numerous applications in recommender
systems and online advertisement, SCB models have
been studied under a more challenging setting of partial
feedback, where a learning agent only observes the ran-
dom variables for a subset the items in the pulled arm.
A prime example of SCB model with partial feedback
is the cascading bandit model, which is first introduced
by Kveton et al. (2015a). Subsequently, Kveton et al.
(2015c), Katariya et al. (2016), Lagrée et al. (2016) and
Zoghi et al. (2017) study the cascading bandit model in

various general settings. Cascading bandits with con-
textual information (Li et al. (2016)) and linear gener-
alization (Zong et al. (2016)) are also studied. Wang
and Chen (2017) provide a general algorithmic frame-
work on SCB models with partial feedback. All of the
works listed above are also based on UCB.

On the one hand, UCB has been extensively applied
for solving various SCB problems. On the other hand,
Thompson sampling (Thompson, 1933; Chapelle and
Li, 2011; Russo et al., 2018), an online algorithm based
on Bayesian updates, has been shown to be empirically
superior compared to UCB and ε-greedy algorithms in
various bandit models. The empirical success has moti-
vated a series of research works on the theoretical per-
formance guarantees of Thompson sampling on multi-
armed bandits (Agrawal and Goyal, 2012; Kaufmann
et al., 2012; Agrawal and Goyal, 2013a, 2017), linear
bandits (Agrawal and Goyal, 2013b), generalized lin-
ear bandits (Abeille and Lazaric, 2017), etc. Thomp-
son sampling has also been studied for SCB problems
with semi-bandit feedback. Komiyama et al. (2015)
study the case when the combinatorial arms consti-
tute a uniform matroid; Wang and Chen (2018) inves-
tigate the case of general matroids, and Gopalan et al.
(2014) and Hüyük and Tekin (2018) consider settings
with general reward functions. In addition, SCB prob-
lems with semi-bandit feedback are also studied in the
Bayesian setting (Russo and Van Roy, 2014), where the
latent model parameters are assumed to be drawn from
a known prior distribution. Despite existing works, an
analysis of Thompson sampling for an SCB problem in
the more challenging case of partial feedback is yet to
be done. Our work fills in this gap in the literature,
and our analysis provides tools for handling the sta-
tistical dependence between Thompson sampling and
partial feedback in the cascading bandit models.

2 Problem Setup

Let there be L ∈ N ground items, denoted as [L] :=
{1, . . . , L}. Each item i ∈ [L] is associated with a
weight w(i) ∈ [0, 1], signifying the item’s click proba-
bility. At each time step t ∈ [T ], the agent selects a list
of K ≤ L items St := (it1, . . . , i

t
K) ∈ πK(L) to the user,

where πK(L) denotes the set of all K-permutations of
[L]. The user examines the items from it1 to itK by ex-
amining each item one at a time until possibly all items
are examined. For 1 ≤ k ≤ K, Wt(i

t
k) ∼ Bern (w(itk))

are i.i.d. and Wt(i
t
k) = 1 iff user clicks on itk at time t.

The instantaneous reward of the agent at time t is

R(St|w) := 1−
K∏
k=1

(1−Wt(i
t
k)) ∈ {0, 1}.

In other words, the agent gets a reward of R(St|w) = 1
if Wt(i

t
k) = 1 for some 1 ≤ k ≤ K, and a reward of
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Table 1: Upper bounds on the T -regret of TS-Cascade, CUCB, CascadeUCB1 and CascadeKL-UCB and
the lower bound of all Cascading bandits algorithms.

Algorithm Reference Bounds Problem Indep.

TS-Cascade Present paper O(
√
KLT log T + L log5/2 T )

√

CUCB Wang and Chen (2017) O
(√
KLT log T

) √

CascadeUCB1 Kveton et al. (2015a) O
(
(L−K)(log T )/∆

)
×

CascadeKL-UCB Kveton et al. (2015a) O
(
(L−K) log(T/∆)/∆

)
×

Cascading Bandits Kveton et al. (2015a) Ω
(
(L−K)(log T )/∆

)
(Lower Bd) ×

R(St|w) = 0 if Wt(i
t
k) = 0 for all 1 ≤ k ≤ K.

The feedback of the agent at time t is defined as

kt := min{1 ≤ k ≤ K : Wt(i
t
k) = 1},

where we assume that the minimum over an empty set
is ∞. If kt < ∞, then the agent observes Wt(i

t
k) = 0

for 1 ≤ k < kt, and also observes Wt(i
t
k) = 1, but does

not observe Wt(i
t
k) for k > kt; otherwise, kt =∞, then

the agent observes Wt(i
t
k) = 0 for 1 ≤ k ≤ K.

As the agent aims to maximize the sum of rewards
over all steps, a expected cumulative regret is defined
to evaluate the performance of an algorithm. First, the
expected instant reward is

r(S|w) = E[R(S|w)] = 1−
∏
ik∈S

(1− w(ik)).

Note that the expected reward is permutation invari-
ant, but the randomness in the set of observed items
is not. Without loss of generality, we assume that
w(1) ≥ w(2) ≥ . . . ≥ w(L), then any permutation
of {1, . . . ,K} maximizes the mean reward. We let
S∗ = (1, . . . ,K) be an optimal ordered K-subset for
maximizing the expected reward; items in S∗ as opti-
mal items and others as suboptimal items. In T steps,
we aim to minimize the expected cumulative regret:

Reg(T) := T · r(S∗|w)−
T∑
t=1

r(St|w),

while the vector of click probabilities w ∈ [0, 1]L is not
known to the agent, and St is chosen online, i.e., de-
pendent on previous choices and the previous rewards.

3 Algorithm

Our algorithm is presented in Algorithm 1. Intuitively,
to minimize the expected cumulative regret, the agent
aims to learn the true weight w(i) of each item i ∈ [L]
by exploring the space to identify S∗ (i.e., exploita-
tion) after a hopefully small number of steps. In
our algorithm, we approximate the true weight w(i)
of each item i by a Bayesian statistic θt(i) at each

time step t. This statistic is known as the Thompson
sample. To do so, first, we sample a one-dimensional
standard Gaussian Zt ∼ N (0, 1), define the empiri-
cal variance ν̂t(i) = µ̂t(i)(1 − µ̂t(i)) of the previously
observed arms, and calculate θt(i). Secondly, we se-
lect St = (it1, i

t
2, . . . , i

t
K) such that θt(i

t
1) ≥ θt(i

t
2) ≥

· · · ≥ θt(i
t
K) ≥ maxj 6∈St θt(j); this is reflected in Line

10 of Algorithm 1. Finally, we update the parameters
for each observed item i in a standard manner by ap-
plying Bayes rule on the mean of the Gaussian (with
conjugate prior being another Gaussian) in Line 13.

The algorithm results in the following theoretical guar-
antee. The proof is sketched in Section 4.

Theorem 3.1. Consider the cascading bandit problem.
Algorithm TS-Cascade, presented in Algorithm 1, in-
curs an expected regret at most

O(
√
KLT log T + L log5/2 T ),

where the big O notation hides a constant factor that
is independent of K,L, T,w.

In practical applications, T � L and so the regret
bound is essentially Õ(

√
KLT ). We elaborate on the

main features of the algorithm and the guarantee.

In a nutshell, TS-Cascade is a Thompson sampling
Algorithm (Thompson, 1933), based on prior-posterior
updates on Gaussian random variables with refined
variances. The use of the Gaussians is useful, since it
allows us to readily generalize the algorithm and anal-
yses to the contextual setting (Li et al., 2010). This
handles heterogeneity in the online setting (Li et al.,
2016), as well as the linear bandits setting (Zong et al.,
2016) for handling a large L. We plan to study these
extensions in a future work. To this end, we remark
that the posterior update of TS can be done in a vari-
ety of ways. While the use of a Beta-Bernoulli update
to maintain a Bayesian estimate on w(i) is a natural
option (Russo et al., 2018), we use Gaussians instead,
in view of their use in generalizations and its empirical
success in the linear bandits setting (Zong et al., 2016).
Indeed, the conjugate prior-posterior update is not the
only choice for TS algorithms for complex multi-armed
bandit problems. For example, the posterior update in
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Algorithm 1 TS-Cascade, Thompson Sampling for
Cascading Bandits with Gaussian Update

1: Initialize µ̂1(i) = 0, N1(i) = 0 for all i ∈ [L].
2: for t = 1, 2, . . . do
3: Sample a 1-dim r.v. Zt ∼ N (0, 1).
4: for i ∈ [L] do
5: Calculate the empirical variance

ν̂t(i) = µ̂t(i)(1− µ̂t(i)).

6: Calculate std. dev. of the Thompson sample

σt(i) = max

{√
ν̂t(i) log(t+ 1)

Nt(i) + 1
,

log(t+ 1)

Nt(i) + 1

}
.

7: Construct the Thompson sample

θt(i) = µ̂t(i) + Ztσt(i).

8: end for
9: for k ∈ [K] do

10: Extract itk ∈ argmaxi∈[L]\{it1,...itk−1}
θt(i).

11: end for
12: Pull arm St = (it1, i

t
2, . . . , i

t
K).

13: For each i ∈ [L], if Wt(i) is observed, define

µ̂t+1(i) =
Nt(i)µ̂t(i) +Wt(i)

Nt(i) + 1
,

Nt+1(i) = Nt(i) + 1.

Otherwise, µ̂t+1(i) = µ̂t(i), Nt+1(i) = Nt(i).
14: end for

Algorithm 2 in Agrawal et al. (2017) for the multino-
mial lgoit bandit problem is not conjugate.

While the use of Gaussians is useful for generalizations,
the analysis of Gaussian Thompson samples in the cas-
cading setting comes with some difficulties, as θt(i) is
not in [0, 1] with probability one. We perform a trunca-
tion of the Gaussian Thompson sample in the proof of
Lemma 4.4 to show that this replacement of the Beta
by the Gaussian does not incur any significant loss in
terms of the regret and the analysis is not affected sig-
nificantly.

We elaborate on the refined variances of our Bayesian
estimates. Lines 5–7 indicate that the Thompson sam-
ple θt(i) is constructed to be a Gaussian random vari-
able with mean µ̂t(i) and variance being the maximum
of ν̂t(i) log(t+1)/(Nt(i)+1) and [log(t+1)/(Nt(i)+1)]2.
Note that ν̂t(i) is the variance of a Bernoulli distribu-
tion with mean µ̂t(i). In Thompson sampling algo-
rithms, the choice of the variance is of crucial impor-
tance. We considered a näıve TS implementation ini-
tially. However, the theoretical and empirical results

were unsatisfactory, due in part to the large variance
of the Thompson sample variance; this motivated us to
improve on the algorithm leading to Algorithm 1. The
reason why we choose the variance in this manner is to
(i) make the Bayesian estimates behave like Bernoulli
random variables and to (ii) ensure that it is tuned so
that the regret bound has a dependence on

√
K (see

Lemma 4.3) and does not depend on any pre-set pa-
rameters. We utilize a key result by Audibert et al.
(2009) concerning the analysis of using the empirical
variance in multi-arm bandit problems to achieve (i).
In essence, in Lemma 4.3, the Thompson sample is
shown to depend only on a single source of random-
ness, i.e., the Gaussian random variable Zt (Line 3 of
Algorithm 1). This shaves of a factor of

√
K vis-à-vis

a more näıve analysis where the variance is pre-set in
the relevant probability in Lemma 4.3 depends on K
independent random variables.

Finally, in Table 1, we compare our regret bound for
cascading bandits to those in the literature which are
all based on the UCB idea (Wang and Chen, 2017; Kve-
ton et al., 2015a). Note that the last column indicates
whether or not the algorithm is problem dependent; be-
ing problem dependent means that the bound depends
on the vector of click probabilities w. To present our
results succinctly, for the problem dependent bounds,
we assume that the optimal items have the same click
probability w1 and the suboptimal items also have the
same click probability w2 < w1; note though that
TS-Cascade makes no such assumption. The gap
∆ := w1 − w2 is a measure of the difficulty of the
problem. Table 1 implies that our upper bound grows
like
√
T just like the others. Our bound also matches

the state-of-the-art UCB bound (up to log factors) by
Wang and Chen (2017), whose algorithm, when suit-
ably specialized to the cascading bandits setting, is the
same as CascadeUCB1 in Kveton et al. (2015a). For
the case in which T ≥ L, our bound is a

√
log T fac-

tor than the problem independent bound in Wang and
Chen (2017), but we are the first to analyze Thompson
sampling for the cascading bandits problem.

4 Proof Sketch of Theorem 3.1

In this section, we prove a proof sketch of Theorem 3.1.
We also provide the proofs of Lemmas 4.3 and 4.5. The
remaining lemmas are proved in Appendix B.

During the iterations, we update µ̂t+1(i) such that it
approaches w(i) eventually. To do so, we select a set
St according to the order of θt(i)’s at each time step.
Hence, if µ̂t+1(i), θt(i) and w(i) are close enough, then
we are likely to select the optimal set. This motivates
us to define two “nice events” as follows:

Eµ̂,t := {∀i ∈ [L] : |µ̂t(i)− w(i)| ≤ gt(i)} ,
Eθ,t := {∀i ∈ [L] : |θt(i)− µ̂t(i)| ≤ ht(i)} ,
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where ν̂t(i) is defined in Line 5 of Algorithm 1, and

gt(i) :=

√
16ν̂t(i) log(t+ 1)

Nt(i) + 1
+

24 log(t+ 1)

Nt(i) + 1
,

ht(i) :=
√

log(t+ 1)gt(i).

Lemma 4.1. For each t ∈ [T ], Ht ∈ Eµ̂,t, we have

Pr [Eµ̂,t] ≥ 1− 3L

(t+ 1)3
, Pr [Eθ,t|Ht] ≥ 1− 1

2(t+ 1)2
.

Demonstrating that Eµ̂,t has high probability requires
the concentration inequality in Theorem A.1; this is a
specialization of a result in Audibert et al. (2009) to
Bernoulli random variables. Demonstrating that Eθ̂,t
has high probability requires the concentration prop-
erty of Gaussian random variables (cf. Theorem A.2).

To start our analysis, define

F (S, t) :=

K∑
k=1

k−1∏
j=1

(1−w(ij))

 (gt(ik)+ht(ik)) . (4.1)

Define the set

St :=
{
S = (i1, . . . , iK) ∈ πK(L) :

F (S, t) ≥ r(S∗|w)− r(S|w)
}
.

Recall that w(1) ≥ w(2) ≥ . . . ≥ w(L). As such, St is
non-empty, since S∗ = (1, 2, . . . ,K) ∈ St.

Intuition behind the set St: Ideally, we expect the
user to click an item in St for every time step t. Re-
call that gt(i) and ht(i) are decreasing in Nt(i), the
number of time steps q’s in 1, . . . , t− 1 when we get to
observe Wq(i). Naively, arms in St can be thought of
as arms that “lack observations”, while arms in S̄t can
be thought of as arms that are “observed enough”, and
are believed to be suboptimal. Note that S∗ ∈ St is a
prime example of an arm that is under-observed.

To further elaborate, gt(i) + ht(i) is the “statistical
gap” between the Thompson sample θt(i) and the la-
tent mean w(i). The gap shrinks with more observa-
tions of i. To balance exploration and exploitation, for
any suboptimal item i ∈ [L]\ [K] and any optimal item
k ∈ [K], we should have gt(i) + ht(i) ≥ w(k) − w(i).
However, this is too much to hope for, and it seems
that hoping for St ∈ St to happen would be more vi-
able. (See the forthcoming Lemma 4.2.)

Further notations. In addition to set St, we define
Ht as the collection of observations of the agent, from
the beginning until the end of time t−1. More precisely,

we define Ht := {Sq}t−1q=1 ∪ {(i
q
k,Wq(i

q
k))

min{kt,∞}
k=1

}t−1q=1.
Recall that Sq ∈ πK(L) is the arm pulled during

time step q, and (iqk,Wq(i
q
k))

min{kt,∞}
k=1

is the collec-
tion of observed items and their respective values
during time step q. At the start of time step t,
the agent has observed everything in Ht, and de-
termine the arm St to pull accordingly (see Algo-
rithm 1). Note that event Eµ̂,t is σ(Ht)-measurable.
For the convenience of discussion, we define Hµ̂,t :=
{Ht : Event Eµ̂,t is true in Ht}. The first statement in
Lemma 4.1 is thus Pr[Ht ∈ Hµ̂,t] ≥ 1− 3L/(t+ 1)3.

The performance of Algorithm 1 is analyzed using the
following four Lemmas. To begin with, Lemma 4.2
quantifies a set of conditions on µ̂t and θt so that the
pulled arm St belongs to St, the collection of arms that
lack observations and should be explored. We recall
from Lemma 4.1 that the events Eµ̂,t and Eθ,t hold with
high probability. Subsequently, we will crucially use
our definition of the Thompson sample θt to argue that
inequality (4.2) holds with non-vanishing probability
when t is sufficiently large.

Lemma 4.2. Consider a time step t. Suppose that
events Eµ̂,t, Eθ,t and inequality

K∑
k=1

k−1∏
j=1

(1− w(j))

 θt(k) ≥
K∑
k=1

k−1∏
j=1

(1− w(j))

w(k)

(4.2)
hold, then the event {St ∈ St} also holds.

In the following, we condition on Ht and show that θt is
“typical” w.r.t. w in the sense of (4.2). Due to the con-
ditioning on Ht, the only source of randomness of the
pulled arm St is from the Thompson sample. Thus, by
analyzing a suitably weighted version of the Thompson
samples in (4.2), we disentangle the statistical depen-
dence between partial monitoring and Thompson sam-
pling. Recall that θt is normal with σ(Ht)-measurable
mean and variance (Lines 5–7 in Algorithm 1).

Lemma 4.3. There exists an absolute constant c ∈
(0, 1) independent of w,K, L, T such that, for any time
step t and any historical observation Ht ∈ Hµ̂,t, the
following inequality holds:

Pr
θt

[Eθ,t and (4.2) hold | Ht] ≥ c−
1

2(t+ 1)3
.

Proof. We prove the Lemma by setting the absolute
constant c to be 1/(4

√
πe8064) > 0.

For brevity, we define α(1) := 1, and α(k) =
∏k−1
j=1 (1−

w(j)) for 2 ≤ k ≤ K. By the second part of
Lemma 4.1, we know that Pr[Eθ,t|Ht] ≥ 1−1/2(t+1)3,
so to complete this proof, it suffices to show that
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Pr[(4.2) holds|Ht] ≥ c. For this purpose, consider

Pr
θt

[
K∑
k=1

α(k)θt(k) ≥
K∑
k=1

α(k)w(k)

∣∣∣∣ Ht

]

= Pr
Zt

[
K∑
k=1

α(k)
[
µ̂t(k)+Ztσt(k)

]
≥

K∑
k=1

α(k)w(k)

∣∣∣∣ Ht

]
(4.3)

≥ Pr
Zt

[
K∑
k=1

α(k) [w(k)− gt(k)] + Zt ·
K∑
k=1

α(k)σt(k)

≥
K∑
k=1

α(k)w(k)

∣∣∣∣ Ht

]
(4.4)

= Pr
Zt

[
Zt ·

K∑
k=1

α(k)σt(k) ≥
K∑
k=1

α(k)gt(k)

∣∣∣∣ Ht

]

≥ 1

4
√
π

exp

−7

2

[
K∑
k=1

α(k)gt(k)

/ K∑
k=1

α(k)σt(k)

]2
(4.5)

≥ 1

4
√
π

exp

{
−7

2

[
K∑
k=1

α(k)gt(k)

/
K∑
k=1

α(k)

(
1

2

√
ν̂t(i) log(t+ 1)

Nt(i) + 1
+

1

2

log(t+ 1)

(Nt(i) + 1)

)]2
≥ 1

4
√
πe8064

= c. (4.6)

Step (4.3) is by the definition of {θt(i)}i∈L in Line 7 in
Algorithm 1. It is important to note that these samples
share the same random seed Zt. Next, step (4.4) is by
the Lemma assumption that Ht ∈ Hµ̂,t, which means
that µ̂t(k) ≥ wt(k)−gt(k) for all k ∈ [K]. Step (4.5) is
an application of the anti-concentration inequality of a
normal random variable in Theorem A.2. Step (4.6) is
by applying the definition of gt(i).

Combining Lemmas 4.2 and 4.3, we conclude that there
exists an absolute constant c such that, for any time
step t and any historical observation Ht ∈ Hµ̂,t,

Pr
θt

[
St ∈ St

∣∣ Ht

]
≥ c− 1

2(t+ 1)3
. (4.7)

Equipped with (4.7), we are able to provide an upper
bound on the regret of our Thompson sampling algo-
rithm at every sufficiently large time step.

Lemma 4.4. Let c be an absolute constant such that
Lemma 4.3 holds true. Consider a time step t that
satisfies c−1/(t+1)3 > 0. Conditional on an arbitrary

but fixed historical observation Ht ∈ Hµ̂,t, we have

Eθt [r(S∗|w)− r(St|w)|Ht]

≤
(

1 +
4

c

)
Eθt

[
F (St, t)

∣∣ Ht

]
+

L

2(t+ 1)2
.

The proof of Lemma 4.4 relies crucially on truncating
the original Thompson sample θt ∈ R to θ̃t ∈ [0, 1]L.
Under this truncation operation, St remains optimal
under θ̃t (as it was under θt) and |θ̃t(i)−w(i)| ≤ |θt(i)−
w(i)|, i.e., the distance from the truncated Thompson
sample to the ground truth is not increased.

For any t satisfying c− 1/(t+ 1)3 > 0, define

Fi,t := {Observe Wt(i) at t}

G(St,Wt) :=

K∑
k=1

1
(
Fitk,t

)
· (gt(itk) + ht(i

t
k))
)
,

we unravel the upper bound in Lemma 4.4 to establish
the expected regret at time step t:

E {r(S∗|w)− r(St|w)}
≤ E [Eθt [r(S∗|w)− r(St|w) | Ht] · 1(Ht ∈ Hµ̂,t)]

+ E [1(Ht 6∈ Hµ̂,t)]

≤
(

1 +
4

c

)
E
[
Eθt

[
F (St, t)

∣∣ Ht

]
1(Ht ∈ Hµ̂,t)

]
+

1

2(t+ 1)2
+

3L

(t+ 1)3

≤
(

1 +
4

c

)
E [F (St, t)] +

4L

(t+ 1)2
(4.8)

=

(
1 +

4

c

)
E
[
EWt [G(St,Wt)

∣∣Ht, St]
]

+
4L

(t+ 1)2

=

(
1 +

4

c

)
E [G(St,Wt)] +

4L

(t+ 1)2
, (4.9)

where (4.8) follows by assuming t is sufficiently large.

Lemma 4.5. For any realization of historical trajec-
tory HT+1, we have

T∑
t=1

G(St,Wt) ≤ 6
√
KLT log T + 144L log5/2 T.

Proof. Recall that for each i ∈ [L] and t ∈ [T + 1],

Nt(i) =
∑t−1
s=1 1(Fi,s) is the number of rounds in [t−1]

when we get to observe the outcome for item i. Since
G(St,Wt) involves gt(i) + ht(i), we first bound this
term. The definitions of gt(i) and ht(i) yield that

gt(i) + ht(i) ≤
12 log(t+ 1)√
Nt(i) + 1

+
72 log3/2(t+ 1)

Nt(i) + 1
.

Subsequently, we decompose
∑T
t=1G(St,Wt) accord-

ing to its definition. For a fixed but arbitrary item i,
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consider the sequence (Ut(i))
T
t=1 = (1 (Fi,t) · (gt(i) +

ht(i)))
T
t=1. Clearly, Ut(i) 6= 0 if and only if the deci-

sion maker observes the realization Wt(i) of item i at
t. Let t = τ1 < τ2 < . . . < τNT+1

be the time steps
when Ut(i) 6= 0. We assert that Nτn(i) = n−1 for each
n. Indeed, prior to time steps τn, item i is observed
precisely in the time steps τ1, . . . , τn−1. Thus, we have

T∑
t=1

1 (Fi,t) · (gt(i) + ht(i)) =

NT+1(i)∑
n=1

(gτn(i) + hτn(i))

≤
NT+1(i)∑
n=1

12 log T√
n

+
72 log3/2 T

n
. (4.10)

Now we complete the proof as follows:

T∑
t=1

K∑
k=1

1
(
Fitk,t

)
· (gt(itk) + ht(i

t
k))

=
∑
i∈[L]

T∑
t=1

1 (Fi,t) · (gt(i) + ht(i))

≤
∑
i∈[L]

NT+1(i)∑
n=1

12 log T√
n

+
72 log3/2 T

n
(4.11)

≤ 6
∑
i∈[L]

√
NT+1(i) log T + 72L log3/2 T (log T + 1)

≤ 6

√
L
∑
i∈[L]

NT+1(i) log T + 72L log3/2 T (log T + 1)

(4.12)

≤ 6
√
KLT log T + 144L log5/2 T, (4.13)

where (4.11) follows from (4.10), (4.12) follows from
the Cauchy-Schwarz inequality, and (4.13) is because
the decision maker can observe at most K items at
each time step, hence

∑
i∈[L]NT+1(i) ≤ KT .

Finally, we bound the total regret from above by con-
sidering the time step t0 := d1/c1/3e, and then bound
the regret for the time steps before t0 by 1 and the
regret for time steps after by inequality (4.9), which
holds for all t > t0:

Reg(T ) ≤
⌈

1

c1/3

⌉
+

T∑
t=t0+1

E {r(S∗|w)− r(St|w)}

≤
⌈

1

c1/3

⌉
+

(
1 +

4

c

)
E

[
T∑
t=1

G(St,Wt)

]

+

T∑
t=t0+1

4L

(t+ 1)2
.

It is clear that the third term is O(L), and by
Lemma 4.5, the second term is O(

√
KLT log T +

L log5/2 T ). Altogether, Theorem 3.1 is proved.
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Figure 1: Reg(T ) of TS-Cascade, CascadeKL-
UCB and CascadeUCB1 with L ∈ {64, 256} (resp.
top and bottom), K = 2 and ∆ = 0.075. Each line
indicates the average Reg(T ) (over 20 runs) and the
length of each errorbar above and below each data
point is the standard deviation.

5 Experiments
In this section, we evaluate the performance of TS-
Cascade using numerical simulations. To demon-
strate the effectiveness of our algorithm, we compare
the expected cumulative regret of TS-Cascade to
CascadeKL-UCB and CascadeUCB1 in Kveton
et al. (2015a). We reimplemented the latter two algo-
rithms and checked that their performances are roughly
the same as those in Table 1 of Kveton et al. (2015a).

We set the optimal items to have the same click prob-
ability w1 and the suboptimal items to also have the
same click probability w2 < w1. The gap ∆ := w1−w2.
We set w1 = 0.2, T = 105 and vary L, K, and ∆.
We conduct 20 independent simulations with each al-
gorithm under each setting of L, K, and ∆. We cal-
culate the average and standard deviation of Reg(T ),
and as well as the average running time of each exper-
iment. Here we only present a subset of the results.
More details are given in Appendix C.

In Table 2, we compare the performances of algorithms
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Table 2: The performances of TS-Cascade, CascadeKL-UCB and CascadeUCB1 under 18 different settings.
For each algorithm, the first column shows the mean and the standard deviation of Reg(T ) and the second column
shows the average running time in seconds. For each problem setting, the algorithm with smallest average Reg(T )
and shortest running time is marked in bold.

L K ∆ TS-Cascade CascadeKL-UCB CascadeUCB1
16 2 0.15 377.07 ± 11.67 3.16 359.35 ± 26.42 54.3 1277.42 ± 25.88 2.82
16 4 0.15 294.55 ± 15.08 3.03 265.9 ± 20.36 54.48 990.51 ± 31.72 2.84
16 8 0.15 138.85 ± 9.81 3.51 148.36 ± 12.35 55.5 555.83 ± 14.41 3.17
32 2 0.15 738.19 ± 19.23 3.41 764.42 ± 48.57 105.4 2711.44 ± 58.41 2.98
32 4 0.15 612.36 ± 10.66 3.55 619.68 ± 34.56 105.56 2237.77 ± 43.7 3.02
32 8 0.15 381.8 ± 13.19 3.68 419.39 ± 19.59 105.64 1526.97 ± 24.48 3.14
32 2 0.075 1159 ± 63.43 3.49 1583.33 ± 104.04 106.62 4217.87 ± 129.08 3.95
32 4 0.075 1062.9 ± 80.06 3.55 1208.06 ± 59.25 106.08 3301.44 ± 85.43 3.84
32 8 0.075 631.45 ± 51.51 3.58 718.65 ± 32.27 106.51 1890.06 ± 47.8 3.97
64 2 0.075 1810.43 ± 126.74 4.74 3169.17 ± 156.98 207.31 7599.58 ± 199.99 4.24
64 4 0.075 1730.13 ± 128.09 4.88 2512.28 ± 106.85 208.08 6437.43 ± 239.96 5.04
64 8 0.075 1175.07 ± 46.91 4.7 1565.76 ± 72.98 208.34 3962.35 ± 87.61 4.77
128 2 0.075 2784.44 ± 185.08 5.36 6160.86 ± 300.48 414.45 11055.68 ± 156.27 5.17
128 4 0.075 2837.25 ± 239.41 4.76 5004.45 ± 188.68 412.55 11516.47 ± 227.48 4.7
128 8 0.075 2004.58 ± 122.26 4.87 3084.67 ± 105.78 413.6 7432.14 ± 129.24 4.61
256 2 0.075 4128.96 ± 400.88 8.35 10426.63 ± 249.33 816.52 12191.23 ± 39.69 7.22
256 4 0.075 4376.73 ± 373.99 7.49 9389.72 ± 251.5 818.07 15748.08 ± 131.08 7.56
256 8 0.075 3258.24 ± 238.91 7.24 6019.24 ± 145.95 820 12417.86 ± 160.53 7.83

under 18 different settings. Since CascadeKL-UCB
perfoms far better than CascadeUCB1, we mainly
focus on the comparison between our method and
CascadeKL-UCB. In most cases, the expected cu-
mulative regret of our algorithm is significantly smaller
than that of CascadeKL-UCB, especially when L is
large and ∆ is small. Note that a larger L means that
the problem size is larger. A smaller ∆ implies that
the difference between optimal and sub-optimal arms
are less pronounced. Hence, when L is large and ∆ is
small, the problem is “more difficult”. However, the
standard deviation of our algorithm is larger than that
of CascadeKL-UCB in some cases. A possible ex-
planation is that Thompson sampling yields more ran-
domness than UCB due to the additional randomness
of the Thompson samples {θt}t∈[T ]. In contrast, UCB-
based algorithms do not have this source of random-
ness as each upper confidence bound is deterministi-
cally designed. Furthermore, Table 2 suggests that our
algorithm is much faster than CascadeKL-UCB and
is just as fast as CascadeUCB1. The reason why
CascadeKL-UCB is so slow is because an UCB has
to be computed via an optimization problem for every
i ∈ [L]. In contrast, TS-Cascade in Algorithm 1 does
not contain any computationally expensive steps.

In Figure 1, we plot Reg(T ) as a function of T for TS-
Cascade, CascadeKL-UCB and CascadeUCB1
when L ∈ {64, 256}, K = 2 and ∆ = 0.075. It is clear
that our method outperforms the two UCB algorithms.

For the case where the number of ground items L = 256
is large, the UCB-based algorithms do not demonstrate
the
√
T behavior even after T = 105 iterations. In

contrast, Reg(T ) for TS-Cascade behaves as O(
√
T )

which implies that the empirical performance corrob-
orates the upper bound derived in Theorem 3.1. We
have plotted Reg(T ) for other settings of L, K and ∆
in Appendix C and the same conclusion can be drawn.

6 Summary and Future work

This work presents the first theoretical analysis of
Thompson sampling for cascading bandits. The ex-
pected regret matches the state-of-the-art based on
UCB by Wang and Chen (2017) (which is identical
to CascadeUCB1 in Kveton et al. (2015a)). Em-
pirical experiments, however, show the clear superior-
ity of TS-Cascade over CascadeKL-UCB and Cas-
cadeUCB1 in terms of regret and running time.

From Table 2, we see that a problem-independent lower
bound is still not available. It is envisioned that a
judicious construction of an adversarial bandit exam-
ple, together with the information-theoretic technique
of (Auer et al., 2002, Theorem 5.1) will lead to a lower
bound of the form Ω̃(

√
KLT ), matching Theorem 3.1

here and Wang and Chen (2017). Next, we envision
that a refinement of the proof techniques herein, espe-
cially the design of Thompson samples to be Gaussian,
would be useful for generalization the contextual set-
ting (Li et al., 2010; Qin et al., 2014; Li et al., 2016).
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